MA 126, Calculus 2 UAB, Fall 2002

TEST 1

Duration 105min;

Make sure to show all your work and underline the final results of each problem. Write your
name on this sheet and use it as a cover page when you turn in your work. Do not write
your results on this paper. Good luck!
1. Consider the integral
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(a) Write it as a limit of Riemann sums (with right endpoints) where the number n of subin-
tervals tends to infinity. Define all notation you introduce (e.g. z; = ...7)

(b) Evaluate the Riemann sum of part (a) for n = 2 subintervals.

2. Evaluate the following derivatives
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3. (a) Make a suitable substitution to evaluate
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(b) Use integration by parts to find
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4. Write out the form of the partial fraction expansion of the function. Do not determine
the numerical values of the coefficients.
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5. Evaluate the following integrals
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6. (a) Approximate
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using Simpson’s rule with n = 2 subintervals.

(b) How large do you need to take n in the Trapezoidal Rule to guarantee that the
approximation of
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is accurate to within 0.001? (Error bound: K (b — a)®/(12n?)).



