Math 227 Test #3, March 18, 2002 Show all of your work for full credit.

1. (20 pt.) Let $R = [0, 1] \times [0, 1]$.

(a). Use the Midpoint Rule to estimate the value of $\int \int_R 12x^2y^3dxdy$ with n=m=2.

(b). Evaluate $\int \int_R 12x^2y^3dxdy.$

(c). Evaluate $\int \int_R (8y - 3x^2) dx dy$.

2. (20 pt.) Evaluate the following double integrals.

(a). $\int \int_D 2\sqrt{x}y dx dy$ where $D = \{(x, y) | 0 \le x \le 1, -x \le y \le \sqrt{x}\}.$

(b). $\int \int_D xy^3 dx dy$ where $D = \{(x, y) | 0 \le y \le 1, 1 - y \le x \le 1\}$.

(c). $\int \int_D e^x dx dy$ where D is the triangular region with vertices (0,0), (2,4) and (6,0).

3. (20 pt.) Find the volume of the solid under the paraboloid $z = x^2 + y^2$ and above the region bounded by $y = x^2$ and $x = y^2$.

4. (20 pt.) A lamina occupies the region inside the circle $x^2 + y^2 = 2y$ but outside the circle $x^2 + y^2 = 1$. Find the center of mass if the density at any point is inversely proportional to its distance from the origin.

5. (20 pt.) A lamina occupies the region bounded by the parabola $x = y^2$ and the line y = x - 2. Find the moments of inertia I_x , I_y and I_0 if the density $\rho(x, y) = 3x$. Is it more difficult to rotate the lamina about the x-axis or y-axis?