
FINAL EXAM
MA227

DECEMBER 2004

Name:

Closed Book. No calculators. Show your work.

1. (10 pts. each) Evaluate the following:
(a) If z = ey sinx and

dx

dt

∣∣∣
t=0

= 2, x(0) = 0,
dy

dt

∣∣∣
t=0

= 1 = y(0),

find
dz

dt

∣∣∣
t=0

.
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(b) Calculate divF for

F = sin(x2 + y) i + yez j + x ln y k

(c) Compute the curl F for F := (xey − z) j + xyz k.
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(d) Let E be the region described by 1 < x2 + y2 + z2 < 4. Evaluate the
integral ∫∫∫

E

z dV

by changing to spherical coordinates.

(e) Determine whether or not the vector field F(x, y, z) = xi + yj + zk is
conservative. If it is conservative, find f(x, y, z) in order that F = ∇f .
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2. Find all local maxima, minima, and saddle points for

f(x, y) = y3 − 6xy + x3.
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3. Find the volume of the solid bounded above by the surface z = xy2 and
below by the triangle in the xy-plane with vertices (1, 0), (0, 2), and (2, 0).
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4. Find the surface area of the part of the paraboloid z = x2 + y2 that lies
between the cylinders x2 + y2 = 1 and x2 + y2 = 9.
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5. Suppose that C consists of the line segment from (0, 0) to (1, 0), the line
segment from (1, 0) to (1, 1), and the arc of the curve x = y2 from (1, 1) to
(0, 0). Use Green’s Theorem to evaluate∮

C

(xe3x − 4y2) dx + (2xy + y sin y2) dy.



8 FINAL EXAM MA227 DECEMBER 2004

Extra Credit: Let the surface S1 be the part of the sphere x2 + y2 + z2 = 5 that
lies inside the cylinder x2 + y2 = 1 and above the xy-plane. Let S2 be the part of
the plane z = 2 that lies inside the cylinder x2 + y2 = 1. If for some vector field F,∫∫

S1

curl F · dS = 3,

how does this fact relate to ∫∫
S2

curl F · dS =?

(The amount of extra credit - if any - will depend upon how well you justify your
answer.)
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Test 1
MA227
September 2004
Name:

Closed Book. No calculators.
CIRCLE YOUR ANSWER. You must show your work and justify your
answer to receive credit.

1. (a) (10 pts.) If u = 1
2 i +

√
3

2 j find the directional derivative

Du sin(xy).

(b) (5 pts.) If u = ai + bj, what are values of a and b (with a2 + b2 = 1)
that maximizes Du sin(xy) at the point with x = 1, y = 0?
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2. (20 pts.) Let
f(x, y) = xye−(3x+2y).

Find all critical points and classify as local maxima, local minima, or saddle
points.
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3. A helix is described by

r(t) := 3(sin 2t)i + 3(cos 2t)j− 4tk.

(a) (6 pts.) Find the unit tangent vector T at the point (0, 3, 0) on the
helix.

(b) (6 pts.) Find the (principal unit) normal vector N at the point (0, 3, 0)
on the helix.

(c) (8 pts.) Find the plane containing the point (0, 3, 0) and determined
by the vectors T and N from parts (a) and (b), i.e., the osculating
plane.
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4. (15 pts.) Calculate the limit exists if it exists. If it does not exists, justify
your answer.

(a) (Hint: Change to polar coordinates.)

lim
(x,y)→(0,0)

x3 − xy2

x2 + y2

(b)

lim
(x,y)→(0,0)

x2 − 2xy

4x2 + y2

5. (15 pts.) Find ∂f
∂t if

f(x, y) = (sin y) ln(x2 + 2), and x = 2 cos(st), y = 3s− 2t.
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6. An athlete puts a shot which leaves his hand 6 ft. above the ground at a
45 degree angle to the horizon and at a speed of 29

√
2 ft./sec.

(a) (8 pts.) Find the position vector r(t), which describes the motion of
the shot for any time t. 1

(b) (4 pts.) How many seconds later does the shot hit the ground?

1Assume that the only force acting on the body is gravity. Hint: The acceleration of gravity

is −32ft./sec.2.
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(c) (3 pts.) How far (horizontally) does the shot go?


