
Chapter 1

Introduction and historic overview

1.1 Classical regression 1

1.2 Errors-in-variables (EIV) model 4

1.3 Geometric fit 6

1.4 Solving a general EIV problem 10

1.5 Nonlinear nature of the “linear” EIV 14

1.6 Statistical properties of the orthogonal fit 16

1.7 Relation to total least squares (TLS) 19

1.8 Nonlinear models: General overview 20

1.9 Nonlinear models: EIV versus orthogonal fit 22

1.1 Classical regression

In a classical regression problem, one deals with a functional relation y = g(x)
between two variables, x and y. As an archetype example, let x represent time
and y = g(x) a certain quantity observed at time x (say, the outside temperature
or the stock market index), then one would like to model the evolution of g.

One records a number of observations (x1,y1), . . . ,(xn,yn) and tries to ap-
proximate them by a relatively simple model function, such as linear y = a+bx
or quadratic y = a+bx+cx2 or exponential y = aebx, etc., where a,b,c, . . . are
the respective coefficients (or parameters of the model).

Generally, let us denote the model function by y = g(x;Θ), where Θ =
(a,b, . . .) is the vector of relevant parameters. The goal is to find a particular
function g(x;Θ̂) in that class (i.e., choose a particular value Θ̂ of Θ) that ap-
proximates (fits) the observed data (x1,y1), . . . ,(xn,yn) best. It is not necessary
to achieve the exact relations yi = g(xi; Θ̂) for all (or any) i, because yi’s are
regarded as imprecise (or noisy) observations of the functional values.

A standard assumption in statistics is that yi’s are small random perturba-
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2 INTRODUCTION AND HISTORIC OVERVIEW

tions of the true values ỹi = g(xi;Θ̃), i.e.

yi = g(xi;Θ̃)+ εi, i = 1, . . . ,n

where Θ̃ stands for the true (but unknown) value of Θ, and (small) errors εi
are independent normally distributed random variables with zero mean and,
in the simplest case, common variance σ 2. Then the joint probability density
function is

f (y1, . . . ,yn) =
1

(2πσ2)n/2 exp
[
− 1

2σ2

n

∑
i=1

(
yi−g(xi;Θ)

)2
]
,

so the log-likelihood function is

logL(Θ,σ2) =− ln(2πσ2)n/2− 1
2σ2

n

∑
i=1

[
yi−g(xi;Θ)

]2
. (1.1)

Thus the maximum likelihood estimate Θ̂ of Θ is obtained by minimizing the
sum of squares

F (Θ) =
n

∑
i=1

[
yi−g(xi;Θ)

]2
, (1.2)

which leads us to the classical least squares. This method for solving regression
problems goes back to C.-F. Gauss [69] and A.-M. Legendre [121] in the early
1800s. It is now a part of every standard undergraduate statistics course.
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Figure 1.1 Ordinary regression minimizes the sum of squares of vertical distances: a
cubic polynomial fitted to 10 data points.

We emphasize that the x and y variables play different roles: x is called a
control variable (controlled by the experimenter), its values x1, . . . ,xn are error-
free, and y is called a response variable (observed as a response), its values
y1, . . . ,yn are imprecise (contaminated by noise). Geometrically, the regression
procedure minimizes the sum of squares of vertical distances (measured along
the y axis) from the data points (xi,yi) to the graph of the function y = g(x;Θ),
see Fig. 1.1.
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For example, if one deals with a linear relation y = a + bx, then the least
squares estimates â and b̂ minimize the function

F (a,b) =
n

∑
i=1

(yi−a−bxi)2.

Solving equations ∂F/∂a = 0 and ∂F/∂b = 0 gives

â = ȳ− b̂x̄ and b̂ = sxy/sxx, (1.3)

where x̄ and ȳ are the “sample means”

x̄ =
1
n

n

∑
i=1

xi and ȳ =
1
n

n

∑
i=1

yi (1.4)

and

sxx =
n

∑
i=1

(xi− x̄)2

syy =
n

∑
i=1

(yi− ȳ)2

sxy =
n

∑
i=1

(xi− x̄)(yi− ȳ).

are the components of the so called “scatter matrix”

S =
[

sxx sxy
sxy syy

]
, (1.5)

which characterizes the “spread” of the data set about its centroid (x̄, ȳ).

Remark. To estimate a and b, one does not need to know the variance σ2. It can
be estimated separately by maximizing the log-likelihood function (1.1) with
respect to σ 2, which gives

σ̂ 2 =
1
n

n

∑
i=1

(yi− â− b̂xi)2. (1.6)

This estimate is slightly biased, as E(σ̂2) = n−2
n σ2. It is customary to replace

n in the denominator with n−2, which gives an unbiased estimate of σ 2. Both
versions of σ̂2 are strongly consistent, i.e., they converge to σ 2 with probability
one.

The regression model has excellent statistical properties. The estimates â
and b̂ are strongly consistent, i.e., â→ a and b̂→ b as n→∞ (with probability
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one), and unbiased, i.e.,E(â) = a andE(b̂) = b. They have normal distributions
with variances

σ2
a = σ2

(
x̄2

sxx
+

1
n

)
, σ2

b =
σ2

sxx
.

These variances are the smallest among the variances of unbiased estimators,
i.e., they coincide with the Cramer-Rao lower bounds. Hence the estimates â
and b̂ are 100% efficient. All around, they are statistically optimal in every
sense.

Remark. Suppose the errors εi are heteroscedastic, i.e., have different vari-
ances: εi ∼ N(0,σ2

i ). The maximum likelihood estimate of Θ is now obtained
by the weighted least squares:

F (Θ) =
n

∑
i=1

wi
[
yi−g(xi;Θ)

]2
,

where the weights are set by wi = σ−2
i . In the linear case, y = a + bx, the

estimates are still given by (1.3), but now the formulas for the sample mean
and the scatter matrix should incorporate weights, e.g.,

x̄ =
1
n

n

∑
i=1

wixi, sxx =
n

∑
i=1

wi(xi− x̄)2, etc. (1.7)

Thus, heteroscedasticity only requires minor changes in the regression formu-
las.

1.2 Errors-in-variables (EIV) model

Recall that the classical regression problem was solved in the early 1800s. In
the late nineteenth century statisticians encountered another problem, which
looked very similar, but turned out to be substantially different and far more
difficult. In fact the superficial similarity between the two caused a great deal
of confusion and delayed the progress for several decades.

That new problem is reconstructing a functional relation y = g(x) given
observations (x1,y1), . . . ,(xn,yn) in which both variables are subject to errors.
We start with an example and describe a formal statistical model later.

Suppose (see Madansky [127]) we wish to determine ρ , the density of iron,
by making use of the relation

MASS = ρ×VOLUME. (1.8)

We can pick n pieces of iron and measure their volumes x1, . . . ,xn and masses
y1, . . . ,yn. Given these data, we need to estimate the coefficient ρ in the func-
tional relation y = ρx. We cannot use the exact formula yi = ρxi for any i,
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because the measurements may be imprecise (our pieces of iron may be con-
taminated by other elements).

Similar problems commonly occur in economics (where, for instance, x
may be the price of a certain good and y the demand, see Wald [187]) and in
sociology. For a fascinating collection of other examples, including the studies
of A-bomb survivors, see Chapter 1 in [28].

So how do we solve the iron density problem? For example, we can assume
(or rather, pretend) that the volumes xi’s are measured precisely and apply the
classical regression of y on x, i.e., determine y = bx and set ρ = b. Alternatively,
we can assume that our masses yi’s are error-free and do the regression of x on
y, i.e., find x = b′y and then set ρ = 1/b′.

This may sound like a good plan, but it gives us two different estimates,
ρ1 = b and ρ2 = 1/b′, which should make us at least suspicious. An objection
was raised against this strategy as early as in 1901 by K. Pearson, see p. 559
in [144]: “we get one straight line or plane if we treat some one variable as
independent, and a quite different one if we treat another variable as the inde-
pendent variable.” See Fig. 1.2.
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Figure 1.2 50 data points (marked by dots) are fitted by two methods: the regression of
y on x is the lower line and the regression of x on y is the upper line. Their slopes are
0.494 and 0.508, respectively.

It was later determined that under natural statistical assumptions (to be de-
scribed shortly) both estimates, ρ1 and ρ2, are inconsistent and may be heavily
biased, see e.g., [8, 118, 142]; the consequences of this biasedness in econo-
metrics are discussed in Chapter 10 of [128]. In fact, ρ1 systematically under-
estimates the true density ρ , and ρ2 systematically overestimates it.

Thus the new type of regression problem calls for nonclassical approaches.
First we need to adopt an appropriate statistical model in which both xi’s and
yi’s are subject to errors; it is called errors-in-variables (EIV) model1. It as-
sumes that there are some ‘true’ values x̃i and ỹi, that are linked by the (un-
known) functional relation ỹi = g(x̃i), and the experimenters observe their per-

1Another popular name is measurement error (ME) model, but we prefer EIV.
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turbed values:

xi = x̃i +δi, yi = ỹi + εi, i = 1, . . . ,n. (1.9)

Here δ1, . . . ,δn,ε1, . . . ,εn are 2n independent random variables with zero mean.
In the simplest case, one can assume that δi’s have a common variance σ2

x
and εi’s have a common variance σ2

y . Furthermore, it is common to assume
that δi and εi are normally distributed, i.e.

δi ∼ N(0,σ2
x ) and εi ∼ N(0,σ2

y ). (1.10)

We also need to make some assumptions about the true values x̃i’s and ỹi’s,
as they are neither random observations nor the model parameters (yet). There
are two basic ways of treating these ‘intermediate’ objects.

First, the true values x̃i’s and ỹi’s may be regarded as fixed (nonrandom),
then they have to be treated as additional parameters. They are sometimes re-
ferred to as “incidental” or “latent” parameters, or even “nuisance” parameters
(as their values are normally of little interest). This interpretation of x̃i’s and
ỹi’s is known as the functional model.

Alternatively, one can regard x̃i’s and ỹi’s as realizations of some underly-
ing random variables that have their own distribution. It is common to assume
that x̃i’s are sampled from a normal population N(µ,σ2), and then ỹi’s are
computed by ỹi = g(x̃i). In that case δi and εi’s are usually assumed to be inde-
pendent of x̃i’s and ỹi’s. The mean µ and variance σ2 of the normal population
of x̃i’s can be then estimated along with the parameters of the unknown func-
tion g(x). This treatment of the true values is known as the structural model.

This terminology is not quite intuitive, but it is currently adopted in the
statistics literature. It goes back to Kendall’s works [109, 110] in the 1950s and
became popular after the first publication of Kendall and Stuart’s book [111].
Fuller [66] suggests a simple way of remembering it: the model is Functional
(F) if the true points are Fixed; and the model is Structural (S) if the true points
are Stochastic.

Before we turn to the solution of the EIV regression problem (which is
typified by the iron density example), we describe a special version of the EIV
model, which constitutes the main subject of this book.

1.3 Geometric fit

In the late 1800s statisticians encountered a special case of the EIV regression
that arose in the analysis of images (photographs, drawings, maps). For exam-
ple, given an imperfect line on an image, one wants to straighten it up, i.e., find
an ideal line approximating the visible line contour. To this end, one can mark
several points on the contour and try to fit a perfect straight line to the marked
points.
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More generally, one may want to approximate a round object on an im-
age by a perfect circle, or an oval by a perfect ellipse, or a box by a perfect
rectangle, etc. We call this task geometric fitting problem. It consists of ap-
proximating a visible contour on an image by a simple geometric figure (line,
curve, polygon, etc). We discuss approximation by lines in this section.

In a coordinate system, the given points on the visible contour can be
recorded as (x1,y1), . . . ,(xn,yn), and one looks for the best fitting line in the
form y = a+bx. Hence again the problem looks like a familiar regression. But
a close look reveals that both xi’s and yi’s may be imprecise, hence we are in
the framework of the EIV model.

Furthermore, there is a novel feature here: due to the geometric character of
the problem, the errors in x and y directions should have the same magnitude,
on average, hence we have a special case of the EIV model characterized by

σ2
x = σ2

y . (1.11)

In this case the “noise” vector (δi,εi) has a normal distribution with zero mean
and a scalar covariance matrix, i.e., the random noise is isotropic in the xy
plane. The isotropy means that the distribution of the noise vector is invariant
under rotations. This property is natural in image processing applications, as
the choice of coordinate axes on the image is often arbitrary, i.e., there should
not be any differences between the x, or y, or any other directions.

Conversely, suppose that the random vector (δi,εi) has two basic properties
(which naturally hold in image processing applications):

(a) it is isotropic, as described above,
(b) its components δi and εi are independent.
Then it necessarily has a normal distribution. This is a standard fact in proba-
bility theory, see e.g., [14] or Section III.4 of [60]. Thus the assumption about
normal distribution (1.10) is not a luxury anymore, but a logical consequence
of the more basic assumptions (a) and (b).

� � � � � � � � � 	 � � � �� ����
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Figure 1.3 Orthogonal regression minimizes the sum of squares of orthogonal dis-
tances.

A practical solution to the special case σ2
x = σ2

y of the EIV model was
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proposed as early as in 1877 by Adcock [1] based on purely geometric (rather
than statistical) considerations. He defines the fitting line y = a + bx that is
overall closest to the data points, i.e., the one which minimizes

F =
n

∑
i=1

d2
i , (1.12)

where di denotes the geometric (orthogonal) distance from the point (xi,yi) to
the fitting line, see Fig. 1.3. By using elementary geometry, we obtain

F (a,b) =
1

1+b2

n

∑
i=1

(yi−a−bxi)2. (1.13)

Solving the equation ∂F/∂a = 0 yields

a = ȳ−bx̄, (1.14)

where x̄ and ȳ are the sample means, cf. Section 1.1. By the way, recall that
(1.14) also holds in the classical case, cf. (1.3). Now eliminating a from (1.13)
gives us a function of one variable

F (b) =
syy−2bsxy + sxxb2

1+b2 ,

where sxx,sxy,syy are the components of the scatter matrix, cf. Section 1.1.
Next, the equation ∂F/∂b = 0 reduces the problem to a quadratic equation,

sxyb2− (syy− sxx)b− sxy = 0. (1.15)

It has two roots, but a careful examination reveals that the minimum of F
corresponds to the following one:

b =
syy− sxx +

√
(syy− sxx)2 +4s2

xy

2sxy
. (1.16)

This formula applies whenever sxy 6= 0. In the case sxy = 0, we need to set
b = 0 if sxx > syy and b = ∞ if sxx < syy. We encourage the reader to derive the
formula (1.16) and carefully examine the special case sxy = 0.

The above solution may be elementary, by our modern standards, but it
has a history showing its nontrivial character. It was first obtained in 1878 by
Adcock [2], who incidentally made a simple calculational error. Adcock’s error
was corrected the next year by Kummell [117], but in turn, one of Kummell’s
formulas involved a more subtle error. Kummell’s error was copied by some
other authors in the 1940s and 1950s (see [89, 126]). Finally it was corrected
in 1959 by Madansky [127]. Madansky’s work [127] is perhaps the most cited
in the early studies on the EIV regression.
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We call the fitting method based on minimization of the sum of squares
of orthogonal (geometric) distances from the data points to the fitted contour
orthogonal fit or geometric fit. Despite the natural appeal of the orthogonal
fitting line, the early publications [1, 2, 117] in 1877–79 passed unnoticed.
Twenty years later the orthogonal fitting line was independently proposed by
Pearson [144], and another 20 years later, by Gini [72].

Pearson and Gini made another important observation: the line which min-
imizes (1.12) is the major axis of the scattering ellipse associated with the data
set. The scattering ellipse is defined by equation

[
x− x̄
y− ȳ

]T

S
[

x− x̄
y− ȳ

]
= 1,

its center is (x̄, ȳ) and its axes are spanned by the eigenvectors of the scatter ma-
trix S. This fact establishes a link between the orthogonal fit and the principal
component analysis of linear algebra.

Pearson [144] also estimated the angle θ = tan−1 b which the fitting line
made with the x axis and found a simple formula for it:

tan2θ =
2sxy

sxx− syy
. (1.17)

We leave its verification to the reader as an exercise.
Adcock and Pearson were motivated by geometric considerations and did

not use probabilities. Only in the 1930s their method was incorporated into
the formal statistical analysis. Koopmans [113] (see also Lindley [126]) deter-
mined that the orthogonal fit provided the maximum likelihood estimate under
the assumptions (1.9)–(1.11). Recall that the classical least squares fit (1.2) also
maximizes the likelihood in the ordinary regression model (1.1). Thus there is
a deep analogy between the two regression models.

The geometric nature of the orthogonal fit makes the resulting line inde-
pendent of the choice of the coordinate system on the image. In other words,
the geometric fit is invariant under orthogonal transformations (rotations and
translations) of the coordinate frame.

The invariance under certain transformations is very important. We say that
a fitting line is invariant under translations if changing the data coordinates by

Tc,d : (x,y) 7→ (x+ c,y+d) (1.18)

will leave the line unchanged, i.e., its equation in the new coordinate system
will be y+d = a+b(x+ c). Similarly we define invariance under rotations

Rθ : (x,y) 7→ (xcosθ + ysinθ ,−xsinθ + ycosθ) (1.19)

and under scaling of variables

Sα,β : (x,y) 7→ (αx,βy). (1.20)
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An important special case of a scaling transformation is α = β ; it is called
a similarity (or sometimes a dilation; in formal mathematics it is known as a
homothety). We will denote it by

Sα = Sα,α : (x,y) 7→ (αx,αy). (1.21)

It takes little effort to verify that the orthogonal fitting line is invariant under
Tc,d and Rθ , as well as Sα , but not invariant under general scaling transforma-
tions Sα,β with α 6= β . We leave the verification of these facts to the reader.

The orthogonal fit has a clear appeal when applied to regular geometric
patterns. Fig. 1.4 shows four data points placed at vertices of a rectangle. While
classical regression lines are skewed upward or downward (the first and second
panels of Fig. 1.4), the orthogonal regression line cuts right through the middle
of the rectangle and lies on its axis of symmetry. Arguably, the orthogonal
fitting line would “please the eye” more than any other line.

However, the orthogonal fit leads to an inconsistency if one applies it to a
more general EIV model, where σ2

x 6= σ 2
y . This inconsistency stems from the

noninvariance of the orthogonal fitting line under scaling transformations Sα,β .

For example, let us again consider the task of determining the iron den-
sity by using (1.8) and measuring volumes xi’s and masses yi’s of some iron
pieces, cf. the previous section. If we employ the orthogonal fit to the mea-
surements (x1,y1), . . . ,(xn,yn), then the fitting line y = bx, and the resulting
estimate of the iron density ρ = b, would depend on the choice of units in
which the measurements xi’s and yi’s are recorded. That is, if we rescale the
variables by (x,y) 7→ (αx,βy), the equation of the orthogonal fitting line in the
new coordinate system would be βy = b′(αx), where b′ 6= b. In other words, a
different density would be obtained if we change pounds to kilograms or tons,
and similarly liters to bushels or cubic meters.

This objection was raised in 1937 by Roos [156] and further discussed in
the statistics literature in the 1940s [89, 187]. Thus the orthogonal fit has its
limitations, it is essentially restricted to the special case σ 2

x = σ2
y of the EIV

model. Some modern books, see e.g., [28], strongly warn against the use of
orthogonal fitting line in EIV applications with σ2

x 6= σ2
y , and more generally,

against the use of other techniques that are based on any unreliable assumptions
about σ2

x and σ2
y .

We briefly overview basic features of the general EIV model in the next
section (though not attempting anything close to a comprehensive coverage).

1.4 Solving a general EIV problem

Let us turn back to the EIV model (1.9)–(1.10) without assuming (1.11), i.e.,
leaving σ2

x and σ 2
y unconstrained.

Kummell [117] was perhaps the first who examined, in 1879, the task of
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Figure 1.4 The regression of y on x minimizes the sum of squares of vertical distances
(top); the regression of x on y does the same with horizontal distances (middle); the
orthogonal regression minimizes the sum of squares of orthogonal distances (bottom).

determining the underlying functional relation y = g(x) in the EIV context,
and realized that this could not be done in any reasonable sense (!), unless
one makes an extra assumption on the relation between σ2

x and σ2
y . Even in

the simplest, linear case y = a + bx, there is no sensible way to estimate the
parameters a and b without extra assumptions. The problem is just unsolvable,
however simple it may appear!

Many other researchers arrived at the same conclusion in the early twenti-
eth century. The realization of this stunning fact produced a long turmoil in the
community lasting until about the 1950s and marked by confusion and con-
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troversy. A. Madansky, for example, devotes a few pages of his 1959 paper
[127] describing the shock of an average physicist who would learn about the
unsolvability of the “simple” regression problem, and how statisticians could
explain it to him.

Later the insolvability of this problem was proved in mathematical terms.
First, it was established in 1956 by Anderson and Rubin [9] (see also [73]) that
even in the linear case y = a + bx the likelihood function was unbounded (its
supremum was infinite), thus maximum likelihood estimates could not be de-
termined. Interestingly, the likelihood function has critical points, which have
been occasionally mistaken for maxima; only in 1969 the issue was resolved:
M. Solari [168] proved that all critical points were just saddle points.

Second (and more importantly), it was shown in 1977 by Nussbaum [139]
(see also page 7 in [40]) that no statistical procedure could produce strongly
consistent estimates â and b̂ (which would converge to the true values of a
and b as n→ ∞). See also the discussion of identifiability in the book [40] by
Cheng and Van Ness.

To make the EIV regression model solvable, Kummel [117] assumed that

the ratio κ = σx/σy is known. (1.22)

He justified his assumption by arguing that experimenters “usually know this
ratio from experience.” Later this assumption was commonly adopted in the
statistics literature. Recently Fuller [66] called the EIV model satisfying the
assumptions (1.9), (1.10), and (1.22) the “classical EIV model.”

� � � � � � � � � 	 � � � �� ����
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Figure 1.5 The EIV fit minimizes the sum of squares of “skewed” distances from the
data points to the line. Here κ = 2.

Now the EIV regression problem has a well defined solution. In 1879 Kum-
mell [117] gave formulas for the best fitting line that involved κ . His line
y = a+bx minimizes

F =
1

1+κ2b2

n

∑
i=1

(yi−a−bxi)2 (1.23)
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and its slope is estimated by

b =
κ2syy− sxx +

√
(κ2syy− sxx)2 +4κ2s2

xy

2κ2sxy
, (1.24)

compare this to (1.16). The intercept is again a = ȳ−bx̄, as in (1.14).
This line minimizes the sum of squares of the distances to the data points

(xi,yi) measured along the vector (κb,−1), see Fig. 1.5. Kummell arrived at
his formula rather intuitively, but later it was determined that he actually found
the maximum likelihood solution, cf. [113, 126].

In the special case κ = 1, i.e., σ2
x = σ2

y , the vector (κb,−1) = (b,−1) is
normal to the line y = a + bx, thus we arrive at the familiar orthogonal fit.
Hence, the EIV linear regression (1.24) includes the orthogonal fit as a partic-
ular case.

The slope b given by (1.24) is monotonically increasing with κ (this fol-
lows from the standard fact s2

xy ≤ sxxsyy by some algebraic manipulations,
which we leave to the reader as an exercise). In the limit κ → 0, the EIV
regression line converges to the classical regression of y on x with the slope
b = sxy/sxx, cf. (1.3). Similarly, in the limit κ → ∞, the EIV regression line
converges to the classical regression of x on y with the slope b = syy/sxy. Thus
the classical regressions (of y on x and of x on y) are the extreme cases of the
EIV regression.

The EIV line minimizing (1.23) can be made invariant under rescaling of
coordinates x 7→ αx and y 7→ βy, as the scaling factors α and β can be incor-
porated into the ratio κ by the obvious rule κ 7→ κα/β . This fact was pointed
out in 1947 by Lindley [126], who concluded that the estimate (1.24) thus con-
formed to the basic requirement of the EIV model: it does not depend on the
units in which the measurements x1, . . . ,xn and y1, . . . ,yn are recorded.

Actually, if one rescales the coordinates by x 7→ x and y 7→ κy, then in the
new variables we have κ = 1. Thus the EIV regression line can be transformed
to the orthogonal fitting line. Therefore, the EIV linear regression model (with
the known ratio κ = σx/σy) can be converted to the orthogonal regression
model by a simple rescaling of the coordinates, and vice versa.

But we emphasize that the general EIV regression and the orthogonal fit
must conform to different requirements:
• The EIV regression must be invariant under scaling of the variables x and y

(resulting from the change of units in which these variables are measured).
• The orthogonal fit (due to its geometric nature) must be invariant under

rotations and translations of the coordinate frame on the xy plane, as well as
under similarities resulting from a change of unit of length.

This difference has important consequences for nonlinear regression discussed
in Section 1.9.
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1.5 Nonlinear nature of the “linear” EIV

It may be enlightening to interpret the orthogonal regression problem geometri-
cally in the space R2n with coordinates x1,y1, . . . , xn,yn. We follow Malinvaud
(Chapter 10 of [128]). Our observations (x1,y1), . . . , (xn,yn) are represented by
one point (we denote it by X ) in this multidimensional space. To understand
the construction of the orthogonal fitting line, consider the subset P⊂ R2n de-
fined by

(x1,y1, . . . ,xn,yn) ∈ P ⇐⇒ ∃a,b : yi = a+bxi ∀i,

i.e., P consists of all (x1,y1, . . . , xn,yn) ∈ R2n such that the n planar points
(x1,y1), . . . , (xn,yn) are collinear. Note that the true values x̃1, ỹ1, . . . , x̃n, ỹn are
represented by one point (we denote it by X̃ ) in P, i.e., X̃ ∈ P.

The orthogonal fitting line minimizes the sum

n

∑
i=1

(xi− x̃i)2 +(yi− ỹi)2,

which is the square of the distance (in the Euclidean metric) between the points
X and X̃ . Thus, the orthogonal fitting procedure corresponds to choosing a
point X̃ ∈ P closest to the point X ∈ R2n representing the data. In other
words, we simply project the given point X onto P orthogonally. Or is it that
simple?

It takes a little effort to verify that P is a nonlinear submanifold (‘surface’)
in R2n. Indeed, it is specified by n−2 independent relations

yi+1− yi

xi+1− xi
=

yi+2− yi

xi+2− xi
, i = 1, . . . ,n−2, (1.25)

each of which means the collinearity of the three planar points (xi,yi),
(xi+1,yi+1), and (xi+2,yi+2). The relations (1.25) are obviously quadratic,
hence P is an (n+2)-dimensional quadratic surface (variety) in R2n.

X

XP
X

�
Figure 1.6: Projection of the point X onto the quadratic manifold P.

Projecting a point X onto a quadratic surface is not a trivial, and definitely
not a linear, problem. This geometric interpretation should dispel our illusion
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(if we still have any) that we deal with a linear problem, it unmasks its truly
nonlinear character.

Imagine, for example, the task of projecting a point X ∈R2 onto a quadric,
say an ellipse a2x2 +b2y2 = 1. This is not a simple problem, its exact solution
involves finding roots of a 4th degree polynomial [162]. In a sense, we are
lucky that the projection of our data point X ∈ R2n onto P reduces to just a
quadratic equation (1.15).

Besides, the projection may not be unique (for example when X lies on
the major axis of the ellipse near the center, see Fig. 1.6). We will actually see
that the orthogonal fitting line may not be unique either, cf. Section 2.3.

To further emphasize the nonlinear nature of the EIV regression, suppose
for a moment that the errors are heteroscedastic, i.e.

δi ∼ N(0,σ2
x,i) and εi ∼ N(0,σ2

y,i),

where the ratio of variances is known, but it differs from point to point, i.e., we
assume that

κi = σx,i/σy,i

is known for every i = 1, . . . ,n. Recall that in the classical regression the het-
eroscedasticity of errors does not affect the linear nature of the problem. Now,
in the EIV model, the best fitting line should minimize

F (a,b) =
n

∑
i=1

(yi−a−bxi)2

1+κ2
i b2 .

Despite its resemblance to (1.23), the minimization of this F cannot be re-
duced to a quadratic (or any finite degree) polynomial equation. Here “finite
degree” means a degree independent of the sample size n. This is a hard-core
nonlinear problem that has no closed form solution; its numerical solution re-
quires iterative algorithms.

In other words, the hidden nonlinear nature of the “linear” EIV fit may
come in different ways at different stages. The more general assumptions on
errors one makes the more serious difficulties one faces.

Yet another explanation why the linear EIV regression has an essentially
nonlinear character was given by Boggs et al., see [23].

Overall, the linear EIV model, though superficially resembling the classical
linear regression, turns out to be dissimilar in many crucial ways. The sharp
contrast between these two models is now recognized by many authors. As
the textbook [29] puts it, “Regression with errors in variables (EIV) ... is so
fundamentally different from the simple linear regression ... that it is probably
best thought of as a completely different topic.”
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1.6 Statistical properties of the orthogonal fit

Our book is devoted to the orthogonal fitting problem, and from now on we
adopt the statistical model assumptions (1.9), (1.10), and (1.11). Under these
assumptions the orthogonal fit maximizes the likelihood function, i.e., provides
the Maximum Likelihood Estimate (a formal proof of this fact will be given in
Section 6.3).

In this section we touch upon the basic statistical properties of the linear
orthogonal fit, i.e., the behavior of the estimates α̂ and β̂ of the parameters of
the fitting line y = α +βx (we use α and β here, instead of the previous a and
b, to be consistent with the notation in the papers we will refer to).

Our discussion will shed more light on a stark dissimilarity between the
orthogonal fit and the classical regression, whose nice features we mentioned
in Section 1.1. Even a quick look reveals a totally different (and somewhat
shocking) picture.

To begin with, the distribution of the estimates α̂ and β̂ is not normal and
does not belong to any standard family of probability distributions. Only in
1976, explicit formulas for their density functions were found by Anderson
and others [7, 10]; see Section 2.4. Those expressions are overly complicated,
involve double-infinite series, and Anderson [7] promptly conceded that they
are not very useful for practical purposes. Instead, he and Kunitomo [118]
derived various approximations to the distribution functions of α̂ and β̂ , which
turned out to be practically accurate.

Second, and worse, the estimates α̂ and β̂ do not have finite moments, i.e.,

E(|α̂|) = ∞ and E(|β̂ |) = ∞.

Thus they also have infinite mean squared errors:

E
(
[α̂−α]2

)
= ∞ and E

(
[β̂ −β ]2

)
= ∞.

These stunning facts were also revealed in 1976 by Anderson [7]. Intuitively,
one can see why this happens from (1.16), where the denominator can take
value zero, and its probability density does not vanish at zero. We encourage
the reader to closely examine this observation.

Until Anderson’s discovery, researchers “approximated” the moments of
the estimates α̂ and β̂ as follows. They employed Taylor expansion, dropped
higher order terms, and obtained some “approximate” formulas for the mo-
ments of α̂ and β̂ (including their means and variances). Anderson demon-
strated that all those formulas were fundamentally flawed, as the actual mo-
ments did not exist. Anderson said that those formulas should be regarded as
“moments of some approximations,” rather than “approximate moments.”

Once Anderson made his discovery, it immediately lead to fundamental
methodological questions: how can one trust a statistical estimate that has an
infinite mean squared error (not to mention infinite bias)? Should these facts
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imply that the estimate is totally unreliable? Why did not anybody notice these
bad features in practice? Can an estimate with infinite moments be practically
better than others which have finite moments? These questions lead to further
studies, see next.

In the late 1970s, Anderson [7, 8], Patefield [142], and Kunitomo [118]
compared the slope β̂ of the orthogonal fitting line, given by (1.16), with the
slope β̂ of the classical regression line, given by (1.3) (of course, both esti-
mates were used in the framework of the same model (1.9), (1.10), and (1.11)).
They denote the former by β̂M (Maximum likelihood) and the latter by β̂L
(Least squares). Their results can be summarized in two seemingly conflicting
verdicts:

(a) The mean squared error of β̂M is infinite, and that of β̂L is finite (whenever
n≥ 4), thus β̂L appears (infinitely!) more accurate;

(b) The estimate β̂M is consistent and asymptotically unbiased, while β̂L is in-
consistent and asymptotically biased (it is consistent and unbiased only in
the special case β = 0), thus β̂M appears more appropriate.

Going further, Anderson shows that

Prob
{|β̂M−β |> t

}
< Prob

{|β̂L−β |> t
}

for all t > 0 that are not too large, i.e., for all t > 0 of practical interest. In other
words, the accuracy of β̂M dominates that of β̂L everywhere, except for very
large deviations (large t). It is the heavy tails of β̂M that make its mean squared
error infinite, otherwise it tends to be closer to β than its rival β̂L.

σ =2.4

1 2 109

Figure 1.7: The true points location and the noise level in our experiment.

Furthermore, when one observes values of β̂M in practice, or in simulated
experiments, nothing indicates that β̂M has infinite moments; its values group
around a certain center and have a seemingly normal distribution. Large de-
viations occur so rarely that they usually pass unregistered. However, those
large deviations are, ultimately, responsible for the lack of moments. In order
to make them visible, i.e., have them appear at a noticeable rate in computer
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experiments, one needs to increase the noise level σ = σx = σy way above what
it normally is in image processing applications, see next.

For example, we generated 106 random samples of n = 10 points on the line
y = x whose true positions were equally spaced on a stretch of length 10, with
σ = 2.4 (note how high the noise is: its standard deviation is a quarter of the
length of the interval where the data are observed; see Fig. 1.7). Fig. 1.8 plots
the average estimate β̂M over k samples, as k runs from 1 to 106. It behaves very
much like the sample mean of the Cauchy random variable (whose moments
do not exist either). Thus one can see, indeed, that the estimate β̂M has infinite
moments. But if one decreases the noise level to σ = 2 or less, then the erratic
behavior disappears, and the solid line in Fig. 1.8 turns just flat, as it is for the
finite moment estimate β̂L.

� � � � � � � � � 	 � �
 � � ��� � �� � �� � �� � � �� � �� � �� � �

 � � ����� ��� �� �� ���

Figure 1.8 The average estimate β̂M over k randomly generated samples (solid line),
as k runs from 1 to 106. The true slope β = 1 is marked by the dashed line. The average
estimate β̂L is the dotted line, it remains stable at level 0.52, systematically underesti-
mating β .

Now which estimate, β̂M or β̂L, should we prefer? This may be quite a
dilemma for a practitioner who is used to trusting the mean squared error as an
absolute and ultimate criterion. Anderson argues that in this situation one has
to make an exception and choose β̂M over β̂L, despite its infinite mean squared
error.

In the early 1980s, as if responding to Anderson’s appeal, several statisti-
cians (most notably, Gleser [73, 74, 75], Malinvaud [128], and Patefield [143])
independently established strong asymptotic properties of the orthogonal fit-
ting line (and more generally, the classical EIV fitting line):

(a) the estimates α̂ and β̂ are strongly consistent2 and asymptotically normal;

2However, the maximum likelihood estimates of σ2
x and σ2

y are not consistent, in fact

σ̂2
x → 1

2 σ2
x and σ̂2

y → 1
2 σ2

y

as n→∞, in the functional model. This odd feature was noticed and explained in 1947 by Lindley
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(b) in a certain sense, these estimates are efficient.
They also constructed confidence regions for α and β . More details can be
found in [66], [40], [128], and our Chapter 2.

These results assert very firmly that the maximum likelihood estimate β̂M
is the best possible. Certain formal statements to this extent were published by
Gleser [74], see also [39, 40, 128] and our Chapter 2.

After all these magnificent achievements, the studies of the linear EIV re-
gression seem to have subsided in the late 1990s; perhaps the topic exhausted
itself. The statistical community turned its attention to nonlinear EIV models.

For further reading on the linear EIV regression, see excellent surveys in
[8, 73, 126, 127, 132, 187], and books [66], [40], [128] (Chapter 10), and [111]
(Chapter 29). We give a summary of the orthogonal line fitting in Chapter 2.

1.7 Relation to total least squares (TLS)

The EIV linear regression is often associated with the so-called total least
squares (TLS) techniques in computational linear algebra. The latter solve an
overdetermined linear system

Ax≈ b, x ∈ Rm, b ∈ Rn, n > m, (1.26)

where not only the vector b, but also the matrix A (or at least some of its
columns) are assumed to be contaminated by errors. If only b is corrupted by
noise, the solution of (1.26) is given by the ordinary least squares

x = argmin‖Ax−b‖2,

where ‖ · ‖ denotes the 2-norm. Equivalently, it can be paraphrased by

x = argmin‖∆b‖2 subject to Ax = b+∆b. (1.27)

If A has full rank, the (unique) explicit solution is

x = (AT A)−1AT b.

If A is rank deficient, the solution is not unique anymore, and one usually picks
the minimum-norm solution

x = A−b,

where A− denotes the Moore-Penrose pseudoinverse.
If both b and A are corrupted by noise, the solution of (1.26) is more com-

plicated, and it is the subject of the TLS techniques. In the simplest case, where

[126]; the factor 1/2 here is related to the degrees of freedom: we deal with 2n random observations
and n+2 parameters of the model, thus the correct number of degrees of freedom is n−2, rather
than 2n−2.
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all errors in A and b are independent and have the same order of magnitude,
the solution is given by

x = argmin
∥∥[∆A ∆b]

∥∥2
F subject to (A+∆A)x = b+∆b, (1.28)

where [∆A ∆b] denotes the “augmented” n× (m + 1) matrix and ‖ · ‖F stands
for the Frobenius norm (the “length” of the [n(m + 1)]-dimensional vector).
Note the similarities between (1.27) and (1.28).

To compute x from (1.28), one uses the singular values (and vectors) of the
augmented matrix [A b]. In the basic case, see Chapter 2 of [185], it is given
by

x = (AT A−σ2
m+1I)−1AT b,

where σm+1 is the smallest singular value of [A b], and I denotes the identity
matrix. This is the TLS in the “nutshell;” we refer to [77, 185, 160, 161] for an
extensive treatment.

To see how the EIV and TLS models are related, consider an EIV problem
of fitting a line y = a + bx to data points (xi,yi), i = 1, . . . ,n. This problem is
equivalent to (1.26) with

A =




1 x1
...

...
1 xn


 , x =

[
a
b

]
, b =




y1
...

yn


 .

We see that the vector b and the second column of A are corrupted by noise,
thus we arrive at a particular TLS problem. If the errors in xi’s and yi’s are
independent and have the same variance, then we can solve it by (1.28), and
this solution is equivalent to the orthogonal least squares fit.

The link between the EIV regression models and the TLS techniques of
computational linear algebra is very helpful. Many efficient tools of the TLS
(especially, the SVD) can be employed to solve linear (or nonlinear but lin-
earized) EIV problems, see [185, 160, 161].

1.8 Nonlinear models: General overview

...the errors in variables are bad enough in linear models.
They are likely to be disastrous to any attempts to estimate
additional nonlinearity or curvature parameters...

Z. Griliches and V. Ringstad; see [79]

Fitting a straight line to observed points may appear as a “linear” regres-
sion problem, but it has a truly nonlinear character (Section 1.5). Its solution is
given by an irrational formula (1.16), and it may not be unique (Section 2.2).
The probability distributions of the resulting estimates do not belong to any
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standard family and are described by overly complicated expressions (Sec-
tion 2.4). The estimates do not have moments, i.e., their bias is indeterminate
and their mean square errors are infinite. One might just wonder if things could
get any worse.

Sadly, things do get worse when one has to fit nonlinear functions to data
with errors in variables. We only overview some new troubles here. First of all,
the nonlinear fitting problem may not even have a solution. More precisely, if
one fits a curve of a certain type (say, a circle) by minimizing the orthogonal
distances to the data points, then such a curve may not exist; we will see ex-
amples in Section 3.3. The nonexistence is a phenomenon specific to nonlinear
problems only. Next, even if the best fitting curve exists, it may not be unique,
there may be multiple solutions, all of which are “equally good;” see examples
in Section 3.5. This leads to confusion in theoretical analysis.

Furthermore, even when the best fit exists and is unique, nothing is known
about the distribution of the resulting parameter estimates; there are no explicit
formulas for their densities or moments. In fact, theoretical moments quite of-
ten fail to exist. This happens even in the linear case, see Section 1.6. For
the problem of fitting circles, see Section 6.4. The nonexistence of moments
appears to be a common feature of the EIV regression and orthogonal fitting
problems. To resolve these difficulties, statisticians have developed a nontradi-
tional error analysis based on approximating distributions. We devote almost
the entire Chapter 6 to those new statistical theories.� �� � � � � � �� � 	 
 

Figure 1.9 Two algorithms minimizing a function F(x). One makes shorter steps and
converges to a local minimum. The other makes longer steps and converges to the global
minimum.

Down to more practical issues, the estimates of parameters in nonlinear
EIV regression cannot be found in closed form, by explicit formulas like (1.16).
They can only be computed by numerical algorithms, i.e., approximately. Nu-
merical schemes, at best, converge to the desired estimate iteratively. However,
in practice, the iterations may very well diverge, and even if they do converge,
one never knows if they arrive at the desired estimate (the procedure may just
terminate at a local minimum of the objective function; see Fig. 1.9).
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Quite often, different numerical algorithms return different estimates.
Fig. 1.9 shows an example where an iterative procedure is trapped by a local
minimum. Another example is shown in Fig. 1.10: there is no local minima,
but the second (slow) algorithm takes a large number of steps to reach the area
near the minimum. In computer programs the number of iterations is always
limited (usually, the limit is set to 50 or 100), thus the returned estimate may
be still far from the actual minimum.

The estimates returned by different algorithms may even have seemingly
different statistical characteristics (bias, variance, etc.). Thus the choice of the
algorithm becomes a critical factor in practical applications, as well as in many
theoretical studies. There is simply little point of studying an abstract “solu-
tion” that is not accessible in practice, while practical solutions heavily depend
on the particular algorithm used to compute them.� �
Figure 1.10 Two algorithms minimizing a function F(x) with a unique minimum. One
approaches it fast (from the left) and arrives in a vicinity of the minimum in 5–10 steps.
The other moves very slowly (from the right); it may take 100 or 1000 iterations to get
near the minimum.

Thus the analysis of numerical schemes becomes an integral part of the
research. Sizable portions of published articles and books are now devoted to
computer algorithms, their underlying ideas, performance, limitations, numer-
ical stability, etc. This is all unavoidable, due to the nature of the subject.

1.9 Nonlinear models: EIV versus orthogonal fit

So far we have discussed two large topics—the orthogonal (geometric) fit and
the EIV regression (with the known ratio of variances)—in parallel. In the
linear context, these models can be transformed to one another by a simple
scaling the variables x and y (Section 1.4), and both models have very similar
properties.

In the nonlinear context, a strong link between these two models is lost.
They can no longer be transformed to one another. The crucial disparity de-
rives from the different requirements stated at the end of Section 1.4: the EIV
regression must be invariant under scaling of the variables x and y, and the
orthogonal (geometric) fit — under rotations and translations on the xy plane.
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These requirements affect the very classes of nonlinear models used in each
case.

For example, one may fit polynomials

y = a0 +a1x+ · · ·+akxk (1.29)

to observed points, which is common in the EIV context [79, 140]. Scaling of
variables Sα,β , cf. Section 1.3, transforms one polynomial to another, so the
class of polynomial remains conveniently invariant.�� � � � � � �
Figure 1.11 The graph of an explicit nonlinear function y = g(x) (left). After rotation,
the same curve (right) does not represent any explicit function.

However, a rotation Rθ of the coordinate plane transforms a polynomial
to a different function; it becomes an implicit polynomial curve, which may
not even allow an explicit representation y = g(x). Thus explicit polynomials
are not suited for orthogonal (geometric) fitting. The same applies to any other
class of nonlinear explicit functions y = g(x): the graph of a nonlinear function
can always be rotated so that the resulting curve does not represent any explicit
functional relation; see Fig. 1.11.

A natural class of models that remain invariant under rotations and trans-
lations consists of implicit polynomials of a certain degree k ≥ 1. Polynomials
of degree k = 1 are given by equation

Ax+By+C = 0, (1.30)

which represents all straight lines on the plane (including vertical and horizon-
tal lines). Polynomials of degree k = 2 are given by equation

Ax2 +By2 +Cxy+Dx+Ey+F = 0, (1.31)

which represents all conic sections: ellipses, hyperbolas, and parabolas, in ad-
dition to straight lines. This class is large enough to cover a vast majority of
the existing applications in computer vision and pattern recognition.

Implicit polynomials of higher degree k ≥ 3 are occasionally used to de-
scribe more complex objects, see examples in [150, 176] where polynomials
of degree k = 3,4, and even k = 6, are mentioned. But the use of polynomials
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of degree k ≥ 3 remains extremely rare, as most practitioners prefer to divide
complex shapes into small segments that can be well approximated by lines and
arcs of conics, or even arcs of circles. What one gets in the end is a sequence of
circular arcs stitched together (‘circular splines’); see [12, 145, 158, 164, 165].
Some authors plainly assert that “most of the objects in the world are made up
of circular arc segments and straight lines;” see [146, 195].

Thus fitting circles and conics to observed data is practically the most im-
portant task in image processing applications, besides fitting lines.

We note that often one deals with objects in images that have rectangular
or other polygonal shape, see e.g., [186, 189]. In that case a polygon of the
right shape can be fit to data. Polygon consists of segments of straight lines, so
that general line fitting algorithms can be used, but there are also vertices and
corners that may require a special treatment. Such problems are not discussed
in this book.

To summarize, we see that in the nonlinear context, the two large topics,
(i) the EIV regression used in general statistics and (ii) the geometric fit used
in image processing, go separate ways and become very different. There is an-
other significant distinction here: these topics adopt different asymptotic mod-
els. In the general EIV regression, it is common to study properties of estima-
tors as the sample size grows, i.e., as n → ∞ (at the same time the noise level
σ remains constant). In the image processing applications, the sample size is
usually very limited, but the noise is quite small, hence a more appropriate
asymptotic model is σ → 0 while n is fixed. This issue will be discussed at
length in Section 2.5.

We reiterate that our main subject is geometric curve fitting in image pro-
cessing, i.e., the topic (ii) above. For a comprehensive presentation of the topic
(i), i.e., the general nonlinear EIV regression, see a recent book [27] and its
second edition [28], updated and expanded.




