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TEST IV

No calculators are permitted!

PART I - Basic Skills

Part I consists of 6 questions. Clearly write your answer in the space provided
after each question.

Each question is worth 6 points.

Question 1

Find the absolute minimum value of the function f(x) = x3 − 3x + 1 on the closed interval
[0, 2]. (Be sure to give the y-coordinate!)

Answer: . . . . . . . . . . . . . . . . . . . . .
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Question 2

The function f(x) = x − 1
2
x2 satisfies the hypotheses of the Mean Value Theorem on the

interval [0, 2]. Find the number c that satisfies the conclusion of the Mean Value Theorem.

Answer: . . . . . . . . . . . . . . . . . . . . .
Question 3

Find the critical number(s) of the function f(x) =
1
3
x3 +

1
5
x5.

Answer: . . . . . . . . . . . . . . . . . .
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Question 4

Find the open interval on which the function g(x) = x− lnx is decreasing. (Clearly indicate
the end-points of your interval!)

Answer: . . . . . . . . . . . . . . . . . .

Question 5

Find the part of the x-axis on which the function h(x) =
1
4
x4 − 3

2
x2 is concave down.

Answer: . . . . . . . . . . . . . . . . . .

Question 6

Find the most general antiderivative of the function f(x) = ex − 5x2/3 +
1

1 + x2
.

Answer: . . . . . . . . . . . . . . . . . .
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PART II - Problem Solving Skills

Each problem is worth 16 points.

Part II consists of 5 problems. You must show your work to get full credit.
Displaying only the final answer (even if correct) without the relevant steps will
not get full credit.

Problem 1

Suppose that the derivative of a function f is given by

f ′(x) = (x− 2)7(x2 − 4)

Answer all the following questions.

(a) Find all the critical numbers of the function f .

(b) On what interval(s) is the function f increasing? (Justify your answer!)

(c) On what interval(s) is the function f decreasing? (Justify your answer!)
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Problem 2

This problem has two separate questions. (Answer all the questions.)

(1) Find the dimensions of a rectangle with perimeter 80 ft and whose area is as large as
possible.

(2) Find two positive numbers whose product is 49 and whose sum is minimal.
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Problem 3

An object moves along a straight line with acceleration

a(t) = 4 cos t− sin t.

Use antiderivatives to answer the following questions.

(a) Find the velocity function v(t) of the object if its initial velocity is v(0) = 3.

(b) Find the position function s(t) of the object if its initial position is s(0) = 0.
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Problem 4

Consider the function f given by

f(x) = xe−x
(
which can also be written as f(x) =

x

ex

)
.

Answer all the following questions.

(a) Find the x and y-intercept(s) of the curve.

(b) Find, if any, the vertical and horizontal asymptote(s) of the curve. [Hint: L’Hospital’s
Rule might prove useful here!]

(c) Find the (open) interval(s) of increase, and the (open) interval(s) of decrease. [Hint:
Factoring out might prove useful in your calculations!]

(d) Find, if any, all local maximum and minimum value(s). [Be sure to give the y-
coordinate(s)!]

(e) Find the open interval(s) where the function is concave down, and the open interval(s)
where it is concave up. [Hint: Factoring out might prove useful in your calculations!]
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(f) Find the inflection point. [Be sure to give the x and the y coordinate!]

(g) Use the information from parts (a)–(f) above to sketch the graph.


