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§1. Introduction

The present paper is a continuation of the article [8] by the same authors,
but can be read independently of it.

We will study the statistical properties of dynamical systems generated by a
free motion with elastic reflections at the boundary. Such systems are called
billiards.

Definition. Let β be a bounded domain with piecewise smooth boundary in
the Euclidean plane IR2 or on the standard torus Tor2. A billiard is a
dynamical system generated by the motion of a point particle with constant
unit velocity inside Q and with elastic reflections at the boundary QQ.

As usual, elastic reflection means reflection such that "the angle of
incidence equals the angle of reflection".

Below we will consider hyperbolic billiards (see [34]), that is, billiards given
inside a domain Q with boundary of a specific shape which preserves the
hyperbolic nature of the motion (this means that the characteristic Lyapunov
exponents are non-zero almost everywhere in the phase space).

More precisely, we will consider the class of two-dimensional billiards for
which Markov partitions were constructed in [8]. These are billiards in
domains whose boundary consists of finitely many C3-smooth components of
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three shapes:
a) strictly concave (as seen from the inside of Q);
b) rectilinear segments;
c) convex (as seen from the outside) incomplete arcs of circles whose

complements to complete circles do not intersect the other components of δβ.
The components of shape a) are called scattering, those of shape b) neutral,

and those of shape c) focussing (the names are given according to their action
on a pencil of parallel trajectories, see Fig. 1). Billiards with boundary
consisting of components of shape a) only are said to be scattering, and
consisting of components of shapes a) and b)—semiscattering. Among the
concrete examples, the best known are the periodic Lorentz gas (a scattering
billiard on the torus with cut out circles, Fig. 2a) and the stadium (a billiard in
a domain bounded by two parallel segments and two arcs of circles, Fig. 2b).

Ν

i

Fig. 1 Fig. 2

A billiard system is Hamiltonian, and hence preserves the Liouville
measure [10].

From a system in continuous time we can, in a standard manner, pass to
the derived map T, corresponding to the map from a present reflection to the
previous one (in the presence of focussing or neutral components of QQ it is
constructed somewhat differently, see §2). The map Τ acts on the manifold of
all states of the system "after reflection". This manifold is a two-dimensional
surface M, which will be defined in a precise manner in §2. It will also be the
phase space of T. The projection ν onto Μ of the Liouville measure will be
an invariant measure for Τ [10]. In the presence of an invariant measure,
every measurable function F(x) on Μ gives rise to a stationary stochastic
process in discrete time, Xn = F(T"x), η e Z. The statistical properties of
this process (rate of decay of correlations, central limit theorem, and so on)
play an important role in applications of the theory of billiards in physics. In
this direction we will prove the following assertion (here <· > denotes averaging
with respect to the measure v):
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Theorem 1.1 (rate of decay of correlations). Suppose we are given a two-
dimensional hyperbolic billiard whose boundary satisfies certain additional
conditions A, B, C of "general position" (see §2), while F(x) is a function on Μ
satisfying a Holder condition in the natural coordinates r, φ (see also §2) with
index bounded below^ and (F) = 0. Then the correlation of the stationary
process {Xn} decays subexponentially:

(1 1) I (X ·Χ "> I ^ C (F) e~"^"

where C(F) > 0 and a = a(Q) > 0 is a constant.

If the index α in the Holder condition for F is not bounded below, then
Theorem 1.1 is also true, but with index a in (1.1) depending on a, and thus
on F.

We put Sn = Xx+ ... + Xn.

Theorem 1.2 (central limit theorem). Under the conditions of Theorem 1.1 the
quantity

(1-2) σ * = S <Z0-Xri>

is finite. If σ Φ 0, then

(1.3)

Remark 1.3. A more correct name for Theorem 1.1 would have been the
theorem on the decay of autocorrelations. By correlation proper we often
mean the quantity <F (x)-G (Z"lz)>, where F and G are distinct functions on
Μ satisfying the same conditions as F does in Theorem 1.1. Here we can
prove the estimate

(1.4) | <F (x)-G (Tnx)} | < C (F, G) β~αγ".

Remark 1.4 [9]. The quantity σ 2 in (1.2) is equal to zero if and only if the
function F(x) is homologous to zero, that is, F(x) = G(Tx) — G(x), where G
is a function on Μ that is square integrable with respect to the measure v.

We will also give two specific consequences of Theorem 1.2, which have a
clear physical interpretation. Both consequences relate to the more narrow
class of systems of scattering billiards with finite horizon (that is, when the
length of a free path between reflections is uniformly bounded above; this
condition can be violated only in billiards on the torus).

Let N,(x) be the number of reflections experienced by the trajectory of a
point χ e Μ from time 0 till time t (this is the continuous time of the phase
flow).

(1)This means that \F(x)-F(y)\ < C(F)\x-y\a when α > αο, for some oto(0 > 0.
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Theorem 1.5. There are numbers O] = a\(Q) > 0 and b\ = b\(Q) > 0 such
that

(1.5)

The second consequence relates to the appearance of diffusion in
the periodic Lorentz gas. Let β be a domain on the standard torus
with coordinates 0 < q\ < 1 and 0 < φ < 1· We denote by
βοο the corresponding domain on the universal enveloping torus:
βα> = {(ίι> ? 2 ) e R 2 : (?i —«, qi—m) e β for certain integers m, «}. Then the
lift of any trajectory of a billiard onto the universal envelope will be a
trajectory of a billiard in β*,. If the initial set of trajectories (for / = 0) is
concentrated in the initial domain Q = Q^ Π {0 < q\, q2 < 1} and is
distributed in accordance with the Liouville measure, then as / -> oo it will
"unravel" (diffuse) into Q^. We denote by q^\x) and q%\x) the coordinates
(in Qao) of the wandering point at the moment of time / whose initial position
(for t = 0) was at χ e M.

Theorem 1.6. There is a two-dimensional Gaussian distribution with density
£(ii> <li) {depending on the domain Q) such that

,1.6)

for each bounded open set A C R 2 whose boundary has measure 0. This
Gaussian distribution has zero mean and non-singular covariance matrix.

We will briefly clarify the idea behind the proofs of Theorems 1.1 and 1.2.
Statistical properties of hyperbolic dynamical systems were first studied in the
case of geodesic flows on manifolds of negative curvature [1], and subsequently
for the axiomatically defined Anosov y-systems [12] and the more general
^-systems of Smale [35], [19], [20]. The general scheme of investigation
consists in constructing a Markov partition, with subsequent reduction of the
system to its symbolic representation as a topological Markov chain (TMC)
with finite alphabet. For a TMC having the additional property of
topological mixing we can define the large class of invariant Gibbs measures,
which are the equilibrium states corresponding to "good" (usually, Holder)
functions on the phase space. The statistical properties of Gibbs measures are
sufficiently well investigated in the work of Bowen, Ruelle, and Sinai; see the
surveys [4], [33], [14]. The corresponding theory, which has received the
appellation "thermodynamical formalism", has deep connections with the one-
dimensional statistical mechanics of lattice systems. In particular, in the
above-cited works the exponential nature of decay of correlations and the
central limit theorem were proved. We also note the recent paper [28], in
which these results were derived anew by using purely probabilistic techniques
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(by means of reduction to general Markov chains), and, moreover, in which a
local limit theorem and a renewal theorem were proved.

The billiard systems considered in the present paper are hyperbolic, and,
moreover, to a sufficiently high degree: their hyperbolicity is close to uniform,
and since the phase space is two-dimensional, they are complete (for details
see §2). However, billiard systems differ in two essential aspects from Y- and
Λ-diffeomorphisms.

First, the billiard map Τ is discontinuous. Its discontinuities are generated
by tangent (sliding) maps and the tangential coincidence of trajectories at a
break point of QQ. Therefore the elements of the Markov partition have a
rather complicated shape: they are nowhere dense and form totally
disconnected sets of Cantor type. More important, however, is that they are
countable in number, hence we obtain a symbolic system with infinite alphabet
(see [8] for a more detailed explanation).

The second difference is the fact that in billiards there is a natural invariant
measure v, induced by the Liouville measure. From the point of view of
applications this measure is very interesting. It induces in the symbolic system
an invariant measure V, which by no means needs to be Gibbsian. In passing
we note that the construction of a Gibbs measure for a TMC with countable
alphabet is a problem which has not yet been completely solved.

These two circumstances impel us to work out a new approach to the
investigation of statistical properties of billiard systems. The first such
investigation was done in [22], [23]. In these papers the measure v' in the
TMC was approximated by a measure v" with finite memory, that is, by an
"almost" Markov measure. The resulting probability chain can be easily
reduced to a Markov chain (but with countably many states). For proving
statistical properties of the latter, "simple" mixing is insufficient, since this
may happen too slowly, and an additional regularity condition is necessary.
One such condition, an analogue of Doeblin's condition, was proved in [22]
(see the correction in [24]), and as a result in [23] the authors obtained a
subexponential estimate for the decay of correlations:

(1.7) i <*o · Xn} l < C (F) e-^

(here γ e (0, 1) is independent of F), and proved a central limit theorem and
a number of other statistical properties for the periodic Lorentz gas under the
condition of finite horizon (with an upper bound on the length of a free path).
On the basis of these results, in [30] a "quasilocal" limit theorem was obtained,
taking an intermediate position between central and local.

In the present paper we have substantially simplified this approach and
have obtained stronger results. First we get rid of the construction of a
symbolic system with countable alphabet, which allows one to code almost all
points of the phase space M. In fact, when approximating the measure V by
the measure v" in the TMC some loss of exactness occurs, and this can be
allowed for from the very beginning, by constructing the symbolic system
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more "roughly", but with finite alphabet. For this we introduce a finite
family of subsets of Μ which have the Markov property during a definite
finite interval of time (that is, for the action of 7" with 0 =ζ i < N, where Ν
is finite). This family of subsets does not cover all of the phase space, hence
we call it a Markov lattice. It generates a symbolic (non-Markovian!) system
with finite alphabet whose invariant measure can be sufficiently well
approximated by a Markov measure v" (again, on the same time interval
[0, N]). This measure has good statistical properties, not "everywhere" but
precisely on the finite time interval [0, N]. In this setting we can prove, as in
[9], the additional regularity condition. We will establish an analogue of the
condition of strong mixing in the sense of Ibragimov [9] (this is stronger than
the Doeblin condition), and derive Theorems 1.1 and 1.2 from it. Note that
our estimate (1.1) is better than (1.7), since one can actually estimate γ from
below, which gives γ > 1/2. Moreover, our assumptions A, B, and C on the
boundary QQ are essentially weaker than those given in [23] (for example, here
we consider the Lorentz gas with infinite horizon, and also the stadium).

The question whether the subexponential estimate of the form (1.1) cannot
be improved upon for billiards remains open. However, numerical calculations
[18], [26] indicate that the actual nature of decay of correlations is
subexponential.

Finally we note that in our proofs of Theorem 1.1 and 1.2 the Markov
partition is superfluous: our lattice is constructed using the pre-Markov
partition introduced in [18], [22] as an intermediate stage in the construction
of a Markov partition. In essence, this also simplifies the proofs of
Theorems 1.1 and 1.2 in comparison with [22], [23].

On the other hand, in billiards the Markov partition is necessary in the
solution of a number of other problems. It allows us to prove certain
asymptotic estimates for the number of periodic trajectories (see [8], [17]). It
may be expected that it also allows us to develop a thermodynamical
formalism in the spirit of Bowen —Ruelle — Sinai for hyperbolic systems with
singularities (in particular, for hyperbolic billiards).

The structure of the present article is as follows. In §2 we briefly describe
the general properties of hyperbolic billiards. In §3 we develop the necessary
technique for constructing a Markov lattice, based on the notion of a
homogeneous stable or unstable manifold, which allows us to overcome the
influence of the singularities of the billiard map T. In §4 we construct the
Markov lattice, and state its definition and basic properties in §4.1. The last
three sections are devoted to the proof of Theorems 1.1 (§5), 1.2 (§6), and
1.5 — 1.7 (§7). The Appendices contain the proofs of certain technical theorems
in §3.

The notion of a Markov lattice was proposed by N.I. Chernov. The idea
of passing to homogeneous manifolds, and the related additional partitions
(see §3), was coined by Ya.G. Sinai. The final editing was done by all the
authors.
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§2. Billiards: necessary information

In this section we state the necessary definitions and properties of
hyperbolic billiards. For a more detailed account see [8].

2.1. Scattering billiards: the phase space.

As in [8] we direct our main attention to scattering billiards, and state for
the remaining billiards only the necessary changes and additions in all
constructions.

A billiard domain Q is always assumed to be a bounded closed connected
domain in the plane or on the two-dimensional standard torus. The boundary
dQ must be piecewise smooth and consist of finitely many smooth (of class at
least C3) non-self-intersecting curves Γ,·, 1 < t < </, which are either closed or
have end-points in common. The regular part of the boundary is denoted by

5<? = d<2\y (Γ;ΓιΓ,),

while a point q e dQ \ dQ is called a break point of it. At regular points q e dQ
the unit interior normal vector n(q) and curvature yc(q) with respect to this
vector are defined. In scattering billiards v.(q) is everywhere positive.

A billiard system specifies a piecewise smooth flow {S1} on the phase space
9ft, which can be represented in the form 3ft = Q χ S1 = {x = (q, o) : q e Q,
|| υ || = 1}. The flow {S*} preserves the Liouville measure d\i = c^dqdn,
where dq and do are the Lebesgue measures on Q and S1, respectively; ομ is a
normalizing factor.

We introduce the '^restricted phase space" Μ = {χ = (q, ο) : q e dQ,_
(p,n(q)) > 0}. We let Έ be the closure of Μ in 2R. The boundary dM = Έ\Μ
consists of two parts: dM = So U Vo, where So = {(q, o) '• ?_f dQ,
(p, n(q)) = 0} ("tangential reflections") and Vo = {(q, o) : q e 9β\dQ}
("billiard corners"). The flow {S'} induces a derived map from Μ into itself,
denoted by T.

We introduce in Μ natural coordinates: r, the arc length parameter on the
curve dQ, and φ, the angle between the vectors υ and n(q) (| φ [ < π/2). In
these coordinates Μ is the union of rectangles and cylinders. For a point
χ e ~M, we denote its coordinates by r(x) and φ(χ). The map Τ preserves the
measure dv = cv cos φίΛ-ί&ρ (cv is a normalizing factor). We denote by
τ+(χ) = τ(χ) and τ-(χ) the first positive and negative moments when the
trajectory of χ hits the boundary dQ, that is, T±lx = S T ± W + O x.

The maps Τ and T~l are piecewise smooth: Τ has discontinuities on the
set T~1R0, and T~l on TRQ. We put Rt = T'R0 and J?m/I = Um-R,· for
-oo ίζ m < η *ζ oo. Then the set of singular points for T±n, η ^ 1,
coincides with R~n,o (-Ro,*)· The set i?-»,» consists of countably many
smooth (C1) curves, called discontinuity curves in the sequel.

On a scattering billiard we impose the following two conditions of "general
position".
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Condition A. All interior angles of the domain Q at the break points of its
boundary are distinct from zero.

Condition B. For any m ^ 1, the number of discontinuity curves in R-m,m

passing through or ending at some point χ e Μ does not exceed Κ&η, where KQ
is a constant for the domain Q.

Both conditions were used in [8] in an essential manner in the construction
of Markov partitions. Note that condition Β is always fulfilled if β is a
domain with smooth boundary on the torus [8]. In [22], [23] condition Β is
formulated differently, and more rigidly: it is not allowed that more than
three discontinuity curves from i?_oo,co pass through a point of M. Numerical
computations [32] indicate that when condition A is violated, the rate of decay
of correlations becomes slower (power-like), that is, Theorem 1.1 is not valid.

Remark 2.1. Suppose the billiard domain Q satisfies condition A. Then there
are constants mo = mo(Q) and το = τ ο ( 0 > 0 such that for any point
χ e Μ there is among its images T'x for 1 < i < wo at least one for which
τ(Τχ) > τ0.

In other words, the trajectories of a billiard cannot undergo arbitrarily
many reflections while remaining in a small neighbourhood of one of the
break points of the boundary QQ.

Moreover, we note that since the boundary components are smooth, the
curvature is bounded above and below: 0 < l y j < κ(χ) < κ,^, < oo.

2.2. Scattering billiards: the hyperbolic structure.

A smooth (C1) curve γ C Μ is said to be increasing (decreasing) if it is given
by an equation φ = <p(r) and άφ/dr > 0 (d<p/dr < 0). The property of
being increasing (decreasing) is preserved under the action of Τ (Τ~ι).
A curve γ is said to be m-increasing (m-decreasing) for m > 1 if T~my (Tmy)
is an increasing (decreasing) smooth curve. All discontinuity curves in J?1>00

(Λ-οο,-ι) are increasing (decreasing).

Let γ be an increasing or decreasing curve, given by the equation
φ = <p(r). We denote by /(γ) its Euclidean length in the coordinates (r, φ).
The quantity

(2-1) ρ (y)—^cosydr
Ύ

is called the p-length of the curve y, and for us it will be far more important
than the /-length. In the sequel, unless otherwise stated, the length of a curve
will mean this p-length.

All increasing (decreasing) curves expand under the action of Τ (Τ~ι) (in
the sense of /j-length). The local coefficient of expansion of increasing
(decreasing) curves under the action of T" for η ^ 1 (« < —1) always grows
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exponentially:

(2.2) ρ (Γ>γ)/ρ (γ) > A[Jnyw°]

for some Λο(β) > 1. By the same token, the hyperbolicity of the
transformation Τ is close to uniform,, and since the phase space Μ is two-
dimensional, Τ is complete (for the definition, see [16]). However, Γ is not
uniformly hyperbolic, since angles between m-increasing and m-decreasing
curves are not bounded away from zero for any m > 1. More precisely, for
any 1-increasing or 1-decreasing curve, \dq>/dr\ > const > 0, but the upper
bound is very weak: \d<p/dr\ < const(d(r))~1^2, where d(r) denotes the
distance from the point r e Γ,· C δ β to the nearest end-point of the curve Γ,.
This means that in a neighbourhood of the set VQ the stable and unstable
directions can be simultaneously almost parallel to the tangent to VQ. More
precisely, this behaviour is observed in a neighbourhood of finitely many points
only, lying in Fo\SO, but it complicates our exposition in Appendix 1 (§A1.3).

Note that the /- and /^-lengths of mo-increasing and mo-decreasing curves γ
are related by

(2.3) cons^ (Q )p (γ) < Ζ ( γ ) < const2 (Q) y ρ (γ).

For almost every point χ e Μ there are locally stable and unstable
manifolds (LSM and LUM, for short) passing through x. We denote the
maximal smooth segment (including end-points) of this LUM (LSM) by
Υ"00 (Υ*(*))· The lengths of these segments are bounded, because Τ is
discontinuous, and, moreover, arbitrarily short LUM and LSM are everywhere
dense in M.

The tangent directions to the LUM y"(x) and to the LSM y\x) at χ form
angles with the r-axis, which we denote by ψ"(χ) and ψ*(χ), respectively. They
are given by the relations

tan ψ" (x) = Bu (x) cos φ (χ) + κ (χ),

tan i|js (χ) — — Bs (χ) cos φ (χ) + κ (χ)·

Here

(2.5) Β* (χ) = L·

R(Tx)-

is a continued fraction in which R(x) = 2x(x)/cos <p(x). The quantity B"(x) is
similarly defined, using the semitrajectory T"x for η < 0:

Bu(x) - R(x) + —J .

τ(Τ~2χ)+
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The value of Bu(x) (Bs(x)) equals the curvature of the pencil of trajectories
forming the LUM yu(x) (LSM ys(x)) at the moment after reflection at x. We
also denote by Bu-(x) = B\x)-R{x) and BL(x) = B*(x) + R(x) the
curvatures of these pencils before reflection at x. Incidentally, the p-length of
the LUM γ "(A;) (LSM ys(x)) defines the length of an orthogonal cross-section
of the corresponding pencil of trajectories at the moment of reflection. We
denote by λ"(χ) = l+x(x)Bu(x) (λ*(χ) = 1 + x(x)BL(Tx)) the coefficient of
expansion of the LUM yu(x) (coefficient of contraction of the LSM γ*(χ))
under the action^ of Τ (in the sense of ^-length).

For JC, y e Μ we put [JC, y] = yu(x) Π ys(x) (this point does not always
exist, since the LUM and LSM may be arbitrarily short). For A, B C Μ we
put [A, B] = {[x, y]:xeA,yeB}. For A CM we put yY(x) = Af] y^ix).

Two subsets A C Yu(*o) and Β C y"(yo) are said to be canonically
isomorphic if for any χ e A the point [x, y0] e B, and conversely. In this case
the map A -* Β mapping χ to the point [x, y0] is called the canonical
isomorphism. If the />-length is considered as a measure on the segments γ"(*ο)
and γ "(JO), then the canonical isomorphism is absolutely continuous [13], [29],
and has a Jacobian at every density point χ of A, which we denote by J\x).
For any ACM and LUM γ"(χο), we call [A, x0] the canonical projection
from the set A onto the curve γ"(χο)-

2.3. Billiards with infinite horizon.
If Q is a domain on the torus, then the length x(x) of a free path may be
unbounded. In this case the functions τ±(χ) have singularities, which we will
describe in more detail. The function τ+(χ) (τ_(χ)) can be unbounded only in
a neighbourhood of finitely many points lying in Ro, called u-singularities
{s-singularities). They are also called singular points of infinite horizon type (we
will encounter another type of singular points in §2.5). These singular points
can be of three subtypes: S, V, and SV, depending on whether they belong to
So\ Vo, Vo\So, or So DV0 (for more details see [8], §4). Each subtype can be
characterized by the structure of the discontinuity curves in /?_i (in R, for
s-singularities), which accumulate in a neighbourhood of the singular point.
Note that if the boundary 9g is smooth, then the u- and i-singular points
coincide, and have one type: S.

The discontinuity curves partition the neighbourhood of a singular point
into countable many domains (cells). When approaching the singular point,
the cells become smaller, the functions x±(x) grow in them, and the coefficient
of expansion of the LUM (coefficient of contraction of the LSM) increases to
infinity by one iteration of Γ* 1 . If we number the cells (and the bounding
discontinuity curves) in the natural order (that is, in the order of approach to
the singular point [8]), then in the n-th cell the functions τ ± (χ) « const· η,
while the coefficient of expansion of the LUM (coefficient of contraction of
the LSM) is approximately equal to const- nd, where d = "bjl for singular
points of types S and SV and d — 1 for singular points of type V.
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Remark 2.2. In neighbourhoods of singular points of type V, any LUM
intersects only finitely many curves in i?_i with indices Ν ι to N 2 such that
N2 < const· N\. We also note that already the images and inverse images of
cells from a neighbourhood of the singular points of type V do not lie in
neighbourhoods of these or other singular points (hence in [8] they were called
"wandering cells")- More precisely, the cells with indices ^ η require at least
N(n) iterations of Τ±' for their images to intersect other cells with indices > η
around singular points (here N(n) -> 00 as η -+ oo).

2.4. Semiscattering billiards.
In semiscattering billiards the reflections in neutral boundary components are
at most a "disturbing factor", since they do not lead to contraction and
expansion. To exclude the influence of this factor we go over to a derived
map on a "smaller" (than in §2.1) restricted phase space. We denote by d+Q
the union of all scattering components of the boundary QQ, and_consider the
space Μ = {{q, 0) : q e d+Q, (p, n(q)) > 0}. On the closure Μ we construct
the derived automorphism T. For a point χ e Μ we denote by k(x) the
exponent of the first reflection of the trajectory of χ in 9 + β · We impose the
additional condition:

Condition C. The function k(x) is uniformly bounded: k(x) ^ const < 00.

Under this condition the discontinuity curves R\ and Λ_! can accumulate
only in neighbourhoods of singular points of infinite horizon type.

In certain cases we can discard the rather stringent condition C, and by
some reflections in Q relative to the neutral components of dQ reduce the
system to a scattering billiard on the torus (see [8], §6). These cases are also
very convenient for us, since the map Τ will have the same properties as in
the corresponding scattering billiard.

However, if in a domain Q in general position condition C is violated, then
the description of the structure of the discontinuity curves of Τ in
neighbourhoods of singular points (in which the function k(x) is unbounded) is
up to now an unsolved problem.

2.5. Billiards with focussing boundary components.
On the focussing components of the boundary dQ we impose the following
conditions:

Condition Fl . Every focussing boundary component is an incomplete arc of a
circle whose complement to a full circle does not intersect other boundary
components.

Condition F2. If a focussing component intersects a scattering one, then at their
point of intersection they form an interior angle larger than π.

Condition F3. Every focussing component is not larger than a semicircle (of

angular measure < π).
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In [8], in the construction of a Markov partition we have stated clearly
only condition Fl , but implicitly assumed conditions F2, F3 also (since when
these conditions are violated the discontinuity curves of the derived map Τ
become different from those described in [8]).

The hyperbolic and ergodic properties of billiards with focussing
components satisfying condition Fl were studied in [6], [21], and described in
[7], [8]. When hitting the focussing part of the boundary QQ the images of
increasing curves become decreasing in the coordinates r, φ, and conversely.
Pencils of trajectories which are images of increasing curves converge (focus)
after reflection in focussing components of the boundary, and before the next
reflection they pass through a conjugate point (defocus) and approach this
reflection in scattered form already. It is important that the conjugate point
always lies on the first half of the path between adjacent reflections, hence the
dimensions (p-lengths) of the images of increasing curves grow monotonically
under the action of T. This phenomenon is called the defocussing condition.

A series of successive reflections in one focussing boundary component can
be arbitrarily long, but it does not lead to exponential expansion and
contraction (on this ground, in particular, it follows that billiards in the circle
are not hyperbolic). These series become a "disturbing factor" similar to
reflections in neutral boundary components, hence we have to "suppress" them
too. More precisely, we let Μ be the set of points {(q, o):qe dQ, (o, n(q)) > 0}
such that the point q lies either on a scattering component or on a focussing
component, and in the latter case the next reflection (at Sz^+Ox) must
happen in another boundary component. We construct the derived
automorphism Τ on the closure M. If the boundary contains neutral
components, we also impose condition C.

With the coordinates r, φ the space Λ/_ is the union of rectangles and
cylinders, corresponding to scattering boundary components (we denote this
part of Μ by M+), and parallelograms, corresponding to focussing components
(we denote this part of Μ by Μ_). The parallelograms in Μ_ have the shape
depicted in Fig. 3. At points A and Β infinitely many discontinuity curves
accumulate (they are described in more detail in [8]). The limit points A and
Β are given by the tangential directions to the corresponding focussing
component Γ at its end-points. Figuratively speaking, the trajectories of these
points are not reflected in the arc Γ but "slide" along it, hence we call A and
Β singular points of sliding type.

A neighbourhood of the singularities just described is partitioned by the
curves in Ri into countably many cells. In the w-th cell those trajectories are
collected that have undergone η successive reflections in the given focussing
component. Any LUM γ 0 with end-points χ and y and lying in the n-th
cell has derivative άφ/dr « const η (of course, const < 0); for it
cos φ(χ) « cos <p(y) « const/n and \φ(χ)—φ(χ)| < const/n2. This easily
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implies the estimates

(2.6)

(2.7)

I r (*) ~ r (y) | < const Υ ρ (y0),

— φ

cos φ(χ)

which we will need in Appendix 1. It can also be easily proved that
Ρ(Ίο)Ιρ(Τ~λΐο) » const η and ρ(Tyo)/p(γ0) * const η, hence the coefficient
of expansion of the LUM after two iterations of the map Τ (from T~ ly0 to
TVo) is at least const · n2.

Fig. 3

2.6. The "stadium".

In §2.5, as in §2.4, condition C is very stringent. Here we consider a domain
not satisfying it, the so-called stadium. It is bounded by two parallel segments
and two similar circular arcs (see Fig. 2b). The complement of each arc to a
full circle is not to intersect or touch the other arc. Billiards in a stadium
have applications of their own (see [7]). The hyperbolicity and ergodicity of
this billiard were proved in [21]. If the arcs bounding the stadium are smaller
than a semicircle, then they do not satisfy condition Fl , and by identifying the
lateral walls (the segments) we may pass to a billiard on the torus, bounded
by two arcs only, for which Fl does hold.

The restricted phase space Μ consists of two identical parallelograms
(Fig. 4, see p. 60). In neighbourhoods of the points C and D there accumulate
also infinitely many discontinuity curves (from R-\), whose structure has been
described in [8]. They are generated by a free path of unbounded length
(under transition of the trajectories from one arc to the other), hence we will
call C and D, as in §2.3, singular points of infinite horizon type. If the
boundary arcs of the stadium are strictly smaller than a semicircle, then the
properties of these singular points are completely similar to the properties of
singular points of type V (see Remark 2.2 about "wandering cells").
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If the stadium is bounded by semicircles, the cells in neighbourhoods of C and
D are already non-wandering: the discontinuity curves from Ri and i?_i have
their location there (Fig. 5). In this case a simple computation gives the
following estimate:

Lemma 2.3. The coefficient of expansion under the action of Τ of an arbitrary
LUM lying in the n-th cell is at least 4n. Any LUM in a neighbourhood of the
point C or D intersects only finitely many discontinuity curves from R-\ with
indices between N\ and iST2, where N^ «ξ 9Ν\ + const.

Vi,

Fig. 4

In conclusion we make another remark to §2.4—§2.6.

Fig. 5

Remark 2.4. For billiards with neutral and focussing boundary components,
as in [8] we have constructed the derived map Γ on a very "small" restricted
phase space M. In [8] we could then define a Markov partition also on the
larger (and natural) space Μ ι = {(q, ο) : q e dQ, (o, n(q)) > 0}. In this
paper we study much more refined statistical properties of dynamical systems,
which may vary strongly under the transition from Τ to the derived map T\
on M\. For example, the "counter" of the number of collisions (Tnx = T^x
for Ν ^ «, where Ν can be much larger than n) essentially changes, hence the
rate of decrease of correlations may change substantially. In particular, as
shown by numerical calculations in [36], for the stadium it becomes power-like
(~ const · N~a for some a > 0).



Statistical properties of two-dimensional hyperbolic billiards 61

§3. The Markov lattice: local construction

In this section we prepare the necessary material for the construction of the
Markov lattice, which will be given in §4. We will also introduce a number of
new notions and prove a number of results on the behaviour of the map T.
When possible we will give our results an intuitive appearance, transferring the
technical exposition to the Appendices.

3.1. Parallelograms and their measures.
By tradition, the elements of Markov partitions in hyperbolic systems are
called parallelograms. In the case of billiards a representation by a
parallelogram is a set U C ~M such that v(U) > 0 and for every pair x, y e U
the point [x, y] is defined and belongs to U. In other words, it is the set
obtained by intersecting the family of LUM {γ"} by the family of LSM {ys}
such that each LUM yu intersects each LSM ys. In this sense the
parallelogram U has the structure of a direct product. Hence U can also be
represented in the form

(3.1) U = [·# (x0), yh (*„)]

for an arbitrary point xo e U. If xo is fixed, the LUM γ"(χ0) and the LSM
γ*(χ0) will be called coordinate axes in U.

Because of the presence of discontinuities in billiard systems, arbitrarily
short LUM and LSM are everywhere dense in Μ (for more detail see [8]).
Hence the parallelograms form nowhere dense sets of Cantor type, having
positive measure. The limit (in the metric of C°) of the sequence of LUM or
LSM_can only be an LUM or LSM (see [8], Lemma 2.11), hence the closure
(in M) of any parallelogram is also a parallelogram.

We will need convenient formulae for the measures of parallelograms. Let
U be a parallelogram, UQ some "ambient" parallelogram, that is, Uo D U,
and let a point x0 be chosen in Uo, fixing the coordinate axes in Uo- We
denote the canonical projections of U onto the axes γ"(χο) and YJ(xo) by Γ&
and Tu, respectively. Then, by analogy with (3.1),

(3.2) U = IK, Thl

We will partition the curves γ"(χο) and γ^χο) into fine subsegments
Δ" C γ"(*ο) and Δ} C γ^Χο)· Their "direct products" [Au

h ASJ\ give a
partition of U into parallelograms Δ,·,· = [Δ" Π Γ&, Δ} Π Γ^].

The v-measures of sufficiently fine parallelograms Δ are approximately
equal to ν(Δ) » cvm(A) cos <p(x), where m ( ) is Lebesgue measure in the
coordinates r, φ and χ e Δ is some point. If the point χ e Δ is fixed, we may
write m(A) & l(y£(x))l(yL(x))sin(iu(x)-Y(x)). It is easily seen that

hence, by (2.4), ν(Δ) « p(y&x))p(yi(x))(Bu(x
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Returning to our parallelogram U, making up the integral sum
v(£/) = Σν(Δ,^), and passing to the limit, as in the usual definition of
integral, we obtain

(3.3) ν (U) = cv J (Bu (x) + Bs (x)) dvf, (*),.
υ

where d\u(x) denotes the measure on U which is the direct product of the
measure />(·) on the sets yjj(x) and yf/x). Since addition on the LUM and
LSM is absolutely continuous [13], [29], almost every point χ e U is a density
point of the set y"if(x) on the LUM yu(x) (the LSM γ*(χ)), and thus the
Jacobian of the canonical isomorphism of this set onto its projection Γ# (Tjy)
on the corresponding coordinate axis is defined at it. We denote this Jacobian
by J\x) (7J(x)). Then (3.3) takes the form

(3.4) ν (U) = cv J dp (y) ξ dp (z) (B« (x) + Bs (x)) Ju (χ) Γ (χ).

Here y e Γ& and ζ € Y{, are points such that [y, z] = x. It is natural to
regard y and 2 as the coordinates of χ on the axes γ"(χο) and γ^Χο)· It is
important to note that all functions appearing under the integral sign in (3.4)
are determined by χ and do not depend on the choice of the parallelogram U.

3.2. Weak homogeneity of parallelograms.
Formula (3.4) represents the parallelogram U as a direct product in the
metrical sense (and not just the topological sense, as in (3.2)). However, at
present it is only convenient if the integrand is almost constant. For such
parallelograms we introduce the notion of homogeneity.

First we fix constants oto < 1 and Co > 0.

Definition 3.1. A parallelogram U is called weakly η-homogeneous (where
η 5s 0 is an integer) if the following four conditions hold:

(01) I 5 " (x)/Bu (y) - 1 | < Coa
n

e;
(02) I B° (x)/B° (y) - 1 | < CocC
(03) I / " (x) - 1 I < Coa

n

o;
(04) I Js (x) - 1 | < C0oco

n

for any points x, y e Uo and any point x0 e Uo fixing the coordinate axes
y"(x0) and γ^χο).

The next lemma easily follows from (3.4).

Lemma 3.2. The measure of subparallelograms U of weakly n-homogeneous
parallelograms UQ can be approximated by the quantity

(3.5) v o (U) = cvP (Γ$)ρ (Th)(Bu (*,) + Bs (*„)).

More precisely,

(3.6) \va(U)/v {U)~ 1 \<C1a
n

n,

where d = Ci(C0, Oo).
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We derive one consequence from the fomulae (3.5) —(3.6). A parallelogram
U' C U is said to be u-inscribed (s-inscribed) in U if γΰ-(χ) = yU.x)
(respectively, yh(x) = yiAx)) for any point JC 6 U'. Let U' be an
arbitrary parallelogram which is «-inscribed in U, and let U" be an
arbitrary parallelogram ί-inscribed in U. We also assume that U is weakly
«-homogeneous. Then (3.5), (3.6) imply the inequality

(3.7) | V (U"/U)/v (U"/U') ~ 1 |

where C2 = C2(Ci, oto) (here v(AIB) denotes the conditional measure).

3.3. Homogeneous LUM and LSM.
It is necessary to study the construction of the above-defined weakly
«-homogeneous parallelograms. Note that for weak η-homogeneity it is not
sufficient that the parallelogram has small diameter. For example, if two parts
of a parallelogram U lie on different sides of some curve γ C Ro,k for a small
value of k, then the quantity B"(x) has a jump when crossing γ which does
not vanish when diam U -* 0. Therefore, for weak η-homogeneity we must
additionally require that the images of the parallelogram U, both in the past
and the future, do not experience discontinuities for a sufficiently long time.
Moreover, it is necessary that the functions BUiS(x) do not strongly oscillate
inside U and its images T'U for small (in absolute value) values of i. These
functions have singularities on the set So C 9-W, and in the presence of break
points on the boundary QQ also at finitely many "singular" points on Vo,
which were mentioned in §2 and are described in more detail in Appendix 1.
Therefore we partition a neighbourhood of So and a neighbourhood V* of the
set of these "singular" points into countably many subdomains, contracting
towards So and the "singular" points, and inside which the functions Bu>s{x)
do not strongly oscillate.

We fix a certain ν > 1 and integer «0 > 1. We draw in Μ the countably
many segments given by the equations φ =π/2 — «~v and φ = — π/2 + «~ν for
all integers η ^ no. We denote the set of these segments by 3>o· We consider
also the images and inverse images of the points on these segments which fall
in the set V*, up to the time when they leave this set. These points form the
set Θ\ C V», consisting of at most countably many curves. In other words,
2\ consists of the images of the segments in 3>o which "get stuck" for some
time in small neighbourhoods of break points of dQ. We will give a more
precise definition of the set 2χ in Appendix 1 (§A1.3). We put Θ = ^o U 2\-

Definition 3.3. We call a segment LUM γ" (LSM γ*) homogeneous (for short,
HLUM and HLSM) if its images T~"yu (Γ"γ*) for all « > 0 (that is, when
"moving in the direction of contraction") do not intersect the segments and
curves in the set 2 (but their end-points may fall on them) and, moreover, Τ
(Γ" 1 ) is smooth on γ" (γ11) (that is, one iteration in the "direction of
expansion" will not lead to discontinuity).
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In other words, the construction of an HLUM (HLSM) can be realized by
breaking up an arbitrary LUM (LSM) at the points whose images in the past
(future) fall in 2. The latter will therefore be called subdividing curves, and
the segments in 2o subdividing segments.

Definition 3.4. Let η > 1 be an integer. We call an LUM y" (LSM y*)
η-homogeneous if its image T"yu (Γ~"γΟ is an HLUM (HLSM).

Of course, the property of being η-homogeneous is stronger than that of
being simply homogeneous.

Definition 3.5. We call a parallelogram U η-homogeneous if for any point χ of
it the set ju(x) (Yu(x)) lies entirely on one «-homogeneous LUM (LSM).

Note that the closure in Μ of any η-homogeneous parallelogram is also an
«-homogeneous parallelogram.

Theorem 3.6. The parallelograms that are η-homogeneous are also weakly
n-homogeneous, for a corresponding choice of constants in Definitions 3.1 and
3.3 — 3.5. More precisely, the constants ν and «o can be chosen arbitrarily, while
oco and Co will depend on them.

The meaning of this theorem is sufficiently transparent, but its proof is
lengthy and is for a large part technical in nature, hence we transfer it to
Appendix 1.

We must note that the «-homogeneous LUM and LSM have another
important property. We denote by A"(x), for ι > 1, the local coefficient of
contraction of the LUM yu(x) at the point χ under the action of T~'.

Lemma 3.7. If the LUM γ " is η-homogeneous, then for any x, y e yu and
i ^ 1 the estimate \ Α%χ)/\"(γ) -11 < C4oto holds, where C4 > 0 is a
constant. A similar estimate holds for η-homogeneous LSM.

The proof of Lemma 3.7 will also be given in Appendix 1.
Theorem 3.6 indicates a way of constructing «-homogeneous parallelograms,

but leaves open the question of the existence of «-homogeneous LUM and
LSM. In fact, if the subdividing points densely filled each LUM (LSM), then
not a single HLUM (HLSM) could be chosen at them.

Theorem 3.8 (existence). For almost any point χ e Μ there is an HLUM
(HLSM) containing χ in its interior.

We denote by yOu(x) (yOs(x)) the maximal smooth segment HLUM (HLSM)
passing through x.

Corollary 3.9. For any « > 1 and almost any point χ there is an
η-homogeneous LUM (LSM) passing through x.

Theorem 3.8 can be substantially refined by estimating the distribution of
the lengths on HLUM and HLSM in At. In fact, let rOu(x) (Γ°*(Χ)) be the
distance from the point χ eM to the nearest end-point of the curve y°"(x)
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(γΟί(χ)) in the /j-metric (if this curve does not exist, we set this distance equal
to zero).

Theorem 3.10. v{jc e Μ : rOu(x) < ε} < C 5 E 8 , where C5 = C5(v, no) > 0 an</
θ = θ(ν, no) > 0. Λ similar estimate holds for rOs(x).

It is useful to note the following completion to this.

Proposition 3.11. For \-almost any χ e Μ the subdividing points on the LUM
yu(x) (LSM ys(x)) partitioning this curve into individual HLUM (HLSM) can
only occur at the end-points of this curve, and do not have limit points inside it.

The proofs of assertions 3.8 — 3.11 are very similar to the method of
constructing LUM and LSM described in [13], [29]. They are carried out in
Appendix 2.

With this we finish the analysis of the properties of parallelograms. The
remaining part of §3 is devoted to the dynamics of individual HLUM and
HLSM.

3.4. Rate of expansion of HLUM and HLSM.
The aim of this and the next subsection is to study the dynamics of HLUM
and HLSM when they move under the action of T" "in the direction
of expansion". The local coefficient of expansion after η steps grows
exponentially with η (2.2), but the global picture is much more complicated,
since expansion is accompanied by discontinuities and subdivisions. As a
result, for each η ^ 1 the image T"y" (T~nys) consists of finitely or countably
many HLUM (HLSM), among which there may be arbitrarily short ones. We
call these HLUM (HLSM) the homogeneous components of the image Tny"
(T~"ys). In this subsection we show that, nevertheless, the average length of
these components grows exponentially with n, until it becomes a quantity of
order one. In other words, the process of expansion dominates over the
counterprocesses of discontinuity and subdivision. It is important to stress
that here the discussion is about any HLUM (HLSUM), and not almost any,
as before.

In the subsequent exposition only HLUM figure, but similar results are
valid also for HLSM, with η replaced by — n.

Let γ" be an arbitrary HLUM of length ρ (γ") = ρ, and let D > 0. For
each η ^ 0 we partition y" into subsegments y"m i = 1,2,..., which are
transformed under the action of T" into homogeneous components of length
> D. We consider the quantity

pDyu(N) = p{ U y'U}/p(yu).
' v i , )/£CJV

In other words, ρυ yU (N) is the relative fraction of points on γ " whose

images during the first Ν steps fall at least once in homogeneous
components of length ^ D.
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Theorem 3.12 (rate of expansion). There are a D > 0 and a function
P(c), β(ί·) -• 0 as c -*• oo, independent of y" and ρ, and such that for any
c > 0 we have pDyu {— [c In p)) > 1 — β (c).

Theorem 3.2 means that during the first Ν iterations of T, where
Ν = — [c In p(y")], the majority of points on γ" fall at least once in long
homogeneous components (of length ^ D). The logarithmic dependence of Ν
on p(y") means that the expansion of the average length of homogeneous
components of the image T"y" is of exponential rate. This is, in essence, the
key property of the hyperbolic systems under consideration, determining a fast
decay of correlations.

In the simpler case when subdivisions do not have to be taken into account
(that is, instead of HLUM we consider LUM as components of the set T"y"),
a similar (and in a certain respect, stronger) assertion has already been proved
in [24]. Taking subdivisions into account somewhat complicates the proof of
the theorem. We give it in Appendix 3.

3.5. Properties of transitivity for HLUM and HLSM.
In this subsection we continue the study of the dynamics of HLUM and
HLSM when they move under the action of T" "in the direction of
expansion". Here we assume that the initial HLUM y" already has length of
order one. In this case its images already "nowhere" expand, and therefore
the homogeneous components of these images start to fill the space Μ.
General considerations, appealing to the mixing property of the transformation
Τ [13], predict that for large η the homogeneous components of the set T"y"
are uniformly distributed on M. We will need a much weaker property,
consisting, roughly speaking, of the fact that the density of filling Μ by these
components is asymptotically bounded away from zero as η -*• oo. It is this
property that we call transitivity. Below we give strict formulations.

First of all we introduce a number of new notions for describing the
metrical structure of parallelograms. They aid in better formulating and more
clearly demonstrating the property of transitivity.

A quadrangle is a domain Κ C. Μ bounded by a pair of LUM and a pair
of LSM, in alternation. We call the bounding LUM (LSM) u-faces (s-faces).
For each parallelogram U we can choose a minimal quadrangle K(U)
containing it. We call K(U) the carrier of U, and the s· and «-faces of U are
taken to be those of its carrier.

Further, we say that the LUM γ" (LSM ys) is stretched on the quadrangle
Κ (parallelogram U) if its end-points lie precisely on the s-faces («-faces) of
this quadrangle (parallelogram). It is easily verified that if the parallelogram
is «-homogeneous, then its s- and «-faces, as well as all HLUM and HLSM
streteched on it, are «-homogeneous. We say that an «-homogeneous
parallelogram (« ^ 0) is maximal if it intersects all HLUM and HLSM
stretched on it. Any «-homogeneous parallelogram can be completed to a
maximal one while preserving «-homogeneity and not splitting its boundary.
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We also say that the quantity ρ (Α Π y)lp (γ) is the density of the set A C Μ
on the curve y.

We now turn to the formulation of the property of being transitive. We
consider an arbitrary HLUM γ" of length ρ (γ") = ρ and an arbitrary
O-homogeneous maximal parallelogram UQ of non-zero measure. For each
η > 1 we choose inside γ " subsegments γ'/.,,, i2*1, whose images Tnyl,n are
stretched on the parallelogram UQ (if there are such), and we consider the
quantity

Theorem 3.13 (transitivity). Under the above-described conditions,
Pn(y", Uo) > δο(/>, Uo) > 0 for all η ^no(p, Uo), where δ 0 and n0 depend on
Uo and on the length ρ of the initial curve γ", but not on its position.

Theorem 1.3 means that if the initial curve γ" is sufficiently long, then after
sufficiently many iterations its image will always contain a substantial part
consisting of HLUM stretched on the parallelogram C/o. From the fact that
Uo is arbitrary it follows that for large η the components of the image of the
curve T"yu actually "unravel" on Μ with density bounded away from zero.
(In view of the mixing property of Τ there must clearly exist some relation
between f>o(p,Uo) and the measure v(U0); however, we will not consider this
question here.)

We again stress that, as in §3.4, the discussion is about any HLUM γ".
The dual assertion is true for any HLSM.

The proof of Theorem 3.13 is very intuitive, and is based on a number of
assertions of independent interest, hence we give it here and do not transfer it
to the Appendices. The idea of the proof is also applicable to non-billiard
hyperbolic maps with singularities.

Lemma 3.14. Let γ be an arbitrary increasing curve in M. Then through
almost every (in the sense of the p-measure) point χ e γ there passes an LSM
ys(x).

The assertion of the lemma is, in essence, an analogue of the main theorem
of the theory of hyperbolic billiards. At present two versions of its proof are
known. The first was worked out in [13], [5], [6], [21], and the second,
simpler, one in [15], [31], [25]. Lemma 3.14 follows immediately from the first
version, while it follows after minor and obvious modifications in the proof,
not given here, from the second version.

Assertions 3.11 and 3.14 immediately imply the following result.

Corollary 3.15. Let γ be an arbitrary increasing curve in M. Then through
almost every point χ e γ there passes an HLSM yOs(x).

Remark 3.16. The absolute continuity of addition on LUM and LSM [13],
[29] implies that the measure of the union of all HLSM involved in
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Corollary 3.15 is positive. Hence there is a p 0 = ρο(γ) > 0 such that if the
HLSM are drawn only through the points in {x e γ : rOi(jc) ^ p0} (that is,
only those HLSM are taken for which the distance from the end-points to the
point of intersection with γ is not less than p0), then the measure of their
union is also positive. Moreover, they "cut out" on γ a set whose ^-measure
tends to p(y) as po -»• 0.

Using assertions 3.15 and 3.16 it is easy to construct in a neighbourhood of
an arbitrary HLUM γ", and for arbitrary β! > 0 and d e (0, 1/10), a
parallelogram U\ with the following set of properties:

1. U\ is 0-homogeneous and maximal;
2. y" intersects both ί-faces of U\, and the points of intersection have

distance larger than dp (γ") to the end-points of γ";
3. for each HLSM ys stretched on U\ the point of intersection ys Π y"

has distance larger than <//>(yO from the end-points of ys (in other words, the
curve y" passes somewhere in the central part of the quadrangle K(U\) and
does not come too close to its w-faces);

4. the density of the parallelogram U\ on every HLSM stretched on it is
at least 1 —ει.

We call a parallelogram U\ having the properties 1 —4 a dense part {with
parameters &\ and d) of the HLUM y".

Lemma 3.17 (on finite collections of dense parts). For any ρ > 0, ει > 0,
and d e (0, 1/10) we can choose in Μ a finite collection of parallelograms such
that for each HLUM of length > ρ one of these parallelograms is a dense part
with parameters z\ and d.

For the proof we introduce on the set of all HLUM a metric given by the
maximum of the distances from each point on one HLUM to the nearest
point on another HLUM, and conversely. By the compactness of the space,
for any ρ > 0 the subset of all HLUM of lengths > ρ is compact. It is also
easily seen that each parallelogram U\ serves as a dense part for some open
subset of HLUM of length ^ ρ (possibly empty), which implies the lemma.

We fix a d e (0, 1/10), a sufficently small ει > 0, and a dense part with
parameters ει, d for the curve y" in the conditions of Theorem 3.13.

For the moment we forget about the parallelogram U\, and return to the
parallelogram UQ in the conditions of Theorem 3.13. The absolute continuity
of addition on LUM and LSM implies that almost any point χ e UQ is a
density point of the measurable set γυο (χ) on the curve ys (x). The definition
of density point implies that for any ε2 > 0 there are an IQ > 0 and a subset
UQ C UQ of non-zero measure such that on any HLSM intersecting Uo and
of/»-length less than IQ the parallelogram Uo has density ~^\—z^. Here, of
course, the set UQ need not be a parallelogram.

We fix a sufficiently small ε2 > 0 and a corresponding set UQ.
We consider the set TnU\, for an arbitrary η ^ 1. It consists of finitely

many 0-homogeneous parellelograms. We denote by Ui>n, ..., Uk(n\n those
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parallelograms that intersect £/0. The mixing property of Τ and Lemma 3.17
imply that for all η > η'(ρ, eu d, Uo, ε2) the inequality

Jt(n)

(3-8) J! v(tf i i n ntf.)>?i

holds, where q\ = q\(p, &\, d, Uo, ε2) > 0.
Under the action of the canonical isomorphism each parellelogram UiA,

1 < i =ζ k(ri), is projected onto one of the homogeneous components y"n of
the image T"y"; moreover, distinct parallelograms Uin project to distinct
homogeneous components y"n. (Properly speaking, on account of this
correspondence we will also study in detail the properties of homogeneous
components of the images of LUM and LSM; in §4 we will derive from it the
required properties of the parallelograms themselves.)

Lemma 3.18. Each homogeneous component y"n, 1 < i' s$ k(n), intersects
both s-faces of the parallelogram UQ provided that η is sufficiently large
(η ^ n"(Uo, ε2)) and ει, ε2 are sufficiently small.

The proof rests on a geometrical construction, which is illustrated in Fig. 6.
We choose a point y e [/,·,„ Π Uo and, correspondingly, the HLSM
γί = y\T~ny) Π Κ(ϋλ). For sufficiently large η its image γ£ = T"yf has
length < /b, and hence the density of the parallelogram C70 on γο is not less
than 1 — ε2. This and properties 3, 4 of the dense part U\ imply that for
sufficiently small ει, ε2 the curve γο contains "sufficiently many" points of the
set TnU\ Π Uo, while the point y"A Π Υο lies between some pair of points
y\> }Ί e TnU\ Π UQ. We consider the quadrangle K* bounded by the LUM
y"(yi) and γ"(^ 2) and the j-faces of {70. It is easily seen that its inverse
images T~lK* for all i = 1, 2, ..., η do not intersect the discontinuity curves
and the subdividing curves, which implies the lemma.

Fig. 6
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Lemma 3.18 shows that on each homogeneous component yt, n of the image
Tnyu there is a subsegment γ " n which is stretched on ί/0· It is obvious that
Ρ (Ϋ\\π) > const {U0)-p (ytn), hence (Lemma 3.7)

Ρ (T-nytn)> C?const (Uo) -p(T-"yl „).

This and (3.8) imply the estimate

K(n) *(«)

(3.9) S ρ (Γ-"ν?. η) > q2 Σ ν (Τ-1 (Z7it η Π
i i l

where the quantity 2̂ = ?2(/>> EJ, i/, t/o» 62) > 0 appears by applying formula
(3.4) for computing the measure of the parallelograms T~"{UiA Π Uo), taking
into account that U\ is 0-homogeneous and Lemma 3.17. Inequality (3.9)
holds for all η ^ max{«', «"}, which proves Theorem 3.13.

Successive application of Theorem 3.12 and 3.13 leads to the following
general assertion.

Theorem 3.19. Suppose that the HLUM γ" and parallelogram Uo satisfy
the conditions of Theorem 3.13. Then pn(y", UQ) > &i(U0) for all
η ^ —[C ( 1 ) In p] + n\{Uo), where the quantities 8i(Uo) and n^Uo) depend only
on Uo, and C o ) = C ( 1 ) ( 0 > 0.

§4. The Markov lattice: global construction

The Markov lattice is an instrument whose application allows us to derive
Theorems 1.1 and 1.2 relatively quickly in §5, §6. Clearly, it is also useful in a
subsequent, more detailed study of the statistical properties of hyperbolic
billiards, hence we will try to describe it in maximally general and, at the same
time, detailed form.

4.1. Definition and basic properties.

A Markov lattice is given by a pair of integer-valued parameters Ν > η > 0.
We immediately note that Ν is the length of the time interval on which we
will approximate our process {Xt} by a process of Markov type (as explained
in §1). Formally we will not impose further restrictions on Ν and n, but it
will be useful to keep in mind that we are interested in the case when
Ν, η -*• oo and η ~ Ny for some γ < 1.

By a Markov lattice with parameters η, Ν we will mean a finite partition of
the space Μ : &„,„_ = (F o , Vu ···, V,}, where / = /(», N), v(Vt Π Vj) = 0
for i Φ j , and U V( = M, having the following four properties:

Property ML1 (dimensions), diam Vt < e~n for all i ^ 1 {the set VQ is
"special", it does not participate in this estimate).

Property ML2 (measure of the remainder). v(F0) «ξ Ne ~"
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Property ML3 (Markov approximation). For any integers k > I > 1 and
1 < I'I < h < ... < ik Κ Ν, as well as for indices j \ , J2, ••·, jk taking values

from 1 to I = I(n, N), the following holds:

(4.i) ν(z-v,, η Ti-vh η · · · η T'<-WhjT'ivh η . . .

... η τι*ν)χ) = v(r%, η · · · η ^'-^w
where | Δ | < C5 oto for some C$ = Cs(oto) (the quantity OQ was introduced in
§3.2).

Relation (4.1) denotes, up to a factor 1 + Δ, the Markov property. It is
easily proved that (4.1) holds also for Ν > i\ > ^ > ... > ik > 1·

For convenience of notation we denote by 3 the set of indices {0, 1, ..., /},
where / = I(n, N). For any k > 1 and : e J we choose a subset R((k) C 3
such thaty e Ri(k) if and only if

(4.2) ν {TkVi Π V}) > βον (F,) ν (F,),

where β0 = βο(0 > 0. Moreover, for k > 1 we define the subset R(k) C Cf
such that i e -R(fc) if and only if

(4.3) Σ v ( F , ) > l — e-n.

Property ML4 (regularity). For each k > Don we have

(4.4)

where Do = A ) ( 0 > 0.

The constants β0 and D o are defined in §4.3, but their numerical values do
not play a role in the sequel.

The general idea of the relations (4.3) and (4.4) consists in the fact that
inequality (4.2), which guarantees a certain degree of mixing after k steps,
holds for "the overwhelming majority" of pairs of indices i, j . Below, in
Theorem 4.1, this inequality will allow us to prove an analogue of the strong
mixing condition in the sense of Ibragimov [9]. The construction of a Markov
lattice will be given in §4.2—§4.4.

Theorem 4.1 (convergence towards equilibrium). Let k > I > 1 be integers
and 1 < ii < Ϊ2 < ... < & < iV. Then the set 3k~' contains a subset
R* = R*(i\, ..., ik) of tuples of (k—l) indices such that:

a) ifO'i+u ···, A) e R*> t h e n

ι . .

• · · η r^F,j-v(r%-, η ··• η Γ ' ^ Κ Λ ;
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b) the following estimate holds:

(4-6) Σ ν <r W , l t l η · · · η Tlwh) > ι - Δ,
( V i i

where Δ can &? taken to be Δ = max { iW 1 ' 2 , CiVctf, (1 — $0)
lLm) for

L = [(fl+1 - »,)/(/)„»)].

Remark 4.2. It is easily verified that the assertion of the theorem is equally
valid for Ν > i\ > i2 > ... > i* > 1.

Part a) of Theorem 4.1 means that the conditional distributions on the sets
TilVjl Π · - . Π T%lVj converge sufficiently fast to the unconditional one (more
precisely, exponentially fast with the growth of the length of the time interval
\U+\ — h\ between the "past" and the "future", admittedly, as long as this
interval does not become a quantity of order n2). By part b) of Theorem 4.1,
this convergence holds for "the overwhelming majority" of possible conditions

rii+iv}l+1n · • · η r*vit.
We will complete the proof of Theorem 4.1 in §4.1. It uses fairly standard

methods from the theory of Markov chains, hence in a number of places we
leave out the details. First, Property ML2 implies that a tuple of indices
0Ί, —,jk) including at least one zero can be neglected: these do not have an
influence on the truth of inequalities (4.5) and (4.6). By Property ML3 we
can apply Markov approximation to the remaining tuples of indices (not
containing zero). Property ML3 also allows us to immediately reduce
Theorem 4.1 to the case k = /+ 1, that is, when only the single set TXl+1Vjl+l

figures in formula (4.5). It is somewhat more complicated to reduce the
theorem to the case / = 1, but even this can be done (by successively getting
rid of the indices j \ , j 2 , .... ji-\ in (4.5)). We only indicate the first step of
this procedure:

ν (TilV}l Π · · · Π Τ1ιν}ιΙΤ^νίΜ)- v(TuVh Π . . . Π TWJ,) =

^vir'Vjjr^vj, η . . . π τίι+ψ]Μ) • ν (7 ·ν Λ η · · · η τιινΗιτ^νΗ+1) -

—v{T^VijTyh η .-· η τ'ινη).ν{τ^ν}, η . . . η τ*ινΗ).

Further, to the two conditional measures on the right-hand side (with "long"
conditions) we apply formula (4.1), and subsequently sum overy'i.

It remains to prove Theorem 4.1 for / = 1 and k = 2. We may assume
that L > 2, otherwise the theorem is trivial, since the set R* can be chosen to
be empty. For convenience of notation we put t0 = i\, tL = i2 (= i*), and
choose arbitrary /] < t2 < ... < tL-i such that to < t\, tL^\ < tL and
min{ii— to, t2 — ti, ..., tL — tL-\} ^ Don (that is, we fix L — \ intermediate
moments of time in the interval [t0, tz], with pairwise distances > Don). After
this we may write

(4.7) viTt-VjJT'WjJ- Σ v(Tt'>-*VjL_1/T'''ViL)x

x ^ η T'WJL) χ . . . χ ν {Tl'VuiT
uvh η . . . η T'!VJL).
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It is easily proved that the tuples j \ , ..., JL-I including at least one zero
contribute to the sum in (4.7) by at most e~"12. We apply Markov
approximation (Property ML3) to the remaining tuples, reducing (4.7) to the
sum

I L

(4-8) 2 Π ν ( ^ - ψ ] Μ / Τ ν Λ ) .
Λ

For convenience we introduce new, "probabilistic", notations. We put
41) = ν (T*1-1 Vj/ftVi) for 1 < / < L and 0 =ζ i, j < /. Then the matrices
ΠΟ = || π $ || are stochastic for any / and have a common stationary vector
Ρ - 11ΛII» Ρί = ν (^Ί)· F ° r 1 < / < £ we denote the product of the
matrices n^'-Il*2) · . . . ·Π<'> by Π»·') = || Jig1 ° II· Also, we denote by
Pf'l) the ί-th row of the matrix Π(1> L ). Then the sum (4.8) is nothing but
the entry n ^ } ^ of the matrix Π ( 1 · L ) . Hence the required inequality (4.5) (for
/ = 1, k — 2) can be written in the form

(4.9) Σ I « S ' L ) - Pj I = 2Var (M 1 · L ) , Ρ) < Δ,

where Var ( · , •) is the distance in variation between the two probability
vectors. Smallness of the left-hand side of (4.9) means rapid convergence to
equilibrium in the non-stationary Markov chain with transition matrix Π ( / \
/ = 1, 2, ..., L. The following technical lemma is the first step in proving (4.9).

Lemma 4.3. For any I = 1,2, ..., L and i e J we have

Var ( P i 1 0 , J>)< (1 - β0) Var (P< x ' 'Λ Ρ) + Δ',

where

We recall that R() denotes the subset of J introduced in ML4.

Proof of the lemma. For shortness of notation we put τ/ = tt— i/_j. First we
note that by Property ML4, for all i e R(xi),

(4.10) 2 π<4>>1-β 0 ?-" .

Further, it is easily proved that

where Σ / denotes the sum over those j e J such that π $ ' i } > p,·. It is easily
verified that the second and third terms in (4.11) do not exceed the quantity
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Δ'/6 from the lemma. The first term can be majorized by the sum

(4.12) S+ Σ
J i H C ) fl,)

Σ~ Σ (nii' ^ — Pk) («fe} — PoPi).

where Σ + , respectively Σ~, denote summation over those k for which
Jtii' '~x) > Λ» respectively, π&' '~υ < pk. By (4.10), the second term in (4.12)
does not exceed βο£~". Using (4.10) again, it is easily proved that the first
term in (4.12) does not exceed (1 - β 0 ) Va.r(Pi(iJ\ Ρ ) + Δ'/6. The lemma has
been proved.

Applying Lemma 4.3 / times in succession for fixed i, we obtain the
estimate

(4.13) & '

(here J I$ ' 0 > denote the entries of the identity (7x/)-matrix).
The form of the second term on the right-hand side of (4.13) allows us to

define the set R* in Theorem 4.1 as follows. For each / = 1, 2, ..., L we
choose a subset R*(l) C 3 of i's such that

(4.14)

and we put Λ. = Λ*(1) Π R*(2) Π - Π R*(L). Now, if i e i?., then by
(4.13) VariP/1·^, Ρ ) < Δ/2, that is, the inequality (4.9) (and hence also (4.5))
has been proved. Finally, using (4.14) we obtain

Σ Pi<en'2I1

which proves (4.6) in the case k = /+ 1.
Theorem 4.1 has been proved completely.

4.2. Construction of the initial lattice.
The Markov lattice is constructed in two steps. In the first step we turn the
pre-Markov partition, constructed in [8], into some "lattice construct" which
will be a rather rough approximation to the Markov lattice. We call the
object arrived at the initial lattice. In the second step, in §4.3, we give two
sucessive modifications of the initial lattice and obtain as the result the
Markov latttice. In §4.4 we will separately prove the regularity Property ML4.

We recall the basic properties of a pre-Markov partition for two-
dimensional hyperbolic billiards.

Let m > 0 and m\, ni2 > m b e integers. A pre-Markov partition ξ of the
space Μ for the map Tm is a covering of this space by finitely or countably
many curvilinear polygons (with C'-smooth sides) having the following
properties:
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1. Distinct polygons may intersect along a boundary only.
2. The sides of the polygons U e ξ lie on discontinuity curves or on

certain LUM and LSM. Correspondingly, the boundary δξ of the partition
splits up into three parts, 9ξ = 9Λξ \J 9"ξ U 9*ξ, where 9Λξ coincides with
jR_m,,m,, and 8"ξ (9'ξ) consists of finitely many LUM (LSM).

3. Tm(d%) s 9*ξ and r " m ( 9 ^ ) £ Q%
4. Any segment of an LUM (LSM) that is part of 9"ξ (9*ξ) ends either

on 9Λξ or strictly inside some LSM that is part of 9''ξ (some LUM that is
part of 9"ξ).

In fact, property 3 of boundary invariance is characteristic for a pre-
Markov partition. Once again we stress that the elements of a pre-Markov
partition are not parallelograms.

In [8] the partition ξ was constructed for some m > 1 and mx = m2 = m,
and m could be chosen arbitrarily large. We will assume that m is given.
Moreover, for each such m the pre-Markov partition depends only on a small
parameter ε, Ο < ε < εο(τη). In particular, the diameters of all elements
U e ξ = ξ(ε) do not exceed const(0>/i.

By property 4, each element U e ξ not adjacent to 9Λξ is a quadrangle.
By property 2 there are finitely many such elements. As in [8] we will call
them non-bordering, and the remaining elements bordering. The measure of the
union of all bordering elements does not exceed m const(08.

m

From the partition ξ = ξ(ε) we go over to the partition ξχ = χ/Τ^ζ. It

also has the properties 1—4, for nt\ — mi = 2m, and is, moreover, pre-
Markov for T, and not for Tm. It is easily seen that the measure of the
union of the bordering elements of ξι does not exceed m2 const(0e.

A basic step in constructing the initial lattice consists in the fact that in
each bordering element U ε ξι we draw the whole HLUM and the whole
HLSM stetched on U. By intersection we obtain the parallelogram W(U). We
extract from them the parallelograms satisfying the following three additional
conditions:

(Al) the polygon U and its images T'U for | i\ < m do not intersect
subdividing curves;

(A2) ν (W (U))/v (U) > 1 - e V
(A3) ρ (vw(U) (x)) > eb· and ρ (vw(u> {x)) > ε6* for every point

χ e W(U).
Here and in the sequel, b\, b%, ... denote positive constants determined by

the choice of the quantities ν and «o in §3. The values of these constants will
be specified below, while at present we reserve the right to choose them freely.

We define the initial lattice Μ& as the set of all parallelograms
W\, W2, ..·, Wi, I = Ι (ε), constructed above and satisfying the conditions
(A1)-(A3); we put Wo = M\\JWi. For each W e 9tz we denote by K{W)
the element of ξι from which the parellelogram W is obtained.
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Lemma 4.4. The initial lattice &z has the following properties:
(a) (structure) the parallelograms W e 3tz are ^-homogeneous, and are

formed by intersection of all the HLUM and all the HLSM stretched on K{W);
the quadrangles K(W) can intersect only along their boundaries;

b) (measure of the remainder) ν (Wo) < ε6";
c) (Markov property in one step) for any two parallelograms W, W" e 3te

the intersections TW Π W" and TK(W) Π K(W") either have measure 0 or
are regular (see below for its clarification);

d) (density) for each W e &, there are HLUM γ" (W) and HLSM
Τ (W), stretched on K(W), on which W has density at least 1-δι(ε), where
δι(ε) -> 0 as ε -*• 0;

e) (dimensions) for each W e dtzwe have diam W < const(0v£, but
Ρ (Τ (W)) > eb' and ρ (ψ {W)) > ε6-.

We recall [8] that if W, W" are two parallelograms, then the intersection
TW' Π W" is said to be regular if it is non-empty and can be represented in
the form [yw- (x), Ty'w> (Γ"1*)] for any point χ e TW Π W". Similarly, we
call the intersection TK(W') Π K(W") regular if it is a non-empty
quadrangle with j-faces on tK(W"), while K(W) Π Τ~ιΚ(ψ") must be a
quadrangle with w-faces on QK(W). Regularity of intersection characterizes
the elements of a Markov partition [8], hence we have called property c) the
Markov property.

We note that property c) does not imply regularity of the intersections
T"W Π W" for η > 2, since such an intersection may contain a point χ
such that T~kx e Wo for some 1 < k < n - 1 .

Proof of the lemma. Properties a), c), d), and e) follow directly from the
construction. We only note that property d) follows from (A2) and the
absolute continuity of addition on LUM and LSM. We also note that the
quadrangle K(W) does not always coincide with the carrier of the
parallelogram W, since the sides of the element K(W) e ξι can be
inhomogeneous LUM (LSM).

It remains to prove property b). The set WQ is the union of all bordering
elements U e ξι, all non-bordering elements U e ξι not satisfying (Al)—(A3),
and all complements U\ W(U) in those elements satisfying (Al) —(A3). An
estimate of the total measure of the bordering elements is given below. By
(A2), the complements U\ W(U) have total measure less than eb>.

We consider the elements U e ξι not satisfying (Al). The smallness of the
diameters of these elements and the construction of the subdividing curves
imply that their total measure does not exceed 2mCee

bt, where Ce = Ce(v, no)
and b4 =64(v) > 0.

We turn to condition (A2). By construction, the points χ e U\ W(U) have
short HLUM or HLSM, that is, πύη{Γ°"(χ), Γ°*(Χ)} < const ^ε. By
Theorem 3.10 the total measure of the elements not satisfying (A2) does not
exceed const (Q) ε6/2-6·, and it suffices now to put b\= Θ/4.
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Condition (A3) presents the greatest difficulties. It suffices to consider
the elements U e ξι that do not satisfy (A3) but do satisfy (A2). We
first estimate the measure of each of these. Let χ e W(U) be a point
such that ρ (YH'<U) {X)) < eb> (the other case, when ρ (ywm (z)) < ebs
is completely similar). Using the O-homogeneity of W(U) we obtain
Ρ (Vw(U) (*/)) < C4V» for any point y e W(U), whence (see (2.3))
I (?w«7)(y)) < const (<?) th>i* and therefore (see §3.1)

(4.15) ν (W (£/)) < const «?, ν, η0) ε**'*.

Below we will estimate the number Νε of all non-bordering elements
U e ξ]. Our idea is that their dimensions have order ε, while dim Μ = 2,
hence their number, JVe, must grow like ε~2 as ε -+ 0. For our purposes any
power-like estimate NE < ε-6', b5 > 0, would suffice.

To derive this estimate we have to complete our excursion into the
construction of the pre-Markov partition ξ (see [8], §3, §4, §6). We consider a
scattering billiard with finite horizon. The construction of ξ starts by
choosing two (CoB)-nets in certain subsets of M. If these nets are chosen to
be minimal, the number of their elements does not exceed const(08~ 2. The
requirement of minimality has no influence on the construction of ξ, hence we
may impose it here.

For each point of these nets, 7 segments of LUM and LSM of definite
shape were constructed, and their images under the action of T±m were
adjoined to these. For small ε each of the original segments intersects at most
mKo discontinuity curves in R-m,m. Hence the total number of all segments
constructed does not exceed mc'(Q)s~2. Precisely these constitute the
boundaries 9"ξ and Q% The boundary δξι consists of just the segments and
their images under the action of T\ \i\ ^ m. By similar arguments, their
number does not exceed m2c"(Q)e~2. Finally, the total number of non-
bordering elements U e ξι does not exceed msc'"(Q)e~s, since each of them is
uniquely determined by the set of four segments of the LUM and LSM
bounding it.

The case of billiards with infinite horizon (see [8], §4) or with focussing
boundary components (see [8], §6) is somewhat more complicated. We leave
out a detailed discussion of these cases, it being based on the same arguments.
In all cases we obtain the estimate Νε < e~b\ b5 > 0.

Together with (4.15), the last estimate shows that the total measure of the
elements U e ξι that do not satisfy (A3) but do satisfy (A2) does not exceed
ε6*/2-6*, and it suffices to put 62

 = 2(£s + l) and, finally, 63= min{64, b\, 1}.
Lemma 4.4 has been proved.

4.3. Transition from the initial lattice to the Markov lattice.
Here we give two successive modifications of the initial lattice 0tt, and obtain
as a result the Markov lattice
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The first modification consists in refining the elements W e 9tt to obtain
η-homogeneous parallelograms.

We consider all possible intersections

(4.i6) τ-ηψ,_η η.... η ™ Μ η wuπ Twit η . . . π rn^ i n

having non-zero measure (here ^ e &ε). We denote these by Vit

i = 1, 2, ..., /(ε, «), and we put V\> = M\UfVV We denote the
set {Vf}, 1 < i < /(ε, η), by Me>n, and call it a pre-Markov lattice
(with parameters ε, η). For the element V e 5?ε,η given by (4.16)
we put K(V) = T~nK{Wi_n) Π . . · Π TnK(W-n) , and also
V" (V) =_T~nyu (Wi_n) and Vs (V) = Z T W n ) . By Lemma 4.4, the
elements V̂  e &&>n are parallelograms, and K(V) is a quadrangle.

Lemma 4.5. 7%e pre-Markov lattice &z>n has the following properties:
a) (structure) the parallelograms V e &ε<η are η-homogeneous, and the

quadrangles K(V) can intersect only along their faces;

b) (measure of the remainder) ν (Vo) <^ 3mb>;
c) (Markov property in ±n steps) for any two parallelograms V', V" e &&>n

and any k, 1 < k < n, the intersections TkV' C\V" and TkK(V') Π K(V")
either have measure 0 or are regular;

d) (density) the canonical projection of any parallelogram V e &ε<η onto the

HLUM γ" (γ) (IiLSM ψ{Ϋ)) has density on this HLUM (HLSM) at

least 1 — δ2(ε), where 62(8) -* 0 as ε -»· 0;

e) (dimensions) for each V e 3ten we have diam V < const s/i, but
ρ ( Γ Τ (V)) > ε6» em/ ρ (7-ην· (V)) > ε6·.

Q

Lemma 4.5 follows directly from Lemma 4.4.
The second modification pursues its aim by guaranteeing the Markov

property in ±n steps.
For each V( e 01ε>η we define a subparallelogram Vt = {x e Vt : Tkx £ V

for all I k\ < iV} (that is, we remove from V,· those points which in ±N steps
have at least once "jumped out" of the pre-Markov lattice ^ ε , Λ ) . In the
sequel we consider only those parallelograms Vt C Vt for which the inequality

(4.17)

holds for b6 = b3/2.
For convenience of notation we enumerate all parallelograms Vt e 3t^n such

that (4.17) holds for i = 1, 2, ..., /(ε, η, iV) (of course, /(ε, η, tf) ^ /(ε, «)).
We denote_by ^ ε > π ΛΓ the set of parallelograms Vt for 1 < i < /(ε, η, JV), and
put Vo = ^

Lemma 4.6. !T«e system of sets 0tt/liN has the following properties:
a) (structure) the parallelograms V e Μζ>ΛιΝ are n-homogeneous;
b) (measure of the remainder) ν (Fo) <; Nnzb>;
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c) (Markov property in ±N steps) for any two parallelograms V, V" e 3ίζ<ηιΝ

and any k, 1 < k < N, the intersection TkV Π V" either has measure 0 or is
regular;

d) (dimensions) for each V e &ε>ηιΝ
 we have diam V =ζ const Λ/Ε.

Lemma 4.6 follows directly from Lemma 4.5.
We define the Markov lattice 9tnN as the system &ttn,N for eb' = c~'\

where 67 = min{i>2, 63, οβ}/2, and adjoin to it the set VQ.
The Properties ML1 and ML2 follow directly from Lemma 4.6.

For proving ML3 it suffices to note that the parallelogram

T-it-ii-xVji η . . . η fi-2-ii-iy.^ ( s e e ( 4 - 1)) i s j.jnscribed in Vh_it while the

parallelogram ft^i-iy^ η . . . Π T^~il-Wh is «-inscribed i n F i w i , and then

apply (3.7). The next subsection is devoted to the proof of the regularity
Property ML4.

4.4. Proof of the regularity property.
We begin with the following lemma.

Lemma 4.7 (on intersections). For all V', V" e Μζ<η and all integers
k > ko = Z>!(n-ln ε) we have v(7*V' Π V") > βιν(Κ')ν(ν"). Here
β! > 0 and D\ > 0 are constants determined by the choice of the quantities ν
and «0 in §3.

We stress that here the discussion is about the elements of a pre-Markov
(and not a Markov) lattice. We also note that the case V' = V" is not
excluded.

Proof. We fix a O-homogeneous parallelogram Uo of non-zero measure, and
in it a subparallelogram Uoo C Uo, also of non-zero measure, whose s- and
«-faces lie strictly inside the carrier K(Uo). For each fe ^ 1 we denote by
γΓ k , i > 1, all segments inside the HLUM ^ (F') whose images under the
action of Tk are stretched on Uo and, moreover, intersect the s-faces of the
interior parallelogram C/oo. By Lemma 4.5e) and Theorem 3.19,

(4.18) pdjy'i, k)/p (γ (V)) > Cl\ (Uo)
i

for all k > ki = n-[C(1)b2 In E] + n1(U0).

For each segment y-i,* we choose a subparallelogram Ϋ'ΙΛ CZ V' which is
canonically projected onto this segment. In the sequel we consider only those
i for which the projection of V\Λ onto γι, υ has on it density at least 1 — δ 3,
where "δ3 = 7 ^ / 2 . By (4.18) and Lemma 4.5d), the relative measure of the
union of these segments on the curve y" (V) for sufficiently small ε is not
less than δι(£/0)/2. Hence

(4.19) v(yFu)Mn>

for some 62(6/0) > 0, provided that ε is sufficiently small.
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Moreover, by Lemma 3.7 the density of the canonical projection onto the
HLUM TKy'u k, stretched on Uo, of the parallelograms TkVi, ι is at least
1 — G T 1 ^ . Hence these parallelograms are sufficiently "elongated", that is,
their j-faces almost reach the s-faces of Uo, and at the same time their w-faces
remain substantially away from the «-faces of the latter, since the curves
Γ^γί,κ intersect the j-faces of £/<χ>· We call this property regular position.

We consider a parallelogram V" under the conditions of Lemma 4.7. In a
completely similar way we can construct parallelograms VJ'j C V" for
I < — ki (that is, for negative iterations of T).

We study the intersection of the parallelograms Ui = TkVik and
UJ' = T'V'JJ. By the property of "regular position", the quadrangles K(Ui)
and K(UJ') intersect in a regular manner, that is, their intersection is bounded
by the «-faces of K(Ui) and the ί-faces of K(UJ'). This and Lemmas 4.4
and 4.5 imply that the intersection UJ Π UJ' of the parallelograms is also
regular, that is, it is non-empty and can be represented as [vu» (χ), γ* * (χ)] for

Uj Ui

an arbitrary point χ e Ui Π UJ! We note that this assertion would be not
true if we used elements of a Markov lattice instead of those of a pre-Markoy
lattice, since then the intersection Ui Π UJ' could be empty.

Remark 4.8. For each pair i, j the parallelogram Wi} = T~k(U,; Π UJ') is
i-inscribed in V', and the parallelogram T~l(Ui Π UJ') is «-inscribed in V",
and, moreover, Tk~'fVtj C V". In particular, for V' = V" the intersection
Tk~'Wij Π Wtj is non-empty and regular. We will use this property in §7.

Since UQ is 0-homogeneous, we have v(C// Π UJ') > δ3ν([// )v(C//'), where
63 = 63(1/0) > 0. Summation over all i, j and subsequent application
of (4.19) (and the similar estimate for parallelograms VJ'j) leads to
\(TkV' Π T'V") > f>iv(y>(F") for β! = δ 3 δ|. Since k > k\ and / < -kr

are arbitrary, we obtain Lemma 4.7 with k0 = 2Jfcj.
It remains to derive Property ML4. It follows from Lemmas 4.7 and 4.5b)

and relation (4.17) if we put β0 = βι/2 and Do = 3(1 + 2C(1)b2/b7).

§5. An estimate for the decay of correlations

Here we will derive Theorem 1.1, using the constructions of §3—§4. We
choose a sufficiently large N, put η = [VN], and consider the Markov lattice
3tn,N- Averaging the function F(x) from the conditions of Theorem 1.1 over
the elements of 3ln,N, we obtain a step-function F(x), generating a new
stationary process Xk = F(Tkx).

Using Properties MLl and ML2 and the fact that F is Holder continuous,
we can easily prove the estimate

(5.1) !<X



Statistical properties of two-dimensional hyperbolic billiards 81

for some γι(α) < 1 depending only on the index α in the Holder condition;
moreover, γι(α) -> 1 as α -»· 0 (here we use the fact that, since Ή is compact,
sup |F(x) | < oo).

We denote by ft the value of F(x) at the element Vt ε 3tniN. We have

<*0.xw> = 2 fifjv(vif]TNvj)= 2 /Λν(^Λ)ν^).
i,7=0 i, J=0

Applying Theorem 4.1 and using the fact that Ν > η 2 , we obtain

(5.2) <X0-Xir> = Σ /^ν(^)
i

for some 72 < 1 that does not depend on F. The first term on the right-hand
side of (5.2) vanishes, since (F{x)) = (F(x)) = 0. The estimates (5.1) and
(5.2) lead to Theorem 1.1. The restriction on the Holder index α for Fmust
be chosen such that γ! (α) < γ2.

The proof of the generalization of Theorem 1.1 to two distinct functions F
and G (inequality (1.4)) goes through unchanged.

Remark 5.1. The requirements on the function F (and G in (1.4)) can easily
be weakened: assume it to be "piecewise Holder", that is, to satisfy the
Holder condition (with index a) on finitely many_subdomains Mu ..., Μ ι in Μ
with piecewise smooth boundaries and such that Μ = U M,·. In this case the
proof of Theorem 1.1 requires only one addition in the derivation of (5.1):
the elements of the Markov lattice intersecting U tMt have total measure

In the case of scattering billiards with finite horizon, this remark
allows us to estimate the decay of correlations for functions of the form
F(x) = Φ(Τ~ηχ χ, Tx, .... Tmx), where Φ is a smooth function of several
variables. Such functions can have singularities on R-m,m o n ty· The function
z(x) is an example of such a function.

§6. The central limit theorem

Our proof of Theorem 1.2 uses Bernstein's classical method [3], as do the
similar proofs in [9], [23].

We must immediately note that by Theorem 1.1 the quantity σ 2 in (1.2) is
finite, and, moreover, if σ Φ 0, then DSJV = <^N> = o2N (1 + 0 (1)).
Therefore (1.3) is equivalent to

ζ

_ Sir < z\ v—L- [ e-utl*du

(in fact, it is precisely this relation that is called the central limit theorem,
see [9]).
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6.1 An estimate of the fourth moment.
We begin with the following lemma.

Lemma 6.1. <5^> < C (F) N\

For the proof we write

(6.1) <5*w>= 2 (xtixhxtlxtty

and estimate the quantity {Χί,Χί,Χί,Χ^), assuming that t\ < t2 ^ h < i4.
First we single out those terms in (6.1) for which | t4-U I < 3ΛΓ1/3. Their

number does not exceed ION2, hence it suffices to consider only the remaining
terms. These split into three groups:

a) 1t2 —1\ | > Nl/3. We put η = [y/tT—ti] and consider the Markov
lattice 3tn,N- As in §5, we replace F(x) by F(x) (and thus X{ by Xt); here

| (XtlXhXtJuy - <^ ( iX t !^ f^ t 4> | < C (F) Ne->.

We have

Using Theorem 4.1 (see also Remark 4.2) and the fact that \t2-t\\ 2s «2,
we obtain

(6.2) (XtiXuXuXu = S/iA/iAv (7^%·,) X

χ ν ( Γ - ' ^ Π T-l'Vu Π Γ- (ψ ί4) +

for some γ e (0, 1) that does not depend on F. But the first term on the
right-hand side of (6.2) vanishes, since {F(x)) = (F(x)) = 0; hence

b) \h — h\ >N1/3. We put η - [y/t3 - t2] and consider the Markov lattice
3tnjf. Acting as in the previous group, we write

iXtlxuxuxo = Σ fiJiJiA ν (τ-'ιν^ η τ-'ψύ/τ-'ψί3 η τ-Vo χ
ti, i,, it, it-0

Using Theorem 4.1 and the fact that \t3 — t2\ ^ n2, we obtain

(XtiXtiXtaXtty = Σ /φ/φν (Τ' V{, Π 2"''^ϋ ν (Γ"' ·^ (1

for some γ e (0, 1). This equality can be written as

+ ο (τ").
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and by Theorem 1.1,

| (XtlXtJtXuy | < C (F) e - * ^ - V 7 w 3 + Ο (γ").

c) |f4 — *43| 3* Nl/i. This can be treated similarly to case a).
Combining these estimates we arrive at the inequality in Lemma 6.1.

Remark. These estimates can be generalized to moments of arbitrary orders.
We consider the quantity (Xtl-Xtl ·. . . -Xt^) for t\ < t2 ^ ... «ξ tk and
order the differences i2—

fi> t3~h> ··•>** —**-ι· From these fc—1 differences
we extract the [(fc+ l)/2]-th (in order of increase), and denote it by d. Then
| (XtlXti. . . Xt^>\ <I C (F, /c) yd for some γ < 1 that does not depend on F
and k. This implies that | <S;v> I < C (F, k) N&M for any integer k > 1.

6.2. Approximation of the characteristic function.

The main instrument in the proof of limit theorems (going back to
S.N. Bernstein) consists in partitioning the whole time interval Δ = [1, Ν]
into subintervals

Δ = Δ; υ AI υ Δ; υ Δ2" υ · • · υ Δ; υ Δ; υ Δ0,

where the lengths of the intervals Δ',· are equal to L = [N% the lengths of the
intervals Δ" are equal to / = [Nb], and the length of the "remainder" Δο does
not exceed L + l. We choose a and b such that 1 > a > b > 0. Then the
intervals Δ',· of greatest length will be separated from each other by the shorter

Δ'/. We put Δ' - ΔΊ U Ai U ... U A'k and A" = A'{ \J A'i U ... U i t U Δο.
We have the expansion

The number of terms in Sft does not exceed 2NH, where

h = max{a, 1— a + b} < 1.

Hence, by Theorem 1.1, DS"N = <(SW)2> < C (F) Nh. Using Chebyshev's
inequality, we obtain

( 1 " Ί " η

v lx: = r 5jv ~> ε y ^ <(1Sjv)2>/(e2a2Ar) -^ 0
\ σ]/1ν J

as Ν -»• oo, that is, the quantity SN/\/DSN tends to zero in probability, and,
moreover, DSN ~ D5JV. Therefore (see, for example, [9], Lemma 18.4.1) the
limiting distributions of the quantities SN/^/DSN and 5JV/\/D^JV coincide. The
last quantity can be written in the form

1(6.3) - ^ » ( y v Z i ) e
N r=xt^-r

The lengths of the "separating" intervals Δ", 1 < r ^ fc, although
relatively small, do tend to infinity as Ν -»· oo, therefore in (6.3) the quantities
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•SP for distinct r must be weakly dependent. This allows us to approximate
the characteristic function (6.3), which is equal to

by the simpler expression

To this end we introduce the Markov lattice 0tn^ with « = [Nb/2].
We replace F(x) by its average F(X) over the elements of 3tniN and,
correspondingly, the process {X,} by Xt = F(T'x). The quantities S| r ) in (6.3)
are correspondingly replaced by &['. We consider the functions

and

Using Properties MLl and ML2 of a Markov lattice, we can easily prove
that φ (λ) = φ (λ) + ο (1) and φ 0 (λ) = φ 0 (λ) + ο (1) as Ν -> οο.

The function φ(λ) is piecewise constant, and can be written in the form

where, as in §5, the value of F{X) at an element Va e dtn_N is denoted by fa,
and / = I(n, N). We replace the unconditional probabilities figuring in this
formula by the conditional probabilities

τ-<να/Γ} η τ-*να)ν(η η τ-*ν«\.

Using Theorem 4.1 and the fact that \A"\ = / ^ n2, we obtain

k I k

for some γι € (0, 1) that does not depend on F. By further continuing
this "separation" of the intervals A'r and subsequently using the fact
that by Theorem 1.1 DSN ~ kDS$}\ we arrive at the estimate
φ (λ) = φ 0 (λ) + ο (1) as Ν -* οο. Hence φ (λ)= φ 0 (λ) + ο (1).
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The function φο(λ) is the characteristic function of the sum of k
independent random variables, each of which has the same distribution as

ξι, = sP/VkDSp. We consider the following rectangular array of
independent variables, which are identically distributed in each row:

SLjyr · · 'r

where LN = L and kN = k are defined above, and ξ ^ has the same
distribution as ξ^. It remains to verify that the sums ξ£* + ... + ξ ^ converge
in distribution to the standard normal law. For this it is necessary and
sufficient that the following analogue of the Lindeberg condition (see, for
example, [9]) holds:

(6.4) k \ z* dv {ξ£ <z>-;£-»-0

for any ε > 0.
By Lemma 6.1, {Si) < C(F)L2, hence <&> < C(F)Li/(kDS(l))2 < C'{F)lk\

This and Chebyshev's inequality imply that v{x : Ιξ̂ ,Ι > \z\} < C'(F)/(kz)2,
hence

k J
|ζ|>ε

and (6.4) holds.
Theorem 1.2 has been proved.

Remark 6.2. The proof of Theorem 6.1 can be carried over unchanged to the
case of "piecewise Holder" functions, which were described in §5 (see
Remark 5.1).

§7. Applications. Diffusion in deterministic systems

Here we derive Theorems 1.5 and 1.6 as direct consequences of
Theorem 1.2. Regrettably, the main difficulty lies in the verification of the
non-degeneracy of the corresponding limiting Gaussian distributions (the
condition σ Φ 0 in Theorem 1.2).

7.1. The distribution of the number of reflections.
We recall that Theorem 1.5 and 1.6 relate to scattering billiards with finite
horizon. In this case Theorem 1.2 is applicable to the function τ(χ) — (τ) (see
Remark 6.2). As a result we obtain

(7 1) {τ<*> + · · · + * ( Γ Λ - 1 * > - » « < τ > < | J L Ψ

where στ is defined by the general formula (1.2).
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For proving Theorem 1.5 we write v{Nt(x) < ζ) = ν{τ(χ) + ... +τ(Τ"χ) > ή
for n = [ζ]. This and (7.1) easily imply (1.5) for a\ = 1/{τ) and b\ = σ?/(τ)3.

It remains to prove that στ Φ 0. If this were not true, then by
Remark 1.4 the function τ(χ) would be homologous to a constant:

(7.2) τ (χ) = <τ> + G (Tx) - G (χ)

for some G e Ι*2(Μ, ν). Using general facts from ergodic theory, we will
show that (7.2) is impossible.

The billiard flow {5'} can be represented as a special flow, constructed on
the cross-section Μ from the automorphism t, and with "ceiling" function
z(x). Relation (7.2) allows us to redefine the cross-section (putting
Mo = {S~GMx : χ e Ai}) in such a way that the new representation of {S'}
as a special flow has constant "ceiling" ( = (τ)). It is easily seen that a
special flow with constant ceiling is not a AT-fiow, and is not even mixing.
However, our flow {S'} has the ΛΓ-property (see [13]). A contradiction.

7.2. Diffusion in the periodic Lorentz gas.
Theorem 6.1 is just a somewhat strengthened version of Theorem 2 in [23]. In
contrast to [23], here we allow break points of the boundary 8g and we have
weakened condition Β (see §2).

The proof of Theorem 6.1 does not differ from that in [23], hence we only
give its outline. First we go over from continuous time t to discrete time n,
the counter of the number of reflections. Then (1.6) reduces to

for some (other) non-degenerate Gaussian distribution g\ with zero mean;
here (q\n\ q$) denotes the position of the wandering point at the moment of
n-th reflection. In reducing (1.6) to (7.3) we have used Theorem 1.5.

For proving (7.3) we introduce a two-dimensional function (Δ)(χ), ^(x))
on the space Μ of the billiard with original domain Q (on the torus). In fact,
we put Δ,·(χ) = 4i(x) — q(x) for i = 1, 2, where q\(x), q2(x) are the
coordinates of the point χ in Q and q\(x), 4ι(χ) are the coordinates of the
point of first reflection in δ β » of the lift of the trajectory of χ to the
universal covering torus. In other words, A(x) = (Δι(χ), Δ2(χ)) is the vector
of displacement after one reflection. For i = 1, 2 we have

(7.4) q[n> (x) = qi (x) + A , (x) + A , (Tx) + . . . + Α . {Τ"-ΐχ).

The first term in (7.4) is uniformly bounded: | ?,-(x) I < 1, and Theorem 1.2
is applicable to the remaining sum, since Δ,- is a "piecewise Holder" function
(see Remarks 5.1 and 6.2) with zero mean (this follows from the relation
Δ,·(χ) = — Δ,·(7!χ)). Moreover, the two-dimensional analogue of Theorem 1.2
(see [23]) is applicable to the two-dimensional function A(x) = (Δι(χ), Δ2(χ));
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it gives (7.3) also, provided that the covariance matrix V = | |uy | | with
entries

"»v= Σ <Δϊ(χ)-Α}(Τηχ)>
71 = — o o

for 1 < i, j < 2 is non-singular.
We show that in fact V is non-singular. Suppose this is not so. Then

Remark 1.4 implies that some linear combination of the components Δι(χ) and
Δ2(χ) is homologous to zero: L(x) = αιΔι(χ) + θ2Δ2(χ) = G{Tx) — G{x) for
some G e L2{M, v). In this case (7.4) implies that

aiq[
n) (x) + atfP (x) = Go (x) + G (Tnx) - G (x),

where | Go(x) I < const. This means that the trajectory of a typical
point χ e Μ wanders in Q™, remaining "basically" inside some strip in
the plane. More precisely, for any ε > 0 there is an At such that
v{\aiq[nXx) + a2qY\x)\ > Αε} < ε for all η ^ 1. If axja2 is a rational
number, then the projection of the given strip onto a sufficiently large torus
with fundamental domain KMrN = {0 < χ < Af, 0 ^ y ^ N}, where Μ, Ν
are integers, forms an ^-neighbourhood of a periodic winding of this torus,
and covers on it a domain of relatively small area. But this contradicts the
ergodicity of the scattering billiard on this torus with reflectors δβοο Π ΚΜ Ν
(see also [23]).

If a\la2 is irrational, then the projection of our strip on any arbitrarily
large torus KMN (with integers Μ, Ν) fills it almost densely, and the previous
reasoning is no longer sufficient. This case was not sketched in [23], hence we
will dwell on it in more detail. Our constructions go back to [11], but are
more cumbersome, since we have to deal with discontinuous systems and non-
homogeneous hyperbolicity.

Lemma 7.1. There is a periodic point yo e Μ such that the sum
So = L(yo)+ ... + L(Tk~lyo) is non-zero. Here, k is the period of the point
yo (Tky0 = y0).

It is easily seen that for any periodic point y0 the sum So is equal to
aim\(yo) + a2m2(yo) for certain integers m\(yo), m2{yo). In our case a\/a2 is
irrational, hence it suffices to find a periodic point yQ for which nt\ or m2 is
non-zero.

We consider the scattering billiard on the torus with fundamental
domain K\2 (see above) and with reflectors 8<2oo Π -̂ 12· In this billiard we
denote by Q\2, M\2, and Ti2 the objects which are denoted by Q, M, and T,
respectively, in the original billiard. If 3te,n is the pre-Markov lattice of the
original billiard in Q, then we can shift it unchanged to the domain
{ 0 < x < l , l < 7 < 2 } , and obtain a pre-Markov lattice in M\2. Taking
an arbitrary parallelogram V € ^e>n and its image V under this shift, and
applying Remark 4.8 to it, we find a parallelogram V\ C V such that
T\2V\ C V and such that for some k the intersection TkVx Π V\ is regular.
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Then the point y0 = ... Π T~kVx Π Vx Π TkVx Π TlkVx Π ··• is periodic,
with period k, and m2(yo) is odd, that is, non-zero. The lemma has been
proved.

Lemma 7.2. Let y>o be a periodic point. For any &o > 0 there is a
O-homogeneous parallelogram Uo s yo such that y0 g QK(Uo) (that is, yo lies
strictly inside K(U0)) and v(U0)KK(U0)) > l - ε ο (that is, Uo is "sufficiently
dense").

The proof of this lemma is based on the same arguments as the similar
construction in §3.5, and we omit it.

We fix a point yo as in Lemma 7.1 and a parallelogram as in Lemma 7.2,
for some small εο· If Uo is sufficiently small, then TkUo is also O-homogeneous
and the intersection TkUo Π Uo is regular.

Now let G(x) ε L2(M, v) be homologous to the function L(x), that is,
IXx) = G(Tx) — G(x) almost everywhere in M. If G(x) were essentially
bounded, then, as in [11], we would immediately obtain a contradiction to
Lemma 7.1. Using only the measurability and integrability of G, we can
obtain the following:

Lemma 7.3. For any BX > 0 there is a O-homogeneous parallelogram Ux such
that v(Ux)/v(K(Ux)) > 1 — ει (that is, Ux is "sufficiently dense") and
v{x 6 Ux : | G(x)-g\ > EX}j\(U{) < &x for some g ε R (that is, G(x) can be
well approximated on U\ by the constant function G(x) = g).

We define the "quasiderived" map T\ : Ux -*• U\ as follows. For a point
χ e U\ we find on its trajectory the first image (for η > 0) in Uo, and then
the first image in U\. This will be Txx. The map T\ is not invertible on the
set of points χ ε U\ whose trajectories manage to return to U\ before the first
hit on C/o- By making U\ smaller we can always assume that Tx is invertible
and preserves the measure ν on [/).

We define two maps, Φ and Φι, on U\. Let χ ε U\, let Tn°x e Uo be the
first point of its trajectory in UQ, and let T"lx = Txx (nx > n0). We write
x = Yu(r">+fcx) Π ys(T"°x), and set Φχ = Γ~"°-*χ and Φ,χ = Γ"1""0*.
Then Φχ is a point which lies, with x, on a single HLUM, and Φ]Χ lies, with
Txx, on a single HLSM. Moreover, 7""+*(Φχ)

We put

S(x) = L(x)+ ...
and

5'(Φχ) = Ζ,(Φχ) + £,(Γ(Φχ))+ ...

Lemma 7.4. \S'(<bx)—S(x)\ ^ 5Ό—ε2, where ε2 is sufficiently small (more
precisely, ε2 -»· 0 as diam C/o -*• 0).

In fact, the trajectories of χ and Φχ are close during the first n0 iterations.
Further, the trajectories of Γ"°χ and Γ"0+*(Φχ) = χ are close during nx—n
iterations. The Holder continuity of L(x) on the continuity set of Τ implies
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that the corresponding sums, occurring in the sums S(x) and 5'(Φχ) of
interest to us, are close. There remain exactly k terms in 5'(Φχ) not
accounted for, coming from the images of Γπ°(Φχ) = T~kx. But these images
approximate the periodic orbit of JO, hence the corresponding sum of values of
L is close to So- The lemma has been proved.

Lemma 7.4 implies the inequality

( 7 . 5 ) ] G ( 7 » - G ( x ) \ + \G ( Φ ι * ) - G (Φχ) \ > S 0 - ε 2 .

It remains to prove that for the majority (with respect to the measure v) of
points χ € U\ their images Φχ and Φ\χ coincide in U\, and that the sets of
these images, {Φχ} and {Φ\χ}, have relatively large measure (> const v(U\)).
Then for such points ΦιΧ = 7Ί(Φχ), and together with (7.5) this leads to a
contradiction with the second estimate in Lemma 7.3.

We study the sets Φϋ\ and Φι£/ι· We use the notations introduced in the
definition of Φ and Φι. Since Τ"°χ e Uo, we find that γ 0 = IKHUJLT^X) is an
HLUM stretched on K(Uo)· Its inverse image T~"°y0 is a subsegment of the
HLUM Ύκ(υι)(.χ)· Since for typical χ the parallelogram U\ is dense, the image
T"°U\ has high density on γο· The map transforming T"°x to Tkx is a
contraction of the HLUM γ<> with coefficient close to Λι = Α\( y0) (this is the
coefficient of contraction of the LUM γ "(JO) at y0 under Γ""*). Since Uo and
U\ are O-homogeneous, the conditional measures of U\ and Φϋ\ on Τ~"*γο
are in the ratio 1 : (const Af 1). This leads to the required estimate:
ν(ΦΪ7ι) > const Ai~lv(Ui). Similarly, ν(Φι£/ι) ^ const A2*v(U{), where
Λ2 = Α%(γο) is the coefficient of contraction of the LSM ys(yo) at JO
under Tk.

Theorem 1.6 has been proved.

Appendix 1

The proofs of Theorem 3.6 and Lemma 3.7 rest on an intricate and rather
difficult study of the singularities of the map T. We present this study here in
several stages, by considering in succession the various classes of billiards for
which Theorems 1.1 and 1.2 were formulated above.

Al.l. Preparatory estimates for scattering billiards.
The quantities appearing in Definition 3.1 and Lemma 3.7 are strongly related
to one another, therefore it is convenient to estimate them simultaneously.
Further, the duality principle (replace Γ by T~l and, correspondingly, ys by
γ", Β* by Β", and so on, for more detail see [4]) allows us to reduce
Theorem 3.6 and Lemma 3.7 to the single proposition:

Proposition Al.l. Let x, y be points on a single η-homogeneous LSM. Then
a) \Bu(x)/Bu(y) -1 \ < Cal;
b) | B' (x)/Bs (y) - 1 | < Calf;
c) ]/"(*, y) - 1 \<Can

0-
d) | AS

H (xyM (y) - 1 | < CaH for any k > 1.



90 L.A. Bunimovich, Ya.G. Sinai, and N.I. Chernov

Here Ju(x, y) is the Jacobian of the canonical isomorphism of the LUM
γ "(χ) and γ "(y) with respect to the measure />(·) (at x), and Λ*(Λ:) is the local
coefficient of contraction of the LSM y\x) at χ under the action of Tk.

Remark. In Proposition Al.l, and in our propositions below, the symbol C
denotes various constant quantities, determined by the choice of «o and ν in
Definition 3.3 (and, of course, depending on the billiard domain Q), whose
precise values are not of interest to us.

We recall (§2) that the lengths of all LUM and LSM, and the coefficients
of expansion and contraction, are determined, unless otherwise stated, with
respect to the measure p.

Proof. We begin by reducing assertions c) and d) to assertions a) and b).
The general properties of Τ (§2) imply that A%(x) = λ\χ)·... • Χ\Τ*~λχ),
where λ*(χ) = 1 + x(x)BL(Tx) and Bt(x) = R(Tx) + Bs(Tx). Hence,

) ϋ

Similarly, the coefficient of expansion of the LUM yu(x) at χ under the action
of Tk, fc ̂  0, can be expressed by the formula Au

k(x) = λ"(χ) •... λ^Γ*" 1 *) ,
where λ"(χ) = 1 + τ(χ)Β"(χ). As was proved in [2], [22], [27],

α , Λ , r I i , , ι· ΤΤ l+-t(Tix)BU(Tix)
(A1.2) 7 (x, u) = Inn I I —•—*—^ 1—̂ - .

From (Al.l) and (A1.2) it is clear that for proving c) and d) it suffices to
estimate the nearness of the quantities BUlS(T'x) and BUlS(T'y), as well as of
the quantities τ(Γ'χ) and x(T'y). More precisely, c) and d) follow from a) and
b) and the single additional lemma:

Lemma A1.2. Let x, y be points on a single η-homogeneous LSM or LUM.
Then

| ( ) ϋ ) | U ( χ

i+r(y)Bu(y)

For the time being we leave aside the proof of this lemma (it is given in
§A1.2, §A1.3), and turn to assertions a) and b). To compare two continued
fractions (BUlS(x) and Bu\y), see §2) there is a method which we will
demonstrate by the examples of the continued fractions BL(x) and BL{y).

We recall (§2) that BL(x) = R(x) + Bs(x) = R(x) + (x(x) + Bt(Tx))~\
Hence

Bi (x) — Bt (V) = R (x) — R{y) + Bs (x) Bs (y) ((Bs (y))'1 - (Β* (χ))-*-) =
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Repeating this expansion k times in succession, we obtain

(A1.3) Bt(x)—BL(y) = SfAity — S (Δτ)4 + (AB)K,
i=0 i = 0

where we have put

*χ) - 51 (T*y)).
Κ

A similar expansion holds for B"(x)—B"(y), but it is constructed from k
reflections "in the past" (that is, from the points T~lx, T~2x, ..., T~kx). We
note that if k =ς n, then the points T~kx and T~ky lie on a single HLSM.

Remark 1. Since Τ is hyperbolic (see §2.2), | AY(x) \ > A({/m|>] for all Λ; e Μ
and i > 1. Moreover, the lengths of η-homogeneous LUM and LSM do not
exceed CXg, where λο = A6"1/m°.

Remark 2. For any χ e Μ and i ̂  1 we have Β*(χ)Λ.%χ) ̂  Β_(Τχ), which
can easily be verified using the representation of B\x) as a continued fraction
(2.5).

The expansion (A1.3) and these remarks reduce assertions a) and b) to
Lemma A 1.2 and the following two:

Lemma A1.3. If the points x, y lie on a single η-homogeneous LSM or LUM,
then

\R(x)-R(y)\
^

Lemma A1.4. If the points x, y lie on a single HLUM or HLSM, then

In Lemmas A 1.2—A 1.4 there figure two points x, y on a single LUM or
LSM. In the sequel we denote by γ 0 the part of this LUM or LSM bounded
by the points x, y.

It remains to prove Lemmas A1.2 —A1.4. We first give their proofs for
relatively simple billiards, and then for more complicated ones. Here, by
simple we mean billiards whose boundary 9β does not have break points (this
is possible when β is a torus with several cut-out convex "holes" having a
smooth boundary). In this case singularities of Τ arise only for tangential
reflections, that is, on the set 5Ό U S-i (since Vo is empty). The break points
of dQ will add another kind of singularity: on the set Vo U V-i-
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A1.2. Scattering billiards without break points on the boundary.
In this case the time of free movement is bounded away from zero:
τ(χ) > τ 0 > 0. Hence the inequality in Lemma A1.2 reduces to the simpler

(A1.4) | τ (χ) - τ (y) | < Can

0.

For proving the latter we use the obvious relation

(A1.5) | τ (χ) - τ (y) | < | r (x) - r (y) | + | r (Tx) - r (Ty) |.

The quantity on the right-hand side of (A 1.5) does not exceed
C(\/p(7o) + V/PC^O))»

 s e e (2-3) (here we must pay attention to the fact that if
Yo is an LUM and η = 0, then its image Tyo lies entirely on one regular
component of dQ, in correspondence with the definition of HLUM, see §3.3).
Now Lemma A1.2 follows from the hyperbolicity of Τ (see (2.2)).

The restriction τ_(χ) > το > 0 implies that

(A1.6) \BU (x) - R (x) | < C.

The function R(x) = 2x(x)/cos φ(χ) is continuously differentiable on M, and
is infinite on So- Our subdividing segments (§3) are constructed so that R(x)
does not undergo too large oscillations inside the strips between these segments
(the latter will be called homogeneity strips for short). Since γ 0 is homogeneous,
it lies entirely in one homogeneity strip, for example, with index k (that is, in
the strip given by the inequalities (k+ l )~ v < π/2— |φ | < k~v). It is then
easily seen that cos φ(χ) « cos φ(^) « Ck~", hence R(x) α R(y) « Ckv.
This and (A 1.6) imply Lemma 1.4 and also, by (2.4),

where C\ and Ci depend only on the domain Q. The last inequality implies that
φ(χ)—φ(γ)\ < Ck1-V, and hence

Ρ (To) ~ C | r (x) - r (y) \ cos φ (χ) ^ C | φ (χ) - φ (y) | / r\

From this we can easily derive two estimates which we will need in the sequel:

(ΑΙ.8) | r ( :

(ΑΙ.9) (ρ(7 ο))'

Now we prove Lemma A 1.3 as follows:

R(x)-R(y)

Β (χ)

φ (χ)— φ(»)

cos φ(χ) <c(p(yo))U2v

and, finally, we use the hyperbolicity of T.
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We note that inequalities (A 1.8) and (A 1.9) are true also outside a
neighbourhood of So, that is, for any HLUM (HLSM) γ 0 with end-points at χ
and y. In the following subsection we prove that they hold for scattering
billiards with break points on the boundary.

A1.3. Scattering billiards with break points on the boundary.
We immediately note that in this case the derivation of Lemmas A 1.2—A 1.4 is
substantially more complicated. In essence, up to now nobody has undertaken
the analysis of the singularities of Τ on the set Vo \J V-\, since the authors
of studies on the ergodic properties of billiards have usually excluded those
cases from consideration ([13], [5], [22], [27]).

Fortunately, in these cases there is one circumstance which essentially
simplifies the matter:

Lemma A1.5. For any scattering billiard satisfying condition A there are an
εο> 0 and a cpo > 0 such that in any series of successive reflections the
trajectories of the billiard starting in an EQ-neighbourhood of a break point of the
boundary dQ there can be only one "almost tangential" reflection, in which the
angle of reflection > π/2—φο· If there is such a reflection, then it is extremal
{first or last) in the series under consideration, that is, before or after it the
length of a free path > &o.

This lemma means that "double trouble", when cos φ(χ) and τ±(χ) are
simultaneously close to zero, does not happen often: at most once in every
series of reflections starting in a small neighbourhood of a "billiard corner".

Fig. 7

Proof of Lemma A 1.5. The boundary dQ has finitely many break points,
hence it suffices to consider one of these only. In this form the lemma
becomes a geometrical problem of almost High School level. The key to its
solution is contained in Fig. 7. In this figure the components Γι and Γ2 of
dQ form an angle ψ at the vertex O. If εο is sufficiently small and the
trajectory is "almost" tangent to Γι at the first reflection, then the next
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reflection "rotates" its velocity vector as indicated in the figure; the index of
the vector corresponds to the number of the reflection. According to this
scheme, the second "almost" tangential reflection can occur either from Γι, if
ψ « π/η (η an integer), or from Γ2, if ψ « 2π/(2η+ 1) (η an integer). In the
figure we have drawn the second possibility. Because of the bending of the
boundaries Γ] and Γ2, the actual positions of the velocity vectors differ
somewhat from those drawn in the figure: they must be rotated around Ο in
directions indicated by the short arrows over certain, although small, positive
angles. These rotations also exclude the possibility of a repeated "almost"
tangential reflection, since the last velocity vector will point to the strict
interior of Q, which proves the lemma.

Remark A 1.6. We recall that in the definition of the subdividing curves 2 in
§3, to the subdividing segments 2Q certain of their images were adjoined.
Here we determine these images precisely: 2\ = {T'z : ζ e Θο and if i > 0,
then t(z) < εο, x(Tz) < εο, ..., τ(Τ~λζ) < εο, while if i < 0, then
τ(Τ'ζ) =ζ εο, ..·, τ(Γ- ! ζ) < εο}.

Remark. The quantities εο and φ 0 depend only on the domain Q, hence in the
sequel all constants denoted by C depend also on εο and φ 0 .

We turn to the proof of Lemmas A 1.2—A 1.4 in the case under
consideration. If τ ± (χ) > εο and z±(y) > εο, then the proof can be given as
in §A1.2. Suppose that at least one of the quantities Τ±(Λ;) or z±(y) does not
exceed εο, that is, we are in a small neighbourhood of a "billiard corner".
Then there is an io > 0 such that τ_(7"""'°χ) > εο and τ_(Γ"">) > εο, but
for all 0 < ι < io either x_(r~'x) < εο or z-(T~'y) < εο. We call the series
of reflections with indices from — ib to 0 a series of corner reflections. If there
is no "almost" tangential reflection in this series, that is, \φ(Τ'χ)\ < π/2 — φ 0

for all — io < i ί5 0, then Β "(χ) < C < 00. This follows easily from the
estimate

(A1.10) Bu (x) ^R(x)+R (T^x) + . . . +

and the restriction to ^ m0 (see Remark 2.1). The rest of the proof of these
two assertions is as in §A1.2.

Suppose now that there is one "almost" tangential reflection in the series of
corner reflections under consideration, that is \<p(TJx)\ ^π/2 — φο for some
je[—io,O\. By Lemma A 1.5 this reflection is extremal, that is, either j = — to
or j = 0. We note that in both cases the point TJx belongs to a
neighbourhood of So Γ) Vo, that is, it is near a vertex of one of the rectangles
making up the phase space M.
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Using (A 1.10) it is easily proved that an analogue of (A 1.6) holds at
TJx: \Bu(TJx)-R(Tx)\ =ζ C. This and (2.4) imply that

r (Γ'ΐ) - r (T'y)

We note that in this way the property (A1.7) holds for all HLUM and HLSM
in some neighbourhood of So (in §2 we noted that in a neighbourhood of Vo

it is sometimes violated). Below we consider the cases j = 0 andy = — io
separately.

The case,/ =0 is relatively simple. By Lemma A 1.5, τ(χ) > EQ and
τ(;0 > εο, and by (A1.10) relation (A1.6) holds, and hence (A1.8) and (A1.9)
hold. Hence Lemmas A1.2 —A1.4 can be proved as in §A1.2.

The case j = —io requires a more refined analysis. The fact is that in this
case the quantity Bu(x) can also become arbitrarily large, but not because of a
large R(x), but because of a large J?(r~'°A:) and small "transition times"
τ(Τ~*·χ), ..., χ{Τ~λχ). Pictorially speaking, the LUM yu(T~iox) does not
manage to "become straightened" by an "almost" tangential reflection at
T~'"x, hence its curvature at χ remains large. In this case the proof of
Lemmas A 1.2—A 1.4 is based on a number of technical estimates.

First, the quantities R(x), ..., R(T~io+1x) in (A1.10) are uniformly bounded
above, and since io < mo we obtain a bound on B"(x):

(Al.l 1) Bu (x) < Bu (T-t'x) + C

We now prove the inequality

2) \χ(Γχ) — "r(r*/)

for all i = —io, —io+ 1, ···> — 1, and also for i = 0 provided that x(y) < εο·
We consider the various cases. Let i = — io. Then the curve Γ'γο lies in a

neighbourhood of So, that is, in one of the homogeneity strips, and the
estimates (A 1.6) — (A1.9) hold for the points χ and y. In this case the estimate
(A 1.12) can be easily derived using (A 1.5).

Let i > — io- Then the curves T'yo and Γ ' + 1 γο lie outside a
neighbourhood of So, and, by the same token, p(T'y0) > C\ Γ ( Γ ' Χ ) - Γ ( 7 > ) |
andXr'+ 1Yo) > C\r(Ti+1x)-r(Ti+ly)\. By (A 1.5) we obtain

(A1.13) | τ (Γχ) - τ (Py) | < C (ρ (Γ*γ0) + ρ (T^y0)).

If Yo is an LSM, then (A 1.12) is immediately obtained from (A 1.13). If γο
is an LUM, then in addition we have to estimate the coefficient of expansion
Aui(z) at each point ζ of the LUM Γ~*"γ0 under the action of T1, where
/ = 1, 2, ..., io+ 1. We show that

(A1.14) Λ? ( z ) < C (1 + (τ (ζ) + . . . + τ (Ρ-*ζ)) Bu (z)).
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This means that (up to a factor C) Δ%ζ) is determined only by the principal
("almost" tangential) reflection at ζ and the time of movement on the LUM
from ζ to T!z.

For / = 1 formula (A 1.14) is obvious. We prove it for 1 = 2:

(1 -f- τ (ζ) Bu (ζ)) (1 + τ (Tz) Bu (Tz)) =

= (1 + (τ (ζ) + τ (Tz)) Bu (ζ) + R (Γζ) τ (Τζ) (1 + τ (ζ) Bu (ζ)) <

< (1 + R (Τζ) τ (Τζ)) (1 + (τ (ζ) + τ (Τζ)) Β" (ζ)).

For / > 3 the estimate (A 1.14) can be proved by induction, taking into

account the restriction / < nto-

Remark. In the proof of (A 1.14) and in the sequel, the fact that if γ 0 is an

LUM, then its inverse image Τ~**γο m u s t belong entirely to one of the

homogeneity strips, is essential for us. Precisely for this we introduced in §3

the additional subdividing curves 2\.
The estimate (A1.14) just proved implies that in (A1.13) we have

P(X%) < p(Ti+1y0) ^ €Β^χ(Τ-^ο)ρ(Τ-^ο), where Β^Χ(Τ~%) denotes
the maximum of B" on the curve Τ '"γο- Finally, this and (A1.9) imply
(A1.12).

Now we prove Lemmas A1.2—A1.4. We begin with the last one. For
io = 0 it follows from (A 1.6). For to = 1 we have

(X) = R (χ) + (τ (Τ-ίχ) 4-- (Bu (7--»x))-i)-i

Bu (y) Β (y) + (τ (7-^) -|· (B

< C (1 + Ι τ (Γ-ΐχ) - τ (T^y) | Bu (T~*y))

and we subsequently use the already proved formulae (Al.ll) and (A 1.12).
For io > 2 the lemma can be proved by induction.

Lemma A1.3 for i<> = 0 can be proved as in §A1.2, and for
?o ^ 1 the curve γ ο lies outside a neighbourhood of 5Ό, whence
\R(x)-R(y)\ < α\Γ(χ)-Γ(γ)\ + \φ)-φ(γ)\) < C^o) (see (2.3)).

The proof of Lemma A1.2 for x(y) > εο goes through as in §A1.2. For
^(y) < εο it suffices to apply in succession (A1.12) (for i = 0), (Al.ll), and
(A1.9):

| τ (x) - τ(y) | ϋ"(χ) < C (ρ(Τ~'^)^ Bu (Τ~'ι°χ) <C(ρ(T'

Thus, Assertions 3.6 and 3.7 have been proved for all scattering billiards.

A1.4. Semiscattering billiards.

Our next tactic is to reduce the case of semiscattering and focussing billiards
to that of scattering billiards, which has already been dealt with. This
operation is easiest for semiscattering billiards. In this case the continued
fractions BUrS(x) have vanishing even terms (R(T'x) = 0) at the points
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corresponding to reflections in the neutral boundary components. The
obvious relation

97

= %i -f τ ί
ί + 1

allows us to "contract" the fractions Bu*(x), by excluding all zero terms.
After this, the odd terms of the "contracted" fractions will correspond to
intervals of movement between successive reflections in the scattering boundary
components (the reflections in the neutral components are simply discarded).

Geometrically this means that instead of reflection of an LUM (LSM) in a
neutral component Γο, we reflect the whole domain Q with respect to the
component Γο> while the LUM (LSM) continues to move inside the reflected
domain as if the wall Γο were transparent (Fig. 8). Here, the geometrical
characteristics of the initial LUM (LSM), that is, its curvature and length at
each moment of time, will be the same as for this "double", drawn through
Γο without reflection. Therefore the properties of LUM and LSM in
semiscattering billiards are the same as for their doubles, moving according to
the laws of a scattering billiard. All computations made in §§A 1.1— A 1.3 are
exactly applicable to these doubles, hence all results can be carried through
unchanged.

Fig. 8

The idea of doubles of LUM and LSM will also be used in the following
subsection.

A1.5. Hyperbolic billiards with focussing boundary components.
First of all we note that in this case the continued fractions BU/S(x) are
alternating, and hence many computations from §§A1.1— A 1.3 need to be
made more precise. Moreover, the derived map Τ is defined differently from
the case of scattering billiards (see §2), and we can "neutralize" this distinction
by using the idea of doubles of LUM and LSM from the previous subsection.
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First we modify the continued fractions BU/S(x). Suppose that the
trajectory of the billiard experiences η successive reflections in a single
focussing component Γι C 9β· We call such a series of reflections a Φ-series.
Since Γι is an arc of a circle, all angles of reflection are equal (=φ), and the
intervals of movement between reflections are constant (τ = 2R] cos φ, where
Λι, here and below, denotes the radius of the arc Γι). The corresponding
parts of the continued fraction BUlS(x) allow the following "contraction":

(A1.15) 4 , 1 2

τ ' 1 τ ' 1~Γ

τ + 4 i ' - (n - 1) τ + γ

η times

Here, if η = 1, then on the right-hand side we have the same continued
fraction — * + ... as on the left. Inequality (A 1.15) can be easily verified by
induction.

The transformed fraction Bu(x), in which all Φ-series are "contracted" by
using (A1.15), corresponds to the motion of an LUM-double by the following
laws. Upon approaching the successively focussing component Γ] of radius
Ri, it reflects in a (focussing) arc of doubled radius 27? i, then moves
backwards (!) during time (η—1)τ (that is, each time the amount of time
which the original LUM spends between the first and the next reflection in
Γ]), then again reflects in the (focussing) arc of radius 2Λ1( and further moves
as the original LUM. We see that the complete Φ-series is replaced by two
reflections. As distinct from the previous subsection, our doubles have
geometrical characteristics (curvature and length) that are identical with those
of the original LUM and LSM (the "originals"), not at all moments of time,
but only at the moments of reflection, from which the derived map Τ is
constructed; clearly, this is sufficient for our purposes.

In connection with the construction of doubles of LUM and LSM, it is
convenient to introduce a new derived map, f, constructed from all reflections
of these doubles. More precisely, f is the derived map of the billiard flow
acting in the set Μ = Μ \J M_, where M- combines all points of first
reflection in Φ-series (in the coordinates r, φ, the set U- can be regarded
as a set of parallelograms which are symmetric to those depicted in
Fig. 3). Although the counter of the number of reflections changes in this
construction, it does so by at most a factor 2: to the point T"x will
correspond fN^x for some N(ri) e [n, 2n]; hence we have completely proved
Theorem 3.6 and Lemma 3.7 for f.

For each χ e M_ we introduce the notations f(x), B"'s(x), A(x), 7u<J(x), and
\UJ!(x), analogous to the corresponding notations for χ e M. The properties
of these quantities are different on the three parts of the phase space M:
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1. If x e M+, then all properties are the same as in the case of scattering
billiards.

2. If χ e M _ \ M _ (a first reflection in a Φ-series), then
R(x) = -(/?! cos cp(x))"1 < 0, t(x) = -2(n-l)Ri cos φ(χ) < 0 (where η is
the number of reflections in the Φ-series), and λ"(χ) = 1 + τ(χ)Β"(χ) > 1.

3. If χ e M- (a last reflection in Φ-series), then
i?(x) = —(J?! cos cp(x))"1 < 0, f(x) = τ(χ) > 0, and B"(x) is given by
formula (A1.15), in which τ = 2/?i cos φ, that is, B"(x) < 0. By the
defocussing condition (§2), f (x) = τΦ(χ) + fP{x), where f φ(χ) and τρ(χ) are the
intervals of movement up to and after the focussing point, and τΦ(χ) < fP(x).
We call the difference r^x) = τ>(χ) — τΦ(χ) the effective time interval between
reflections at the points χ e Μ and fx. It is easily verified that

(A1.16) λ" (χ) = | 1 + τ (χ) S u (x)\ = i + rE (χ) | 8» (χ) | > 1.

Similar formulae hold for LSM. We see that the expressions for \UlS(x)
differ from those of scattering billiards only by the appearance of an absolute
value in one of the three cases. Therefore all computations from §A1.1 remain
valid also in the present situation, and in the expressions for λ"1* and B"A the
symbol for absolute value appears. It remains to discuss in more detail the
two remarks given before Lemma A 1.3, but first we prove two useful
assertions.

Lemma A1.7. The lengths of effective time intervals are bounded away from
zero: f^x) ^ f0 > 0 for all χ € M_.

In essence, this is a purely geometrical assertion. To prove it we assume
that Tg(Xi) -* 0 for certain χ,· ε M_. If sup | φ(χ,) I = π/2, then some
subsequence of points xik converges to the tangent drawn at an end-point of
one of the focussing components. By condition F2 (§2), "c(xik) -»· const > 0,
while τΦ(χίλ) -»• 0; we have obtained a contradiction. If, on the other hand,
sup | φ(χ,-) | < π/2, then, using the compactness of Μ_, we can extract a
convergent subsequence xik -»• Xo· Then | φ(χο) I < π/2, and, moreover,
τΦ(χ0) = τρ(χο)· This is only possible if x0 is a periodic point whose
trajectory is reflected in only one focussing component; this contradicts
condition F3. The lemma has been proved.

Remark A 1.8. f(x) > T\{Q) > 0 for all points χ e M+ such that fx € M_;
moreover, | f(x) | ^ T2(Q) > 0 for all χ e M_ \ΛΓ_.

Assertions A 1.7 and A 1.8 imply the first remark (on hyperbolicity) given
before Lemma A 1.3 in §A1.1. To prove the second we again have to
represent Bs(x) as a continued fraction (2.5) and consider the three cases
outlined above. In the second and third cases the required estimate follows
from the additional relation 2B\x) < \R(x)\ = 2(/?i cos φ ( χ ) ) - 1 for
χ e M-, which, in turn, follows from the defocussing condition (§2).
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We turn to the proof of Lemmas A 1.2—A 1.4 for the billiards considered
here. For x, y e M+ and fx, fy e M+, it can be taken over from
§§A1.2-A1.3 unchanged. If x, y e M+ but fx, fy e M_, only in the proof
of Lemma A 1.2 does there arise a new ingredient: it is necessary to estimate
the difference | r(fx) — r(fy)\. For this we use inequality (2.6), from which we
find that \r(fx)-r(fy) | < y/p{fy>), as in §§A1.2-A1.3.

Now let x, y e A/_ U M_. Then by (A1.6) and Lemma A1.7 the
inequality in Lemma A 1.2 can be written in the simpler form

(A1.17) | τ (χ) - τ (y) | < Cctf,

as already done in §A1.2.
If x, y e M_ (that is, χ is the last reflection in a Φ-series), then (A1.17)

can be proved using (A1.5) and (2.6). If, on the other hand, χ e M- \M_
(that is, χ is the first reflection in a Φ-series), then f(x) = —2n(x)Ri cos φ(χ)
and r(y) = —2n(y)R\ cos <p(y), where n(x) denotes the number of reflections
following the point χ in the Φ-series. Clearly, n(x) = n(y) < C/cos φ(χ), and
therefore (A 1.17) follows from (2.7).

To prove Lemmas A1.3 and 1.4 we have to estimate A(x). As in the case
of scattering billiards, it is infinite on the set So (for cos φ(χ) = 0). However,
in this case it is not necessary to partition a neighbourhood of So into
homogeneity strips, since it has already been partitioned in a necessary manner
by the discontinuity curves (see §2) (these curves correspond approximately to
subdividing segments with exponent ν = 1).

On the other hand, for χ e Μ_ U Af_ we only have to prove the single
additional estimate

(A1.18) | S " ( x ) \> C/cos φ (χ)

for some C > 0, which is obvious for scattering billiards.
If χ e Μ _ (the last reflection in a Φ-series), then by the defocussing

condition |2?"(x)| ^ (Ri cos φί*))""1. If, however, χ e Μ_\Λ/_ (the first
reflection in a Φ-series), then by (A1.15)

Β (χ)
i?i cos φ (χ) Ί (^-ΐχ) -ΐ- tfiu(T~1x))~l

By the defocussing condition, f(f~1x) > 2R\ cos φ(χ) and
6u{f~lx) > r(f~lx), hence |2?"(x)| can only be close to zero if
f~\x) e M-, and then t(f~lx) » 2/?i cos φ(χ) and τΡ{Τ~ιχ) » τΦ(Τ~ιχ).
In view of the condition F2 (§2) this cannot hold, which proves (A 1.18).

The estimates (A1.18) and (2.7) imply that

ι - R (y)
cos φ(y)

which proves Lemma A 1.3. It also implies Lemma A 1.4, which ends the
analysis of billiards with focussing components.



Statistical properties of two-dimensional hyperbolic billiards 101

Appendix 2

Basically, our proof of Theorem 3.8 follows the scheme for constructing
LUM and LSM in [13].

For an arbitrary ε > 0 and subset A C A/ we denote by ϋε(Α) the
neighbourhood of A formed by all 1-increasing curves of length < ε
intersecting A.

For scattering billiards with finite horizon the number of discontinuity
curves in R-iti is finite, and hence v(C/e(/?_i(i)) =ζ const ε. When there
appear singular points of infinite horizon and sliding types, an analysis of the
structure of the discontinuity curves in neighbourhoods of these points ([8], see
§2) allows us to obtain the estimate ν(£/ε(7?_ι,ι)) < const ε4/5.

It is also not difficult to show that ν(£/ε(0)) «5 const ε

2ν/0 + 4 ν ). ΐ η fact,
the construction of the subdividing segments £&0 easily implies the required
estimate for v(UB(@o)). To extend it to the additional subdividing curves 3)\,
we consider an arbitrary 1-increasing curve γ of length < ε intersecting 3>\.
Then for some \i\ < wo the curve T'y intersects 2Q. By Lemma A1.5, for
χ ε γ we have B"(x) ^const(g), and hence p(Tuy) «5 const ε. This then
implies the required estimate.

Further, we choose p0 > 0, put επ = ρ^^ηΙηιΛ for all η ^ 0, and note
that

oo

(A2.1) 2 ν (UZi (R_ltl U i£)) < const (Q) p*,
n = 0

where d = min{4/5, 2v/(l+4v)}.
Standard reasonings [13], [29] imply that if T"x & UEm(R-i,i U 2) for all

integers η > 0, then there is an HLUM γ°"(χ), and the distance from its end-
points to χ is at least PQ. By (A2.1) the measure of the set of such points, for
fixed po, is at least 1 — const(g)p^. Thereby Theorems 3.8 and 3.10 have been
established.

To prove Proposition 3.11 we consider a point χ such that on the LUM
yu(x) the subdividing points (that is, the points in the intersections
Τ"ί$ Π yu(x) for all η ^ 0) have a limit point somewhere inside the curve
yu(x). Then for infintely many η > 0 the relation T~nx e Ut£2) holds,
where επ = p{y\x))h^[nlma. By (A2.1) and the Borel-Cantelli lemma such
points χ form a set of measure zero.

Appendix 3

First we recall the analogue of Theorem 3.12 proved in [24], given here in
somewhat strengthened form:

Theorem A3.1. Assume that a scattering billiard satisfies the conditions A, B, C
(§2) and has finite horizon (τ(χ) < const < oo). Let y" be an arbitrary LUM
and D > 0. For each Ν > 0 we choose on y" subsegments y^.o being the
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smoothness components of the map TN on y" and such that for all η e [0, N]
the image TnyN,i lies in a smoothness component of the set T^y" that has length
at most D. Then there are numbers D > 0, C > 0, and 0 < λ < 1 such that
for all Ν ^ 1

In other words, the total measure of the set of points on the LUM γ"
whose images "in the future" during the first Ν steps do not fall once in a
sufficiently long LUM (that is, in an LUM of length > D) decays
exponentially with N.

For the proof we first write down the obvious estimate

where Af^i) is a (lower) estimate for the coefficient of expansion of the LUM
yN, i under the action of TN.

Since Τ is hyperbolic (§2), we may put A^i) = Αψ/ιηύ. It remains to
estimate the number of segments γ&,,· for a given N. Let m ^ 1 be an
integer. Condition Β (§2) implies that if D is sufficiently small (D < Do(m)),
then any LUM of length < D intersects at most Ktfn discontinuity curves in
R-mfi. Hence the number of segments y^.i does not exceed (KomfN/mii+l.

Together with (A3.1) this estimate gives

Ρ (U y». « X DAo[N/m'] (KQm)i»^.
i

We choose an m such that the quantity Aj = Ao(Kom)~m"/m is larger
than 1. Then

and Theorem A3.1 has been proved.
We turn to our Theorem 3.12. By analogy with Theorem A3.1, we denote

by yN.i all subsegments of γ " whose images under Tn for all 0 < η «ξ Ν fall
within the homogeneous components of the set T"y" having length at most D.
Then the estimate (A3.1) remains valid.

However, in our case the number of segments γ# ,· can be infinite, and for
various reasons: subdivision in a neighbourhood of SO and accumulation of
infinitely many discontinuity curves in a neighbourhood of the singular points,
both of infinite horizon type (§2.3) and of sliding type (§2.5). On the other
hand, in the parts of the phase space described above the coefficient of
expansion of the LUM grows to infinity. This allows us to obtain a more
precise estimate for A^i), and thus to compensate for the growth of the
number of segments y^, i·

We consider in more detail the f.vo possible sources for the unbounded
growth of the number of components γ#, ;·
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1st case (subdivision). We enumerate all homogeneity strips (see
Appendix 1) so that the n-th strip is given by the relation
π/2—η~ν < | φ | < π/2 — ( n + l ) ~ v (η ^ no). For the time being we will only
consider the strips with indices > ηχ, where ti\ is a sufficiently large number,
to be chosen below. We will consider the remaining strips (with indices from
«o to rtj) below, along with the usual discontinuity curves. Suppose that an
arbitrary LUM y" lies in the n-th homogeneity strip. Then the relations given
in §§A1.2—A1.3 easily imply that the coefficient of expansion of this LUM
under Γ', for some i < mo, is at least const nv, and Lemma A 1.5 implies that
the intermediate images Ty", ..., T'~1y" cannot fall even once in the
homogeneity strip.

2nd case (discontinuities in neighbourhoods of singular points). The structure
of the discontinuity curves of Τ in neighbourhoods of singular points was
described in §2. They partition such a neighbourhood into countably many
cells, which we have given a natural enumeration, that is, in the order of
approximation to the singular point. Again we will consider only those cells
that have indices > ti\, while the discontinuity curves bounding the remaining
cells will be studied below. Suppose that there is an LUM in the n-th cell.
Then (§2) its coefficient of expansion under Τ is at least const nd, where
d = 2 for an LUM in neighbourhoods of singular points of sliding type, while
for LUM in neighbourhoods of singular points of infinite horizon type d takes
two values: d = 3/2 for the subtypes 5 and SV, and d = 1 for the subtype
V and the stadium (§2.6). We first consider the simplest cases, when d = 2
and d = 3/2.

The analysis carried out above allows us to obtain the required estimate for
ΛΛΚΟ- We assume that the images of the LUM y^j during the first Ν
iterations fall k\ times in a subdividing strip (with index > n{), and ki times in
a cell (also with index > n{) in neighbourhoods of the singular points. We
denote the indices of the corresponding strips by j{, ..., jkt, and those of the
cells by j{', ...,jk2. Then the following estimate holds:

Γ N-kt-ic, "I l>, !c,

Λ,(ο=Λί~^]·(Π7·ίν)·(Π/;3/2

We now estimate the influence on the number of components γ#,, of the
discontinuity curves and subdividing segments not taken into consideration in
the above. Suppose that an LUM of length D and its future images during m
steps do not intersect the subdividing strips with indices > ηλ and cells with
the same indices lying in neighbourhoods of the singular points. It then
follows from condition Β and the construction of the subdividing segments
that there is a constant K\ > 0 such that these images of the given LUM
intersect at most K\in discontinuity curves and subdividing segments, provided
that the length D of the original LUM is sufficiently small (D < D0(m, n{)).
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Here the constant Κι is larger than the Ko in condition B, because of the
influence of the subdividing segments.

Thus, the inequality (A3.1) can be written in the following form for
sufficiently small D (D < D0(m,

Ν οο

(Α3.2) P(\jyN, ι) <Γ. 2 J Ό · ( ZJ w ) Χ
ϊ If,, k 2=o n = n ,

οο _ Γ Ν-Χι-Κ, j

In this estimate it is essential that the series Ση~ ν converges, therefore we
impose the restriction ν > 1. This is the only place in this paper where we
need such a restriction.

It remains to choose, for the given ν > 1, an nx so large that
/ifv + («i + l ) ~ v + ... < A(T1/m*, and then we obtain the estimate

(A3.3) ρ (U yUN,») < ΟΛΓ2Λο[ΛΓ/"'α) (Kjm)^'"^1.
i

Theorem 3.12 can be derived from this estimate without difficulty.
It remains to consider the singular points of subtype V and the case of the

stadium (that is, when d = 1, see above). In neighbourhoods of these points
the coefficient of expansion of an LUM lying in the n-th cell is approximately
equal to C\ti (C\ = const). However, a single LUM intersects only finitely
many cells with indices from Ν to C2N (see Remark 2.2 and Lemma 2.3).
Therefore such an LUM gives a contribution to (A3.2) equal to

(A3.4) \ ~c~n~ ~ ~c~ ^n ^ 2 = c o n s t ·

Moreover, cells in a neighbourhood of singular points of subtype V "wander"
(Remark 2.2), and hence their total contribution to (A3.3) does not exceed
(C\~x hi C2)Ne for some small ε > 0 (more precisely, ε = ε(«ι) will be
arbitrarily small for sufficiently large n\). This contribution does not exert an
essential influence on the estimate (A3.3).

Finally, in the case of the stadium the cells under consideration are not
"wandering" any more, but we are "rescued" by the precise values of the
constants in formula (A3.4) (see Lemma 2.3): C\ = 4 and Ci = 9. Since
4 " 1 hi 9 < 1, the general estimate remains true.



Statistical properties of two-dimensional hyperbolic billiards 105

References

[1] D.V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature,
Trudy Mat. Inst. Steklov. 90 (1967). MR 36 # 7157.
= Proc. Steklov Inst. Math. 90 (1967).

[2] and Ya.G. Sinai, Some smooth ergodic systems, Uspekhi Mat. Nauk 22:5
(1967), 107-172. MR 37 # 370.
= Russian Math. Surveys 22:5 (1967), 103-167.

[3] S.N. Bernstein, Collected works, Vol. 4, Izdat. Akad. Nauk SSSR, Moscow 1964.
MR 30 # 2.

[4] R. Bowen, Metody simbolicheskoi dinamiki: Sb. statei (Methods of symbolic
dynamics: Collection of articles), Mir, Moscow 1979.

[5] L.A. Bunimovich and Ya.G. Sinai, The fundamental theorem of the theory of
scattering billiards, Mat. Sb. 90 (1973), 415-431. MR 51 # 3395.
= Math. USSR-Sb. 19 (1973), 407-423.

[6] , On billiards close to dispersing, Mat. Sb. 95 (1974), 49-73. MR 49 # 7422.
= Math. USSR-Sb. 23 (1974), 45-67.

[7] , Decay of correlations in dynamical systems with chaotic behaviour, Zh.
Eksper. Teoret. Fiz. 89 (1985), 1452-1470.
= Soviet Physics JETP 62 (1985), 842-852.

[8] , Ya.G. Sinai, and N.I. Chernov, Markov partitions for two-dimensional
billiards, Uspekhi Mat. Nauk 45:3 (1990), 97-134.
= Russian Math. Surveys 45:3 (1990), 105-152.

[9] LA. Ibragimov and Yu.V. Linnik, Nezavisimye i statsionarno svyazannye velichiny,
Nauka, Moscow 1965. MR 34 # 2049.
Translation: Independent and stationary sequences of random variables, Wolters-
Noordhoff, Groningen 1971.

[10] I.P. Kornfel'd, Ya.G. Sinai, and S.V. Fomin, Ergodicheskaya teoria, Nauka,
Moscow 1980. MR 83a:28017.
Translation: Ergodic theory, Springer-Verlag, New York 1982.

[11] A.N. Livshits, Homology properties of F-systems, Mat. Zametki 10 (1971), 555-564.
MR 45 # 2746.
= Math. Notes 10 (1971), 758-763.

[12] Ya.G. Sinai, Markov partitions and Γ-diffeomorphisms, Funktsional. Anal, i
Prilozhen. 2:1 (1968), 64-89. MR 38 # 1361.
= Functional Anal. Appl. 2 (1968), 61-82.

[13] , Dynamical systems with elastic reflections. Ergodic properties of scattering
billiards, Uspekhi Mat. Nauk 25:2 (1970), 141-192. MR 43 # 481.
= Russian Math. Surveys 25:2 (1970), 137-189.

[14] , Gibbs measures in ergodic theory, Uspekhi Mat. Nauk 27:4 (1972), 21-64.
MR 53 # 3265.
= Russian Math. Surveys 27:4 (1972), 21-69.

[15] and N.I. Chernov, Ergodic properties of certain systems of two-dimensional
discs and three-dimensional balls, Uspekhi Mat. Nauk. 42:3 (1987), 153-174.
MR 89c: 58097.
= Russian Math. Surveys 42:3 (1987), 181-207.

[16] Sovremennye problemy matematiki: Fundamental'nye napravleniya (Current problems
in mathematics: Fundamental directions), Vol. 2, VINITI, Moscow 1985.
Translation: Dynamical systems II, Springer, Heidelberg 1989.

[17] N.I. Chernov, Topological entropy and periodic points of two-dimensional hyperbolic
billiards, Funktsional. Anal, i Prilozhen. 25:1 (1991), 50-57.



106 L.A. Bunimovtch, Ya.G. Sinai, and N.I. Chernov

[18] J.-P. Bouchaud and P. Lc Doussal, Numerical study of a ^-dimensional periodic
Lorentz gas with universal properties, J. Statist. Phys. 41:1—2 (1985), 225—248.
MR 86k:82004.

[19] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,
Lecture Notes in Math. 470 (1975). MR 56 # 1364.

[20] and D. Ruelle, The ergodic theory of axiom A flows, Invent. Math. 29 (1975),
181-202. M R 5 2 # 1786.

[21] L.A. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Comm.
Math. Phys. 65 (1979), 295-312. MR 80h:58037.

[22] and Ya.G. Sinai, Markov partitions for dispersed billiards, Comm. Math.
Phys. 77 (1980), 247-280. MR 82e:58059.

[23] and , Statistical properties of Lorentz gas with periodic configuration of
scatters, Comm. Math. Phys. 78 (1981), 479-497. MR 82m:82007.

[24] and , Markov partitions for dispersed billiards (Erratum), Comm.
Math. Phys. 107 (1986), 357-358. MR 87m:58090.

[25]

[26]

[2η

[28]

A theorem on ergodicity of two-dimensional hyperbolic billiards, Comm.
Math. Phys. 130 (1990), 599-621.
G. Casati, G. Comparin, and I. Guarneri, Decay of correlations in certain hyperbolic
systems, Phys. Rev. A26 (1982), 717-719.
G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes, Comm. Math. Phys.
38 (1974), 83-101. MR 50 # 7480.
Y. Guivarc'h and J. Hardy, Thooremes limites pour une classe de chaines de Markov
et applications aux diffieomorphismes d'Anosov, Ann. Inst. H. Poincare. Probab.
Statist. 24:1 (1988), 73-98. MR 89m:60080.

[29] A. Katok and J.M. Strelcyn, Smooth maps with singularities: invariant manifolds,
entropy and billiards, Lecture Notes in Math. 1222 (1987).

[30] A. Kramli and D. Szasz, The problem of recurrence for Lorentz processes, Comm.
Math. Phys. 98 (1985), 539-552. MR 86m:60063.

[31] , N. Simanyi, and D. Szasz, A "transversal" fundamental theorem for semi-
dispersing billiards, Comm. Math. Phys. 129 (1990), 535-560.

[32] J. Machta, Power law decay of correlations in a billiard problem, J. Statist. Phys. 32
(1983), 555-564. MR 85e:70010.

[33] D. Ruelle, Thermodynamic formalism, Addison-Wesley, Reading, MA 1978.
MR 80g:82017.

[34] Ya.G. Sinai, Hyperboic billiards, Proc. Internat. Congress of Mathematicians,
Kyoto 1990.

[35] D. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967),
747-817. MR 37 #3598. (Erratum: MR 39, p. 1593.)

[36] F. Vivaldi, G Casati, and I. Guarneri, Origin of long-time tails in strongly chaotic
systems, Phys. Review Lett. 51 (1983), 727-730. MR 84k:58157.

Translated by R.A.M. Hoksbergen Institute for Oceanology of the
USSR Academy of Sciences
Institute of Theoretical Physics of the
USSR Academy of Sciences
United Institute of Nuclear Research

Received by the Editors 25 April 1991


