MA 227: Calculus III Midterm Test #2, November 20, 2001

Time limit: 105 min.

Your name:

Your student ID:

1. Find $\partial z / \partial x$ and $\partial z / \partial y$ if

$$xy^2z^3 + x^3y^2z = x + y + z.$$

10 points

2. If $z = x^2 - xy + 3y^2$ and (x, y) changes from (3, -1) to 2.96, -0.95, compare the values of Δz and dz. 10 points

3. u = xy + yz + zx, x = st, $y = e^{st}$, $z = t^2$. Compute $\partial u/\partial s$ and $\partial u/\partial t$.

10 points

4. Find all directions u (||u|| = 1) in which the directional derivative of the function $f(x, y) = x^3 + xy + y^3$ at the point (1,0) is equal to 3. 10 points

5. Find the points on the surface $x^2y^2z = 1$ that are closest to the origin.

10 points

6. Find the maximum and minimum values of the function f(x, y, z) = 2x - z subject to the condition $x^2 + 10y^2 + z^2 = 5$.

10 points

7. Evaluate the double integral by first identifying it as the volume of a solid.

$$\int \int_D \sqrt{1 - x^2 - y^2} dA,$$

where $D = \{(x, y) | x^2 + y^2 \le 1\}.$

10 points

8. Calculate the double integral

$$\int \int_R \frac{1+x^2}{1+y^2} dA,$$

where $R = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}.$

10 points

9. Calculate the volume of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the sphere $x^2 + y^2 + z^2 = 9$. 10 points 10. Calculate the double integral

$$\int \int_R (x^2 + y^2)^2 dA,$$

where $R = \{(x, y) | 1 \le x^2 + y^2 \le 4\}.$

10 points