

Journal of Luminescence 83-84 (1999) 361-366

www.elsevier.com/locate/jlumin

Nonradiative relaxation and inhomogeneous splitting of aggregated optical centers in the Nd^{3+} -doped CaF_2 and SrF_2 crystals (FLN and decay study)

Yurii V. Orlovskii^{a,*}, Vladimir V. Fedorov^a, Tasoltan T. Basiev^a, Mark Altwein^b, Boris Leu^b, Johann Heber^b, Sergey Mirov^c

^aResearch Center for Laser Materials and Technologies of General Physics Institute, 38 Vavilov st., block D, 117942, GSP-1, Moscow, Russia ^bInstitute of Solid State Physics, Darmstadt University of Technology, Hochschulstr. 8, D-64289 Darmstadt, Germany ^cThe University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA

Abstract

Site-selective fluorescence and laser excitation spectroscopy for different types of optical centers in $SrF_2 : Nd^{3+}$ (0.3 – 1.0%) and $SrF_2 : La^{3+}$ (1.0%) : Nd^{3+} (0.2%) were performed at 4.2 K. The crystal-field levels of the ${}^4I_{9/2}$, ${}^4F_{3/2}$, and ${}^4G_{5/2}$ multiplets for different Nd^{3+} optical centers were determined in $SrF_2 : Nd^{3+}$ (0.3%). An attempt was made to identify some of the new optical centers on the basis of their fluorescence lifetimes and crystal-field splitting. Some models of these centers have been discussed. Two-six times reduction of the ${}^4F_{3/2}$ multiplet lifetime was observed in the pair M-center in comparison with the single optical centers due to energy cross-relaxation in the pair. A fine splitting of the levels at the ${}^4I_{9/2}(1) \rightarrow {}^4G_{5/2}(1)$ crystal-field transition (1.5 cm⁻¹) similar to that in CaF₂ (2.4 cm⁻¹) was found for the Nd–Nd pair in SrF₂. The variation of the splitting from CaF₂ to SrF₂ nicely demonstrates the R^{-5} dependence of coherent quadrupole-quadrupole interaction. © 1999 Elsevier Science B.V. All rights reserved.

PACS: 78.50. - w; 71.70Ch

Keywords: Optical centers; Site-selective spectroscopy; Coherent and incoherent ion-ion interaction; Resonance splitting

1. Introduction

A fine resonance dynamical splitting at the ${}^{4}I_{9/2}(1) \rightarrow {}^{4}G_{5/2}(1)$ (Z1 \rightarrow D1) Stark–Stark transition in both the rhombic (Nd_{Ca}–F_i)₂ pair M-center and in the trigonal (Nd_{Ca}–F_i)₄ quartet N-center was previously found in the CaF₂ : Nd³⁺

* Corresponding author. Fax: + 7-95-135-0270.

crystals in the spectral domain by absorption spectroscopy [1] and in the time domain by coherent beating of the accumulated photon echo (APE) [2] at T = 10 K and was confirmed by laser-induced site-selective time-resolved fluorescence spectroscopy at T = 4.2 K [3]. Strong coherent quadrupole-quadrupole interaction between the Nd³⁺ ions inside the M and the N complexes was proposed as the reason for this splitting [1]. In contrast to CaF₂ the aggregated Nd³⁺ centers in the SrF₂ crystal have not been reliably identified

E-mail address: orlovski@1st.gpi.ru (Y.V. Orlovskii)

before. The purpose of this work is to identify such clusters and to determine the energy diagram of the Stark levels for the ground ${}^{4}I_{9/2}$ and the excited ${}^{4}F_{3/2}$ and ${}^{4}G_{5/2}$; ${}^{2}G_{7/2}$ states for different Nd³⁺ centers in the SrF₂ crystal. On the basis of these results we will try to compare the strength of coherent Nd³⁺-Nd³⁺ interaction in the pair centers of SrF₂ : Nd³⁺ crystal with the known values for CaF₂ : Nd³⁺.

2. Experimental results and discussion

The experimental set-up used in this study is described in our previous paper of the similar study in the CaF_2 : Nd^{3+} crystals [3].

2.1. L-center with the single Nd^{3+} ion

In the tetragonal symmetry L-center where the lattice Ca²⁺ cation is replaced by the impurity Nd^{3+} ion the charge-compensating fluorine F_i^- ion is located at the nearest to the rare-earth ion available interstitial position. The tetragonal symmetry of this center in CaF₂ and SrF₂ was established by EPR [4]. Fig. 1 presents inter-multiplet absorption spectra at the ${}^{4}I_{9/2}(Z) \rightarrow {}^{4}F_{3/2}(R)$ transition for SrF_2 : Nd³⁺ (0.3%), SrF_2 : Nd³⁺ (1.0%), SrF_2 : La³⁺ (1%): Nd³⁺ (0.2%), and CaF₂: Nd³⁺(0.2%) at T = 4.2 K. One can see that along with the Lcenter there are many absorption lines of more complex centers. Comparison of the absorption spectra of SrF_2 : Nd³⁺ (0.3%) and SrF_2 : Nd³⁺ (1.0%) shows that the relative concentration of aggregated centers increases with increase in total neodymium concentration. At 1% of Nd³⁺ concentration the absorption line of the L-center in SrF₂ is considerably stronger than in CaF₂ due to the less-effective process of Nd³⁺ aggregation in the former one. The value of the Stark splitting of the ${}^{4}F_{3/2}$ multiplet is found to be 82 cm⁻¹, which is 1.4 times less than in CaF₂. The positions of the Stark levels of the ${}^{4}I_{9/2}$, ${}^{4}F_{3/2}$ and ${}^{4}G_{5/2}$ multiplets in the L-center in the crystals in this study measured by absorption (Fig. 2) and laser fluorescence excitation (Fig. 3A) technique are in agreement with those reported in the earlier works [5,6]. The fluorescence lifetime measured at the $R1 \rightarrow Z1$ transition

Fig. 1. Absorption spectra for CaF₂ and SrF₂ crystals for the ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ transition of the Nd³⁺ ions at 4.2 K.

is 1.65 ms at T = 4.2 K which is close to 1.7 ms measured at T = 10 K [6].

3. Other optical centers

Weak clusterization in SrF_2 did not allow earlier reliable identification of pair and other aggregated neodymium centers as was done in CaF_2 . In doing so the absorption and fluorescence excitation spectra, as well as site- selective fluorescence kinetics decay were measured in SrF_2 : Nd^{3+} crystals. In addition, we compared the data obtained for the well-known aggregated centers in CaF_2 : Nd^{3+} (0.2%) and SrF_2 : Nd^{3+} (1%) with the results for

Fig. 2. Absorption spectra for CaF₂ and SrF₂ crystals for the ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2}$; ${}^{2}G_{7/2}$ transition of the Nd³⁺ ions at 4.2 K.

the mixed $SrF_2 : Nd^{3+} (0.2\%) : La^{3+} (1.0\%)$ crystal. Fig. 1 shows the absorption spectra of these crystals at the ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ transition. Co-doping of the Nd³⁺-doped fluorite-type crystals, for example with La³⁺, leads to the formation of the M'-centers where one Nd³⁺ ion in the pair is substituted for optically inactive La³⁺. Analysis of Fig. 1 shows that the formation of La-Nd complexes (M'-centers) in SrF₂ is more effective than Nd-Nd (M-centers) ones. In addition, in SrF₂ : Nd³⁺ (0.2\%) : La³⁺ (1.0\%) the relative intensity of the L-centers absorption is considerably less than in SrF₂ : Nd³⁺ (1.0%) for approximately the same total concentration of rare-earth dopants. As it was shown for CaF₂ crystal [7] additional La³⁺

Fig. 3. Site-selective fluorescence spectra of the $SrF_2 : NdF_3$ (0.3%) crystal for the ${}^4F_{3/2}(1) \rightarrow {}^4I_{9/2}(1,2)$ Stark-Stark transitions along with the absorption at the ${}^4I_{9/2} \rightarrow {}^4F_{3/2}(1,2)$ ones.

impurity leads to the increase in the total value of Stark splitting of the ⁴F_{3/2} multiplet of the M'center with shifting of the higher ${}^{4}F_{3/2}$ sublevel up and the lower one down. Using this fact and by comparing of SrF_2 : Nd^{3+} and SrF_2 : Nd^{3+} : La^{3+} absorption spectra we may identify N(1) and $M_{h}(1)$ peaks as low Stark levels and $M_{h}(2)$ and N(2) as a higher Stark levels of the ${}^{4}F_{3/2}$ multiplet belonging to different centers. The distance between $M_{b}(1)$ and $M_{\rm h}(2)$ lines is 30 cm⁻¹ which is 1.4 times less than for the M-center in CaF₂. This result is similar to that found for the L-center in CaF₂ and SrF₂ where this ratio is also 1.4. There is no energy shift of the M_z absorption bands in SrF_2 : Nd³⁺ (0.2%): LaF₃ (1.0%) and SrF₂ : Nd³⁺ found. This allows to propose that this type of center is a single rare-earth impurity center which could differ from the L-center by the way of charge compensation (analog of Y-center in CaF_2 [7] when the extra

charge of Nd^{3+} is compensated by two F_i^- in the first or in the second coordination sphere or by one F_i^- in the second sphere [8]).

3.1. M_b -center

Absorption spectra of the ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2}$; ${}^{2}G_{7/2}$ transition for the crystals studied are shown in Fig. 2. Fluorescence spectra from the ${}^{4}F_{3/2}$ multiplet of Nd³⁺ optical centers with excitation into the ${}^{4}G_{5/2}$ multiplet are presented in Fig. 3. Three fluorescence spectral lines with maxima at 864.3, 866.4 (Fig. 3B) and 873.9 nm obtained under 578.53 nm excitation associated with transitions of the M_b-center from the lower lying Stark level of the ⁴F_{3/2} multiplet to the first, second, and third Stark levels of the ground ${}^{4}I_{9/2}$ multiplet were registered. The measured Stark energy levels positions for this M_b-center (Table 1) are very close to the results of work [6]. The measured fluorescence lifetime (Table 2) was found to be four times larger at 4.2 K ($\tau = 327 \,\mu$ s) in SrF₂ : Nd³⁺ than for the pair (Nd–Nd) M-centers in CaF₂ ($\tau = 79 \,\mu$ s). According to Han et al. [6] the fluorescence lifetime of the M_b-centers in SrF_2 : Nd³⁺ at 10 K is 237 µs whereas at 77 K it was found even shorter at 105.6 µs [9]. Previously, the lifetime shortening with temperature was observed for the M-pair (Nd–Nd) center in CaF_2 [10]. Using the results of this work the quenching energy transfer rates from the ${}^{4}F_{3/2}$ multiplet in the Nd–Nd pair in CaF₂ could be determined at different temperatures. In the range of 4.2-10 K it was found to be constant $(W_0 = 8877 \text{ s}^{-1})$. Knowing the energy transfer rate

Table 1

Energy levels positions (cm⁻¹) for different optical centers in the SrF₂ (0.3%) : Nd³⁺ crystal obtained from absorption, excitation and fluorescence spectra at 4.2 K

Center type		L	M _a	Mz	M _b
	Z1	0	0	0	0
${}^{4}I_{9/2}$	Z2	57	13	7	28
372	Z3	153	110		127
${}^{4}F_{3/2}$	R 1	11 584	11 569	11 550	11 567
,	R2	11 667			11 597
⁴ G _{5/2}	D1	17 197	17 282	17 270	17 284
	D2	17 343	17 327	17 328	17 324

Table 2

Fluorescence lifetime of the ${}^4F_{3/2}$ multiplet for different optical centers in SrF_2 : Nd³⁺

Center type	Life time, µs (TK)
L	1650 (4.2 K) ^a
	1700 (10 K) [6]
	325 (4.2 K) ^a
$M(M_6)$	237 (10 K) [6]
	105.6 (77 K) [9]
Ma	615 (4.2 K) ^a
M_z	550 (4.2 K) ^a

^aResult of this paper.

in the pair we could determine the C_{DA} – microefficiency of energy transfer (as $C_{\rm DA} = W_0 \times R_{\rm min}^6$) if we know the Nd-Nd distance in the pair. In [8] the positions of the La³⁺ ions and interstitial fluorine ions (F_i) in the La-La pair in CaF₂ and SrF₂ were determined theoretically in the configuration of minimum energy. As the ionic radii are very close for Nd³⁺ and La³⁺ we used these results for estimation of the distance in the Nd-Nd pair in these crystals. They were found to be 0.364 and 0.396 nm for CaF₂ and SrF₂ crystals, respectively. According to Basiev et al. [11] the dipole-dipole interaction is dominant in the nonradiative energy transfer if the squares of the reduced matrix elements U⁽⁴⁾ and $U^{(6)}$ are much higher than the squares of $U^{(2)}$ for both the donor and acceptor transitions involved. This condition is fulfilled for the cross-relaxation from the ${}^{4}F_{3/2}$ state since the matrix elements U⁽²⁾ for all electronic transitions participating in the process are equal or close to zero. With this in mind we estimated C_{DA} micro-parameters at different temperatures in the CaF_2 : Nd³⁺ and SrF_2 : Nd³⁺ crystals. The result of these calculations in the pair M-center in CaF₂ and SrF₂ are presented in Table 3. It is seen that the value of $C_{\rm DA}$ increases for both the crystals when the temperature rises. According to Voron'ko et al. [10] the fluorescence of the M-center in CaF_2 : Nd³⁺ at T = 77 K is quenched completely. This is an indication of phonon-assisted resonance energy transfer and deals with the increase in temperature of the overlap integral of the donor (excited Nd³⁺ ion) fluorescence spectrum and absorption spectrum of acceptor (the second unexcited ion of the

Table 3

The $C_{DA}/10^{-41}$ (cm⁶/s) — micro-parameter of the nonradiative energy transfer from the ${}^{4}F_{3/2}$ multiplet of the Nd³⁺ ion in the pair M-centers in the CaF₂ and SrF₂ crystals

$T(\mathbf{K})$	4.2	10	77
CaF_2	2.07 [10], 2.6 [3]	2.07 [10], 2.14 [5]	3.013 [9]
SrF ₂	0.523 ^a	0.897 [5]	

^aResult of this paper.

Nd–Nd pair). The larger values of C_{DA} in CaF₂ in comparison with SrF₂ may be related to the larger overlap integrals of electronic resonances of donors and acceptors because of different values of Stark splitting. The larger lifetimes of the ⁴F_{3/2} manifold of the pair M-center in SrF₂ in comparison with CaF₂ is caused by larger minimal distance (Nd–Nd) and the smaller values of the C_{DA} microparameters in SrF₂.

3.2. M_a - and M_z -centers

The fluorescence of the M_a -center is more pronounced when we excite the third Stark level of the ${}^4G_{5/2}$, ${}^2G_{7/2}$ multiplet at 576.31 nm (Fig. 3C).

The fluorescence of the M_z-center is more pronounced when we excite at 579.03 nm into the lowest Stark level of the ⁴G_{5/2}, ²G_{7/2} multiplet (Fig. 3D). This center exhibits rather low value of Stark splitting of the ground ${}^{4}I_{9/2}$ multiplet suggesting low values of the even crystal-field parameters. The Stark energy level positions of the ground ${}^{4}I_{9/2}$ multiplet obtained for the M_a and the M_z centers after the fluorescence spectra analysis are presented in Table 1. The fluorescence lifetime of the M_z -center (550 µs) is quite close to that of the M_a -center (615 µs) (see Table 2). If our presumption that the M_z-center is the single center with the compensation of an extra charge of Nd³⁺ ion by two interstitial F_i^- ions spaced in the first or in the second coordination sphere (like Y- center in CaF_2) or by one F_i^- in the second sphere is correct; then its lifetime reduction can be connected with the increase in the radiative rate due to higher values of the odd crystal-field parameters in comparison with those for the L-center. The same can be true for the M_a-center. There is good indirect evidence of the discussed nature of these two centers. Theoretical calculations of work [8] show that the energy change in forming the $La^{3+}-F_i^-$ complex from an isolated ion and interstitial fluorine ion in the second coordination sphere is larger in $SrF_2 : La^{3+}$ than in $CaF_2 : La^{3+}$. And vice versa, the energy change on forming the $La^{3+}-F_i^-$ complex with an interstitial fluorine in the first coordination sphere is larger for $CaF_2 : La^{3+}$ than for $SrF_2 : La^{3+}$. This can prove the lack of the M_a and M_z complex centers in $CaF_2 : Nd^{3+}$ and their existence in $SrF_2 : Nd^{3+}$.

Fluorescence of the M_z -center (Fig. 3E) was observed also using 577.71 nm excitation into the M_x absorption band (Fig. 2). However, the pronounced build-up of the M_z -center fluorescence decay with this excitation shows that the M_x absorption band belongs to another optical center. An effective nonradiative energy transfer to the M_z -center could be proposed as a reason for this build-up.

4. Fine levels splitting of pair centers

The maximum value of a fine dynamical splitting up to 2.4 cm^{-1} for the Z1 \rightarrow D1 crystal field Stark-Stark transition of the pair M-center of Nd³⁺ in CaF₂ was found in Refs. [1-3,12] using time resolved site-selective fluorescence spectroscopy, photon echo and selective laser-saturation spectroscopy. It was shown theoretically in Ref. [1] that the fine dynamical splitting is caused by resonance electric quadrupole-quadrupole interaction between Nd³⁺ ions in the pair. For this interaction fine the splitting is proportional to $\Delta = e^2 \langle r^2 \rangle^2 / R_{\min}^5 |(\mathbf{J}||\mathbf{U}^{(2)}||\mathbf{J}')|^2$, where $\langle r^2 \rangle$ is the square of the 4f electronic radius averaged over the 4f-wave function. This type of interaction is maximal for the ${}^{4}G_{5/2}$ multiplet as the reduced matrix element $({}^{4}I_{9/2} || U^{2} || {}^{4}G_{5/2}) = 0.897 [13]$ is extremely large compared to those from the ground state to other excited multiplets ((${}^{4}I_{9/2} || U^{2} ||^{2S+1}L_{J}) < 0.1$). The theoretical analysis gives the value of the splitting equal to $1-7 \text{ cm}^{-1}$ which is close to the experimental data. For the determination of the fine splitting of the pair center in SrF_2 we studied the excitation spectra of the M_b-centers with

Fig. 4. Dynamical fine-splitting of the ${}^{4}I_{9/2}(1) \rightarrow {}^{4}G_{5/2}(1)$ Stark–Stark transition due to quadrupole–quadrupole interaction in the Nd–Nd pair M-center in CaF₂ and SrF₂ crystals.

fluorescence registration at 866.4 nm (R1 \rightarrow Z2 transition). The result (Fig. 4) demonstrates a fine splitting of R1 \rightarrow D1 crystal-field transition of the M_b-center with the value of 1.5 cm⁻¹. The reason for this expected reduction in the value of the dynamical splitting from CaF₂ to SrF₂ is the increase in the lattice parameters in SrF₂ in comparison with CaF₂. The following ratios confirm the R^{-5} dependence of the measured values of the fine splitting, which is indicative of coherent quadrupole–quadrupole interaction in the Nd–Nd pair:

$$\frac{\Delta(\text{CaF}_2)}{\Delta(\text{SrF}_2)} = \frac{2.4 \text{ cm}^{-1}}{1.5 \text{ cm}^{-1}} = 1.60,$$
$$\frac{R_{\min}^5(\text{SrF}_2)}{R_{\min}^5(\text{CaF}_2)} = \frac{(0.396 \text{ nm})^5}{(0.364 \text{ nm})^5} = 1.52,$$

where $R_{\min}(\text{SrF}_2)$ and $R_{\min}(\text{CaF}_2)$ is the minimum distance between the Nd ions in the pair.

5. Conclusion

Site-selective fluorescence and laser excitation study of the $SrF_2 : Nd^{3+}$ (0.3–1.0%) and $SrF_2 : La^{3+}$ (1.0%) : Nd^{3+} (0.2%) crystals at 4.2 K has identified Stark-level energy positions of different optical centers. Two-six times reduction of the ${}^{4}F_{3/2}$ multiplet lifetime was observed in the pair Mcenter in comparison with the single optical centers due to dipole-dipole quenched energy transfer in the Nd-Nd pair. Slower energy transfer rate from the ${}^{4}F_{3/2}$ multiplet of the M-center in SrF₂ in comparison with CaF_2 is caused by larger minimal distance (Nd–Nd) and by the smaller values of the C_{DA} micro-parameter in SrF₂.

A fine splitting for the ${}^{4}I_{9/2}(1) \rightarrow {}^{4}G_{5/2}(1)$ Stark-Stark transition of the Nd³⁺ pair center was found to be $\Delta = 1.5 \text{ cm}^{-1}$ in SrF₂ similar to the dynamical splitting for the Nd³⁺ pairs in CaF₂ ($\Delta = 2.4 \text{ cm}^{-1}$). The reduction in the value of fine splitting from CaF₂ to SrF₂ demonstrates the R^{-5} dependence predicted for coherent quadrupole -quadrupole interaction and proves the dynamical character of this splitting.

Acknowledgements

This work is partially supported by the joint grant 97-02-00143 of the DFG and the Russian Foundation for Basic Research (RFBR), by the RFBR grants 97-02-16950 and 99-02-18121, by INTAS-96-0232, and by NSF International Co-operation grant ECS 9710428.

References

- T.T. Basiev, V.V. Fedorov, A.Ya. Karasik, K.K. Pukhov, J. Lumin. 81 (1999) 189.
- [2] T.T. Basiev, Ya.A. Karasik, V.V. Fedorov, K.W. Ver Steeg, JETP 86 (1) (1998) 156.
- [3] Y.V. Orlovskii, T.T. Basiev, V.V. Osiko, H. Gross, J. Heber, J. Lumin. 82 (1999) 251.
- [4] N.E. Kask, L.S. Kornienko, M. Fakir, Fiz. Tverd. Tela (USSR) 6 (1964) 549.
- [5] Yu.K. Voron'ko, A.A. Kaminskii, V.V. Osiko, Sov. Phys. JETP 22 (1966) 295.
- [6] T.P.J. Han, G.D. Jones, R.W.G. Syme, Phys. Rev. B 47 (1993) 14706.
- [7] Yu.K. Voron'ko, V.V. Osiko, A.M. Prokhorov, I.A. Shcherbakov, Proc. Lebedev's Phys. Inst. 60 (1972) 3.
- [8] J. Corish, C.R.A. Catlow, P.W.M. Jacobs, S.H.O. Ong, Phys. Rev. B 25 (1982) 6425.
- [9] Yu.V. Orlovskii, T.T. Basiev, I.N. Vorob'ev, V.V. Osiko, A.G. Papashvili, Laser Phys. Int. J 6 (1996) 448.
- [10] K.K. Voron'ko, V.V. Osiko, A.M. Prokhorov, I.A. Shcherbakov JETP 60 (1971) 943.
- [11] T.T. Basiev, Yu.V. Orlovskii, Yu.S. Privis, J. Lumin. 69 (1996) 187.
- [12] W. Beck, V.V. Fedorov, T.T. Basiev, C. Flytzanis, A.Ya. Karasik, D. Richard, Technical digest of International Conference ICONO'98, Moscow, 1998.
- [13] W.T. Carnall, P.R. Fields, K. Raynak, J. Chem. Phys. 49 (1968) 4424.