$\begin{array}{c} \text{Mathematics 125 Midterm 1} \\ \text{Feb. 7, 2002} \end{array}$

1.(15 pts) Find the following limits if they exists. The values of the limits may take $+\infty$ or $-\infty$. Briefly justify your answers for each case. (If the limit does not exit, explain why not.)

$$\lim_{x \to 2} \frac{1}{x^2 + 2x - 3}.$$

b) $\lim_{x \to 1} \frac{x-1}{x^2 + 2x - 1}$

 $\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1}$

d)
$$\lim_{x \to 0^+} \frac{|x|}{x}.$$

2.(20 pts) Suppose

$$f(x) = \frac{x^2 + 4}{(x - 2)^2}.$$

a) Find the values of f(0), $\lim_{x\to 2^+} f(x)$, $\lim_{x\to 2^-} f(x)$, $\lim_{x\to +\infty} f(x)$ and $\lim_{x\to -\infty} f(x)$.

b) Using your answers from a), draw the graph of y = f(x).

3.(20 pts) Match the graph of each function in (a)-(d) with the grapf of its derivative in I-IV.

4.(20 pts) **a)** f is defined as follows;

$$f(x) = \begin{cases} x \cos \frac{1}{x} & \text{when } x \neq 0 \\ 0 & \text{when } x = 0 \end{cases}$$

Show f is continuous at x = 0. (Hint: What was the definition of continuity?)

b) g is defined as follows;

$$g(x) = \begin{cases} x^2 \cos \frac{1}{x} & \text{when } x \neq 0 \\ 0 & \text{when } x = 0 \end{cases}$$

Show g is differentiable at x=0. (Hint: what was the definition of differentiability?)

5.(20 pts) The table shows the polulation P(t) of Nepal (in millions) as of June 30 of the given year.

t	1975	1980	1985	1990	1995
P(t)	14.0	15.4	17.1	19.4	22.0

a) Estimate the value of P'(1985). Explain your reasoning for the estimate.

b) Using your answer from a), find the equation of tangent line to the graph y = P(t) at t = 1985.

c) Estimate the value of P(1986) using linear apporximation.