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Abstract

We investigate several numerical schemes for estimating parame-
ters in computer vision problems: HEIV, FNS, renormalization method,
and others. We prove mathematically that these algorithms converge
rapidly, provided the noise is small. In fact, in just 1-2 iterations they
achieve maximum possible statistical accuracy. Our results are sup-
ported by a numerical experiment. We also discuss the performance of
these algorithms when the noise increases and/or outliers are present.

1 Introduction

Fitting parametric models to digitized images is a central task in computer
vision. Algebraic curve fitting, matching projections of stereo images, esti-
mating coefficients of the epipolar equations [2, 3, 4, 6, 8, 10] fall into this
category. In many cases, including the above, the principal equation describ-
ing the model takes form

(1) ΘTu(x) = 0.

Here Θ = [θ1, . . . , θl]
T is a vector representing unknown parameters; x =

[x1, . . . , xk]
T is a vector representing an element of the data (for example, a

point in the image); and u(x) = [u1(x), . . . , ul(x)]T is a vector with the data
transformed in a problem-dependent manner.
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For example, fitting conics to scattered points on the xy plane falls into
this scheme. In that case the conic is described by a quadratic equation

(2) Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

hence Θ = [A, B, C, D, E, F ]T is our parameter vector; x = [x, y]T is an
element of the data; and u(x) = [x2, xy, y2, x, y, 1]T is the transformed data
vector.

The estimation problem associated with (1) can be stated as follows.
Given a collection {x1, . . . ,xn} of image data find the value of Θ 6= 0 that
minimizes a certain cost function. It is commonly assumed that the ex-
perimental data {x1, . . . ,xn} is a random perturbation of some true (but
unknown) position vectors {x̄1, . . . , x̄n}, i.e.

(3) xi = x̄i + δxi, i = 1, . . . , n.

The true points x̄i satisfy Θ̄
T
u(x̄i) = 0 for i = 1, . . . , n, where Θ̄ is the

unknown parameter vector. For example, in the conic fitting problem, x̄i =
[x̄i, ȳi]

T are some ‘true’ points on the unknown conic. Since the observed data
xi are corrupted by noise, we can only solve equation (1) approximately.

The noise vector [δx1, . . . , δxn]T is usually assumed to have indepen-
dent normal components δxi with zero mean. For simplicity, we let δxi =
N(0, σ2I), where I is the k × k identity matrix (generalization to arbitrary
covariance matrices is straightforward). Then the maximum likelihood (ML)
method consists of minimizing

(4) FML =
n

∑

i=1

‖xi − x̄i‖
2 → min

subject to the constraint ΘTu(x̄) = 0. Thus the true vector {x̄1, . . . , x̄n}
needs to be treated as an extra parameter vector (these are nuisance param-
eters). The ML method (4) is equivalent to the minimization of the sum
of the orthogonal distances from the data points xi ∈ R

k to the parametric
surface

ΣΘ = {y ∈ R
k : ΘTu(y) = 0},

i.e. the maximum likelihood estimate, Θ̂ML, can be obtained by solving the
orthogonal least squares problem

(5) FML =

n
∑

i=1

[ dist(xi, ΣΘ)]2 → min,
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which allows us to eliminate the nuisance parameters from the picture.
The maximum likelihood method is rather impractical, and the following

approximation is commonly used instead. The distances in (5) are of order
σ, thus when the noise is small (σ ≈ 0) we have

(6) dist(xi, ΣΘ) =
|ΘTu(xi)|

‖ΘT∇xu(xi)‖
+ O

(

[ dist(xi, ΣΘ)]2
)

,

where ∇xu(y) denotes the l × k matrix of the partial derivatives of the
function x 7→ u(x) evaluated at y. Thus, to the leading order in σ, the ML
is equivalent to the minimization problem

(7) FAML =
n

∑

i=1

ΘTu(xi)u(xi)
TΘ

ΘT [∇xu(xi)][∇xu(xi)]TΘ
→ min,

which is referred to as approximate maximum likelihood (AML) method.
The l × l matrices

Ai = u(xi)u(xi)
T , Bi = [∇xu(xi)][∇xu(xi)]

T

do not depend on the parameter Θ, they can be evaluated in advance, so the
minimization problem can be written as

(8) FAML =

n
∑

i=1

ΘTAiΘ

ΘTBiΘ
→ min

Note that both numerator and denominator are homogeneous quadratic poly-
nomials in Θ, hence FAML is unaffected by rescaling Θ 7→ cΘ, so the min-
imization can be restricted to the unit sphere ‖Θ‖ = 1. Several efficient
numerical algorithms have been developed in the last decade for solving the
minimization problem (8), see Section 3.

In general statistics, maximum likelihood estimates are asymptotically
efficient (optimal) as n → ∞, in the sense that their variance approaches
the Rao-Cramer lower bound. In computer vision, however, it is more ap-
propriate to assume that n stays fixed and characterize estimates in the
small noise limit σ → 0, see extensive discussions in [8, 9, 10]. Under
these conditions all reasonable estimates (including all mentioned in this
paper) satisfy Θ̂ = Θ̄ + O(σ), hence their variance-covariance matrix satis-
fies Cov(Θ̂) = O(σ2). Our estimates are usually biased, but their bias is of
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the second order E(Θ̂) − Θ̄ = O(σ2), where E denotes the expectation, see
a proof in [1]. Therefore the mean square error

E
[

(Θ̂ − Θ̄)(Θ̂ − Θ̄)T
]

= Cov(Θ̂) + [ bias(Θ̂)][ bias(Θ̂)]T

is primarily determined by the covariance matrix, and the bias only has a
second order effect. For the covariance matrix, a lower bound (an analogue
of Cramer-Rao lower bound) is obtained by Kanatani [6, 7] for unbiased
estimates and extended to all consistent estimates (including all mentioned
here) by Chernov and Lesort [1]. Kanatani-Cramer-Rao lower bound (KCR
bound) can be stated as

(9) σ−2Cov(Θ̂) ≥ Covmin + O(σ2),

where Covmin is a positive semidefinite matrix, for which explicit formulas,
in terms of Θ̄ and u(x̄i), are available [6, 7, 1].

Both ML (4) and AML (8) estimates are statistically optimal in the sense
that they satisfy the KCR bound (9). In fact, they are statistically equivalent
as their covariance matrices coincide, to the leading order:

Cov(Θ̂ML) = Cov(Θ̂AML) + O(σ4).

In this paper we investigate practical aspects of numerical schemes for
solving the minimization problem (8). We investigate their rates of conver-
gence at small noise (σ ≈ 0) and their stability at large noise.

2 Robust versions of the AML

First, the approximation (6) is only good at small noise and becomes danger-
ously inaccurate when dist(xi, ΣΘ) is of order one. This may happen when
either the noise is large or the data are contaminated by a few outliers. To
see the danger, let us examine the matrices Ai and Bi in (8).

Both Ai and Bi are symmetric and positive semi-definite matrices, but
they are usually singular. In fact, rankAi = 1 and rankBi ≤ min{k, l}. For
example, in the conic fitting problem rankBi ≤ 2, while Bi is a 6×6 matrix.
More precisely, the denominator ΘTBiΘ in (8) vanishes when the point xi

lies at the center of the conic ΘTu(x) = 0 (because the quadratic function
(2) has either an extremum or a saddle at the conic center).
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Practically, a data point xi may occur near the conic center if either
the noise is large or an outlier is present. Then the corresponding term
in (8) ‘blows up’ and becomes dominant, which distracts the minimization
procedure. Moreover, it is possible, even at small noise and without outliers,
that during an iterative minimization of FAML a conic comes up whose center
happens to be near one of the data points (we observed such phenomena
experimentally), then a similar breakdown occurs.

As a remedy, we propose to modify the function (8) as follows:

(10) FAML,γ =

n
∑

i=1

ΘT AiΘ

ΘT (Bi + γAi)Θ
→ min

where γ > 0 is a properly chosen constant. It is easy to see that this mod-
ification gives an estimate, Θ̂AML,γ , statistically equivalent to the AML at
small noise, to the leading order. Indeed, as ΘTAiΘ = [ΘTu(xi)]

2 = O(σ2),
we obtain

ΘTAiΘ

ΘT (Bi + γAi)Θ
=

ΘTAiΘ

ΘTBiΘ
+ O(σ4)

thus Θ̂AML,γ = Θ̂AML + O(σ2) and Cov(Θ̂AML,γ) = Cov(Θ̂AML) + O(σ4).

In particular, Θ̂AML,γ is also statistically optimal (it attains the KCR lower
bound), to the leading order in σ.

On the other hand, the modified terms in (10) are uniformly bounded:

ΘTAiΘ

ΘT (Bi + γAi)Θ
≤

1

γ

for all Θ 6= 0, thus the danger of exploding is eliminated.
Our modification can be viewed from a different perspective. The problem

(10) is, in fact, a weighted orthogonal least squares procedure

n
∑

i=1

wi[ dist(xi, ΣΘ)]2 → min

with weights

wi =
ΘTAiΘ

[ dist(xi, ΣΘ)]2 ΘT (Bi + γAi)Θ
.

We know, due to (6), that wi ≈ 1 whenever dist(xi, ΣΘ) ≈ 0, but the behavior
of wi for points xi farther away from ΣΘ is more complicated.
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We will illustrate the behavior of w by a simple example. Consider a
circle x2 + y2 = R2. The distance from a point x = (x, y) to the circle
is d =

√

x2 + y2 − R (note that it is positive outside and negative inside).
Then, after some elementary calculations, we arrive at

w =
(R + d/2)2

(R + d)2 + γd2(R + d/2)2

Figure 1 shows the graph of w(d) for three different values of γ. We see
that for the original AML (8), corresponding to γ = 0, the function w(d)
monotonically decreases. It somewhat suppresses points outside the circle
(as w < 1) and favors those inside it (as w > 1). Far away points (d → ∞)
are given small but positive weights w ≈ 1/4. Points near the circle center
(d ≈ −R) are given weights approaching infinity (this is the singularity
observed earlier).
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Figure 1: Weight w(d) for γ = 0, 1, 5. Here we set R = 1.

On the contrary, for the modified AML the weight function is bounded
and has no singularities. It suppresses distant points both inside and outside
the circle. For outside points, the weight function w(d) drops rapidly with
d and even vanishes as d → ∞. Points near the circle center also get small
weights w ≈ 1/(γR2).
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Thus the modified AML (10) has features of a robust fit that is able to
suppress (filter out) faraway points. This is an unexpected benefit of our
attempt to eliminate the dangerous singularity of the original AML.

In the next section we discuss numerical algorithms for computing the
AML (8). Here we note that all of them can be used to compute the modified
AML (10) as well, since all we need is to redefine the matrix Bi (which is
independent of Θ).

3 Popular numerical schemes

Several efficient numerical algorithms have been developed in the last decade
for computing the AML (8). All of them attempt to solve the variational
equation ∇ΘFAML = 0; and direct differentiation of (8) gives

(11) MΘΘ − LΘΘ = 0

where

MΘ =

n
∑

i=1

Ai

ΘTBiΘ
, LΘ =

n
∑

i=1

ΘTAiΘ

(ΘTBiΘ)2
Bi

Since the equation (11) has no closed form solution, all algorithms are neces-
sarily iterative: given Θm, they compute Θm+1 until the procedure stabilizes
(i.e., until Θm+1 gets sufficiently close to Θm). We present three most pop-
ular algorithms below.

1. Heteroscedastic errors-in-variables (HEIV) method by Leedan and
others [13, 14]. In its basic form (see [3, 4]), it computes Θm+1 as the unit
eigenvector of the generalized eigenvalue problem

(12) MΘm
Θ = λmLΘm

Θ

corresponding to the smallest (closest to zero) eigenvalue.1

2. Fundamental numerical scheme (FNS) by Chojnacki et al [2, 3, 4]
computes Θm+1 as the unit eigenvector of the eigenvalue problem

(13) (MΘm
− LΘm

)Θ = λmΘ

1It is known that λm → 1 provided the algorithm converges at all, see [12], and for
this reason some authors suggest to choose the eigenvector Θm+1 corresponding to the
eigenvalue closets to one (rather than zero); but this may cause divergence, see [12].
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corresponding to the smallest (closest to zero) eigenvalue.

3. Renormalization procedure by Kanatani [5, 6, 10], see also [2], com-
putes Θm+1 as the unit eigenvector of the eigenvalue problem

(14) (MΘm
− µmNΘm

)Θ = λmΘ, NΘ =

n
∑

i=1

Bi

ΘTBiΘ

corresponding to the smallest (closest to zero) eigenvalue. Here µm is an
additional parameter that must be updated at every iteration by

µm+1 = µm +
λm

ΘT
m+1NΘm

Θm+1

.

All these methods require an initial guess Θ0, which is usually supplied
by a simple algebraic fit

(15) FALG =
n

∑

i=1

ΘTu(xi)u(xi)
TΘ

ΘTΘ
=

n
∑

i=1

ΘTAiΘ

ΘTΘ
→ min

The solution of (15) is the unit eigenvector of the matrix
∑n

i=1
Ai corre-

sponding to its smallest eigenvalue. A slightly more accurate initial guess
can be obtained by Taubin’s fit [16]

(16) FTAU =

∑n
i=1

ΘTAiΘ
∑n

i=1
ΘTBiΘ

→ min .

Note that this is a modification of (8). Taubin’s fit is invariant under Eu-
clidean transformations (parallel translations and rotations) while the al-
gebraic fit (15) is not. The solution of (16) is the unit eigenvector of the
generalized eigenvalue problem

(17)
(

n
∑

i=1

Ai

)

Θ = λm

(

n
∑

i=1

Bi

)

Θ

corresponding to the smallest (closest to zero) eigenvalue. Kanatani’s renor-
malization procedure also requires setting µ0 = 0.

A very clear exposition of Algorithms 1–3 and their variations, including
background ideas and comparison, is given in [2, 3, 4].

Lately a new competing method emerged [10]:
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4. Reduced scheme computes Θm+1 as the unit eigenvector of the eigen-
value problem

(18) MΘm
Θ = λmΘ

corresponding to the smallest eigenvalue. Note that the matrices LΘ and
NΘ are not used at all and need not be computed.

Technically, the methods 3 and 4 do not solve the variational equation
(11). The renormalization procedure 3 computes an approximate solution to
(11) that nonetheless satisfies the KCR lower bound [10, Section 15]. The
reduced scheme 4 solves the ‘reduced’ equation

(19) MΘΘ = 0

whose solution differs from that of (11) by O(σ2). Indeed, when Θ is near
either solution, then, as we noted earlier, ΘTAiΘ = [ΘTu(xi)]

2 = O(σ2),
hence LΘ = O(σ2) while MΘ = O(1). Thus Algorithm 4 is statistically
equivalent to the AML and satisfies the KCR bound, see also [1, Section 3].

All the above estimates – the ML, AML, and the solution of (19) – are
known to have a small bias O(σ2). While such small bias cannot affect
the statistical efficiency of these estimates, certain steps can be taken to
reduce it. The full version of Algorithm 1 includes such steps [13, 15], see
also [4]. Similar steps can be added to Algorithm 2, see [4]. Algorithm
3 already incorporates the bias removal, and recently Kanatani proposed
[10, 11] corrections to Algorithms 2 and 4 that reduce the bias to O(σ6).

4 Convergence of numerical schemes

The algorithms described in the previous section have been tested by various
authors and their excellent performance is well documented [2, 3, 4, 5, 6, 13].
However, there seem to be no attempts made to determine their convergence
rates theoretically. One reason for that omission is, probably, a very intri-
cate matrix-type relation between Θm and Θm+1 that obscures the process.
Nonetheless, a sort of theoretical analysis is possible and we do it below.

It is not hard to see, to begin with, that all the algorithms in the previous
section are variants of the fixed-point scheme. In general, the fixed-point
scheme only converge linearly, if at all. However, at small noise all our
algorithms converge extremely fast for the reasons explained below.
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We first analyze the simplest Algorithm 4. Denote by Θ the solution of
equation (19) and put Θm = Θ+δΘm. Then Algorithm 4 consists of solving
the eigenvalue problem

MΘ+δΘm
(Θ + δΘm+1) = λm(Θ + δΘm+1).

Taylor expansion of the matrix MΘ+δΘm
gives

(20) (MΘ + δMm)(Θ + δΘm+1) = λm(Θ + δΘm+1),

where

δMm = −2
∑

i

Ai(Θ
TBi δΘm)

(ΘTBiΘ)2
+ O(‖δΘm‖

2).

To the leading order, we get

(21) MΘ δΘm+1 − KΘ δΘm = λmΘ, KΘ = 2
∑

i

AiΘΘTBi

(ΘTBiΘ)2
.

Recall that |ΘTu(xi)| = O(σ), hence ‖AiΘ‖ = O(σ). This implies KΘ =
O(σ). Denote by Π‖ = ΘΘT the projection onto the line span{Θ} and by
Π⊥ = I − ΘΘT the projection onto the orthogonal hyperplane. Then (21)
can be rewritten as

MΘ δΘm+1 − Π⊥KΘ(δΘm) − Π‖KΘ δΘm = λmΘ.

The first two vectors are orthogonal to Θ, while the last two are parallel to
Θ. Therefore −Π‖KΘ δΘm = λmΘ and MΘ δΘm+1 = Π⊥KΘ δΘm, thus

(22) δΘm+1 = M−
Θ
KΘ δΘm,

where M−
Θ

denotes the generalized (Moore-Penrose) inverse of MΘ (we can
omit the matrix Π⊥ because it is absorbed by M−

Θ
).2

Now equation (22) implies a striking fact:

(23) ‖δΘm+1‖ = O
(

σ‖δΘm‖
)

.

That is, at every iteration the error gets smaller by a factor of O(σ). This
is consistent with the linear convergence pattern, of course, but the small
factor here makes the convergence remarkably swift.

2Kanatani informed me that (22) may also be derived from a general perturbation
theorem, see [6, Section2.2.6].
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Some further conclusions can be drawn. Since |ΘTAiΘ| = O(σ2), the
simple algebraic fit (15) supplies a value Θ0 satisfying ΘT

0 AiΘ0 = O(σ2),
therefore δΘ0 = O(σ). Consequently, δΘ1 = O(σ2), thus the first iteration
Θ1 already produces an estimate statistically equivalent to the AML and
hence statistically optimal (i.e. attaining Kanatani-Cramer-Rao lower bound,
to the leading order).

Furthermore, if one aims at the removal of a small bias to achieve a
‘hyperaccurate’ estimate, see the previous section, then one needs just one
more iteration, because δΘ2 = O(σ3).

The analysis of Algorithms 1 and 2 goes along the same lines, only a few
extra terms appear in some formulas.

In the case of Algorithm 2, the KΘ matrix takes form

(24) KΘ = 2
∑

i

AiΘΘTBi + BiΘΘTAi

(ΘTBiΘ)2
− 4

∑

i

BiΘΘT AiΘΘTBi

(ΘTBiΘ)3
.

This is a longer expression than (21), but the key property KΘ = O(σ)
remains valid. So the main conclusion (23) holds.

In Algorithm 1, the eigenvalue λm is actually close to 1, rather than 0,
and we replace it by λm = 1 + εm. Then we obtain, to the leading order,

(25) (MΘ − LΘ)δΘm+1 = KΘδΘm + εmLΘΘ,

where KΘ is again given by (24). Let V⊥ denote the hyperplane in R
l orthog-

onal to Θ. Let Π‖ = LΘΘΘT /ΘTLΘΘ denote the projection onto the line
span{LΘΘ} parallel to V⊥ and Π⊥ = I−Π‖ the projection onto V⊥ parallel
to LΘΘ. Then (25) can be rewritten as

(MΘ − LΘ) δΘm+1 = Π⊥KΘ δΘm + Π‖KΘ δΘm + εmLΘΘ.

The first two vectors here lie in V⊥ and the other two are parallel to LΘΘ.
Therefore, (MΘ − LΘ) δΘm+1 = Π⊥KΘ δΘm, hence

δΘm+1 = (MΘ − LΘ)−Π⊥KΘ δΘm.

We again arrive at the main formula (23).
Algorithm 3 is somewhat more involved, because of the extra parameter

µm, so we leave it out.
Our analysis demonstrates that all the practical algorithms for computing

the AML (or its modified version (18)) enjoy ‘ballistic’ convergence, provided
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the noise is small; in fact, after just one or two iterations they achieve maxi-
mal possible statistical accuracy. This perhaps explains phenomenal success
of these numerical schemes.

Lastly we make a remark on the global aspects of our numerical algo-
rithms. Suppose the noise is still small (σ ∼ 0), but the initial guess is
chosen poorly, so that ‖δΘ0‖ � σ (this may happen due to an outlier, for
example). In some extreme cases, the initial guess may be picked randomly,
resulting in ‖δΘ0‖ = O(1).

Recall that ΘTAiΘ = O(σ2). Thus for any choice of Θ0 we have
ΘTMΘ0

Θ = O(σ2), hence the symmetric positive definite matrix MΘ0
al-

ways has a small eigenvalue (of order σ2), and the corresponding eigenvector
must be within the distance O(σ) from Θ. But the matrix LΘ0

need not be
small, all its eigenvalues may be of order one.

Our algorithms react to this new challenge quite differently. Algorithm 4
will surely find the eigenvector of MΘ0

corresponding to the smallest eigen-
value, resulting in ‖δΘ1‖ = O(σ) (and subsequently it will converge in 1-2
iterations). Algorithms 1 and 3 will also find that vector, approximately, as
choosing λ small will allow them to suppress the ‘bad’ matrix LΘ0

(we also
remind the reader that µ0 = 0 in Algorithm 3).

On the contrary, Algorithm 2 may be distracted, as it does not suppress
the ‘bad’ matrix LΘ0

; in fact subtracting it from the ‘good’ matrix MΘ0
may

destroy the latter. We indeed observed, experimentally, that Algorithm 2
tends to wander aimlessly for 50-100 iterations or more when seeded with a
random vector Θ0. Algorithms 1 and 4, on the other hand, always converge
within 3-4 iterations, for whatever choice of Θ0.

For a similar reason, Algorithm 2 becomes somewhat unreliable when
the noise is not-so-small. While both matrices MΘ and LΘ are positive
semi-definite, the difference MΘ − LΘ may have negative eigenvalues. It
may happen that the smallest eigenvalue of MΘ (representing the correct
fit) may be transformed into a negative eigenvalue of MΘ − LΘ, while some
larger positive eigenvalue of MΘ (which is of no significance for the fit) may
be transformed into a small positive eigenvalue of MΘ−LΘ. Then Algorithm
2 will pick the latter and miss the former.

To fix this problem, the authors of Algorithm 2 recently proposed [4,
Section 5.6] a stable version of FNS, where at every iteration the smallest
eigenvalue is chosen, instead of the one closest to zero. This modification
significantly improves the performance of Algorithm 2 at a not-so-small noise,
see the next section.
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5 Experiment

To compare the performance of different numerical algorithms we test them
on a conic fitting problem (2). As a ‘true’ curve, we chose an ellipse, (x/5)2 +
y2 = 1. The ‘true’ n = 20 points were equally spaced on the right upper
quarter (x > 0, y > 0) of this ellipse.

To test the numerical schemes, we added a random 2D gaussian noise
N(0, σ2I) to the true points, and varied σ from 0 to 0.005. For each value
of σ, we generated M = 10000 random samples and for each algorithm we
computed the root-mean-square error

RMSE =

[

1

M

M
∑

t=1

‖Θ̂t − Θ‖2

]1/2

where Θ̂t denotes the estimate obtained in the tth realization of the noise.
Since RMSE is asymptotically proportional to σ, we plot the ratio RMSE/σ
in Figure 2. Labels are assigned as follows:

A – Algebraic fit, Eq. (15)
T – Taubin’s fit, Eq. (16)
H – HEIV method, Eq. (12)
F – FNS, Eq. (13)
S – Stable version of the FNS, see Section 4
N – Renormalization scheme, Eq. (14)
R – Reduced scheme, Eq. (18)

We observed that all the iterative schemes H, F, S, N, R stabilize after
1-2 iterations, and further iterations do not change their mean errors in
any significant way (this is in perfect agreement with our conclusions in the
previous section).

Now we comment on the graphs shown in Figure 2. Asymptotically, as
σ → 0, all the iterative schemes converge the the same value 0.40, which
corresponds to the Kanatani-Cramer-Rao lower bound. The algebraic meth-
ods A and T converge to a higher value 0.53, demonstrating their consistent
inefficiency.

As the noise increases, Taubin’s fit and the HEIV algorithm display a
remarkable durability, while other methods slacken sooner or later. The
advantage of the stable version of the FNS over its original version is obvious.
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Figure 2: The root-mean-square error RMSE (normalized by σ) versus the
noise level σ.

We seeded the iterative algorithms H, F, S, N, R with the estimate ob-
tained by the algebraic fit A, as it is common in such experiments and rec-
ommended in other papers [2, 3, 4, 10]. However, when we seeded them with
the more reliable Taubin’s fit, then all of them performed almost identically
to the HEIV (the flat line H in Figure 2), deviating from it by 10% at most.
Since Taubin’s fit is just as easily computable as the algebraic fit, we believe
it should be used as a seed.

We have not used the ‘robust’ modification of the Bi matrices, which was
described Section 2. There was no need for that, indeed, as our samples were
not contaminated by outliers. When we tried the robust version of the Bi

matrices (with γ = 5), the improvement was insignificant (except the stable
version of the FNS became 5-10% more accurate at large noise).

Overall, our experimental results agreed well with our theoretical conclu-
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sions. A rather unexpected (and unexplained) phenomenon was a somewhat
poor performance of the renormalization and reduced schemes, (14) and (18),
at large noise. Interestingly, both methods avoid using the matrix LΘ and
their first iteration Θ1 is identical (indeed, recall that µ0 = 0 in (14)). To
investigate their failures, we looked closely at several examples and observed
that the matrix MΘ0

had two nearly equal small eigenvalues, one correspond-
ing to the correct fit and the other totally wrong. In these cases the reduced
and renormalization methods were confused and often picked the wrong one,
while the HEIV algorithm and the FNS managed to pick the right one. Per-
haps the matrix LΘ serves as a ‘guide’ in such ambiguous cases.
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