Name:_	
Student Number:	

Calculus II; MA 126 Fall 2002

Show all your work; solutions must be justified. Attach additional pages if necessary.

- 1. Are the following series Absolutely convergent, convergent or divergent:
 - (a) $\sum_{n=2}^{\infty} \frac{n}{\ln(n)}$
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
 - (c) $\sum_{n=1}^{\infty} \frac{2^{2n+1}}{5^n}$
 - (d) $\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$
 - (e) $\sum_{n=1}^{\infty} ne^{-n}$

2. Find the radius of convergence and the interval of convergence for the following power series:

(a)
$$\sum_{n=1}^{\infty} \frac{2^n (x+2)^n}{(n+3)!}$$

(b) $\sum_{n=1}^{\infty} \frac{(x-4)^n}{n5^n}$

3. Find the MacLaurin series for

(a)
$$\frac{x}{5+2x}$$

(b)
$$\frac{1}{(5+2x)^2}$$

- 4. Alan Greenspan estimate the future inflation rate by approximating the sum of the infinite series $\sum_{n=1}^{\infty} \frac{(1/10)^n}{n!}$ by 1/10 + 1/200 with an error less than 1/6000. Is this correct? Explain!
- 5. First find a series expression for $\int_0^{1/10} \sin(x^4)$. Next use this series to estimate the integral with an error of less than 10^{-9} (You do not need to add the terms in the finite sum).