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Abstract. Dispersing billiards with cusps are deterministic dy-
namical systems with a mild degree of chaos, exhibiting “intermit-
tent” behavior that alternates between regular and chaotic pat-
terns. They are characterized by decay of correlations of order 1/n
and a central limit theorem with a non-classical scaling factor of√

n logn. We show that the pth moments of the so normalized
ergodic sums converge to the moments of the limit normal distri-
bution only for p < 2 and diverge for p > 2. The critical second
moments converge, but their limit is double the second moment of
the normal distribution.
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1. Introduction

Limit theorems (and the related issue of convergence of moments)
play an important role in the studies of dynamical systems.

By a dynamical system we mean a transformation F : M → M
of a measure space M with an invariant probability measure µ. Let
A : M → R be a function (observable). Then the sequence of observed
values A(F n(X)), where X ∈ M , makes a stationary process with re-
spect to the invariant measure µ. The main object of studies is the
behavior of its partial sums

(1.1) SnA : = A + A ◦ F + · · ·+ A ◦ F n−1.

If µ is ergodic and A ∈ L1
µ(M), then SnA = nµ(A) + o(n) for a.e.

X ∈ M , according to the Birkhoff ergodic theorem; we use standard
notation µ(A) =

∫

M
A dµ. It is common to consider centered sums

SnA−nµ(A) = Sn(A−µ(A)), so we will always assume that µ(A) = 0;
otherwise we just replace A with A− µ(A). Now we have SnA = o(n).

Limit theorems describe asymptotic distribution of (SnA)/bn, where
bn > 0 is an appropriate scaling factor. The latter is selected so that
(SnA)/bn = O(1) for typical points X ∈ M . Then a limit theorem
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usually states that (SnA)/bn converges in distribution, i.e.,

(1.2) lim
n→∞

µ
{

X : (SnA)/bn < x
}

= G(x)

where G(x) is a probability distribution function, and (1.2) holds for
every x at which G(x) is continuous. If bn =

√
n and G(x) is a normal

(Gaussian) distribution function, then we refer to (1.2) as a classical
Central Limit Theorem (CLT).

While (1.2) describes the limit distribution of (SnA)/bn it is also
important to describe the asymptotics of its moments. We will say
that the pth (absolute) moment of (SnA)/bn properly converges if

(1.3) lim
n→∞

µ
(

|(SnA)/bn|p
)

=

∫

|x|p dG(x).

The pth moment of (SnA)/bn may also converge to a value different
from the right hand side of (1.3) or diverge altogether. The following
standard fact (e.g., [18, Exercise 3.2.5, p. 87]) helps clarify the picture:

Theorem 1. Suppose (1.2) holds and supn µ
(

|(SnA)/bn|p
)

< ∞. Then
the qth moment of (SnA)/bn properly converges for every q < p.

Corollary 1.1. There is a critical moment p∗ ∈ [0,∞] such that
(a) the qth moment of (SnA)/bn properly converges for all q < p∗
(b) the qth moment of (SnA)/bn diverges for all q > p∗.

In case p∗ = ∞ we have proper convergence of all moments. In case
p∗ = 0 we have divergence of all moments. The p∗th moment itself may
converge (properly or improperly) or diverge. We note, however, that
in any case due to (1.2)

lim inf
n→∞

µ
(

|(SnA)/bn|p
)

≥
∫

|x|p dG(x)

therefore the limit of the p∗ moment can only be greater than the p∗th
moment of the limit distribution.

While the limit theorems (mostly, versions of the classical CLT) have
been proven for many types of dynamical systems, the convergence of
moments has rarely been studied mathematically. On the other hand,
physicists prefer to use moments, see e.g., [16], because those can be
easily estimated in numerical experiments.

Recently Melbourne and Török [25] investigated the convergence of
moments for dynamical systems modeled by a Young tower. They
proved the following:

Theorem 2 ([25]). Let an ergodic system (M, F, µ) be modeled by a
Young tower and A be a Hölder continuous function on M . Then
(a) if the tower has an exponential tail bound, then we have proper
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convergence of all moments, i.e., p∗ = ∞;
(b) if the tower has a polynomial tail bound of order β > 1, then we
have proper convergence of moments of order p < 2β, i.e., p∗ ≥ 2β.

Tail bound of a Young tower refers to the rates of convergence of
the respective return times. Precisely, let ∆ denote the tower, µ∆ the
invariant measure on it, ∆0 ⊂ ∆ the base of the tower, and R : ∆ →
N

+ (defined on all ∆) the first return time to ∆0. Then the rate of
convergence of µ∆(R > n) to zero, as n → ∞, is the key characteristic
of the tower.

We say that the tower has exponential tail bound if µ∆(R > n) =
O(λn) for some λ < 1. This implies exponential decay of correlations,
i.e., µ

(

(A◦F n)A
)

= O(λn
A) for some λA < 1 ([31]). All Axiom A diffeo-

morphisms, uniformly expanding interval maps, Hénon-like attractors
[4], dispersing billiards (without cusps), etc., belong to this category.

We say that the tower has polynomial tail bound of order β > 0 if
µ∆(R > n) = O(n−β). This implies polynomial decay of correlations of
order β, i.e., µ

(

(A ◦ F n)A
)

= O(n−β). If β > 1, then the correlations

are summable, i.e.,
∑

n |µ
(

(A ◦ F n)A
)

| < ∞, and the classical CLT
holds [32]. Many so called intermittent systems [27] belong to this cat-
egory, including interval maps with neutral fixed point [22], Bunimovich
flowers [6, 13], dispersing billiards with vanishing curvature [14], etc.

The authors of [25] argue that their result in (b) is essentially op-
timal, i.e., p∗ = 2β. On the other hand, what happens at the critical
moment p∗ (i.e., whether we have a proper or improper convergence or
divergence) remains unclear; perhaps it is system-dependent.

We study here a system modeled by a Young tower with polynomial
tail bound of order β = 1; this case is not covered by [25]. In this case
the correlations decay as n−1, i.e.,

(1.4) ζn(A) : = µ
(

A · (A ◦ F n)
)

= O(1/|n|)
The rate of growth of the second moment is then

(1.5) µ
(

[SnA]2
)

=
n−1
∑

k=−n+1

(n − |k|)ζk(A) = O(n log n),

so the proper normalization factor for the limit theorem (1.2) must be
bn =

√
n log n, rather than the classical bn =

√
n.

The corresponding non-classical limit theorems were proved for sev-
eral systems of that type, most notably for Bunimovich stadium [2]
and for dispersing billiards with cusps [1].

Theorem 3 ([1, 2]). Let F : M → M be the collision map for a Buni-
movich stadium or for a planar dispersing billiard table with cusps.
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Let A be a Hölder continuous function on the collision space M with
µ(A) = 0. Then we have a nonclassical limit theorem

(1.6) lim
n→∞

µ
{

X : (SnA)/
√

n log n < x
}

= G(x)

where G(x) is the distribution function of a normal law with mean zero
and variance σ2

A ≥ 0.

Explicit formulas for the variance σ2
A exist for both the stadium (see

[2]) and billiards with cusps (see [1] and (2.2) below). It may happen
that σ2

A = 0, and in that case a version of the classical CLT applies,
i.e., (SnA)/

√
n converges to a normal law [2, 1], but this is a degenerate

case not covered by our present work.
We deal here with dispersing billiards with cusps, continuing our

work [1]. Our main result is

Theorem 4. Let F : M → M be the collision map for a planar dis-
persing billiard table with cusps. Let A be a Hölder continuous function
on the collision space M with µ(A) = 0. Then

(1.7) lim
n→∞

µ
(

[SnA]2
)

n log n
= 2σ2

A.

More precisely,

(1.8) µ
(

[SnA]2
)

= 2σ2
An log n + O(n).

Note that the limit of the second moment is not equal to the second
moment of the limit distribution, the former is twice the latter. This
doubling effect will be explained in the end of Section 3.

Corollary 1.2. Let σ2
A > 0. Then the critical moment is p∗ = 2,

for which we have improper convergence. All moments of order q < 2
properly converge. All moments of order q > 2 diverge.

Remark. The limit law (1.6) holds true if we replace µ with any measure
µ′ that is absolutely continuous with respect to µ; see [1]. Similarly,
our limit (1.7) remains valid if we replace µ with any µ′ ≪ µ, because
the images F nµ′ weakly converge to µ.

We do not handle the Bunimovich stadium here. Despite its similar-
ity to our billiards with cusps (in terms of the same rates of the decay
of correlations and the same scaling factor in the non-classical limit
theorem), the mechanism of nonuniform hyperbolicity is very different
(see [15]), so our arguments will not apply to the stadium.

Finally it is worth mentioning another important model, the infinite
horizon Lorentz gas, where the billiard flow is characterized by slow
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(polynomial) mixing rates [26]. The position of the moving particle q(t)
at time t satisfies a non-classical limit theorem with a

√
t log t scaling

factor (this is proved in [10]; see also [30]). Regarding the convergence
of the second moment, we expect a doubling effect analogous to our
Theorem 4; see a heuristic discussion and a numerical evidence in [17].
However, this model is quite different from dispersing billiards with
cusps and requires a different approach. Hence we plan to address the
issue of the second moment in the infinite horizon Lorentz gas in a
separate paper.

2. Billiards with cusps

Billiards are dynamical systems where a point particle moves in a
planar domain D (the billiard table) and bounces off its boundary ∂D
according to the classical rule “the angle of incidence is equal to the
angle of reflection”. The boundary ∂D is assumed to be a finite union
of C3 smooth compact curves that may have common endpoints.

Between collisions at ∂D, the particle moves with a unit speed and
its velocity vector remains constant. At every collision, the velocity
vector changes by

(2.1) v+ = v− − 2〈v−,n〉n
where v− and v+ denote the velocities before and after collision, re-
spectively, n stands for the inward unit normal vector to ∂D, and 〈·, ·〉
designates the scalar product.

If the boundary ∂D is concave inward and the curvature of ∂D does
not vanish, the billiard is said to be dispersing. Such billiards were
studied by Sinai [29] and Bunimovich [5] under the assumptions that
the boundary components are smooth closed curves.

Sinai proved that the resulting billiard dynamics is strongly (uni-
formly) hyperbolic, ergodic, and K-mixing. Gallavotti and Ornstein
[20] proved that dispersing billiards are Bernoulli. Young [31] proved
that correlations decay exponentially fast; see also [9] for an infinite
horizon situation. The classical CLT was derived in [7, 8].

All these results have been extended to dispersing billiards with
piecewise smooth boundaries, i.e., to tables with corners, provided the
boundary components intersect each other transversally, i.e., the angles
made by the walls at corner points are positive; see [8, 9].

We deal with dispersing billiards where some boundary components
converge tangentially at a corner, i.e., make a cusp. Such billiards were
first studied by Machta [23] who found (based on heuristic arguments)
that correlations for the collision map decay as 1/n. The reason for such
a slow decay is weak (non-uniform) hyperbolicity of the collision map.
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Whenever the moving particle gets deep into a cusp, it experiences a
large number of rapid collisions that do not contribute much to the
expansion or contraction of tangent vectors.

Reháček [28] proved that dispersing billiards with cusps are ergodic,
K-mixing and Bernoulli. The rates of the decay of correlations (as
predicted by Machta) were rigorously derived in [12, 15], and the non-
classical limit theorem was proved in [1].

We note that correlations decay slowly only in discrete time, when
each collision counts as a unit of time. In real (continuous) time, colli-
sions inside a cusp occur in rapid succession and their effect is much less
pronounced. As a result, the corresponding billiard flow is rapid mixing
in the sense that correlations for smooth observables decay faster than
any polynomial rate, and a classical CLT holds [3].

Next we introduce some notation. Just as in the previous work [1],
we assume for simplicity that the table D has exactly one cusp; the
generalization to several cusps is straightforward.

There are natural coordinates r and ϕ in the collision space M , where
r denotes the arc length parameter on ∂D and ϕ the angle of reflection,
i.e., the angle between v+ and n in the notation of (2.1). Note that
−π/2 ≤ ϕ ≤ π/2. The billiard map F preserves the measure µ on
M given by dµ = cµ cos ϕ dr, dϕ, where cµ = [2 length(∂D)]−1 is the
normalizing factor. In these coordinates, M is a union of rectangles
[r′i, r

′′
i ] × [−π/2, π/2], where the intervals [r′i, r

′′
i ] correspond to smooth

components (arcs) of ∂D.
The cusp is a common terminal point of two arcs, ii and i2, of ∂D;

thus the coordinate r takes two values at the cusp, r′ = r′i1 and r′′ = r′′i2.
Now the variance σ2

A in Theorem 3 is given by

(2.2) σ2
A =

cµ

8ā

[
∫ π/2

−π/2

[A(r′, ϕ) + A(r′′, ϕ)]
√

cos ϕ dϕ

]2

where ā = (a1 + a2)/2 and a1, a2 denote the curvatures of the two arcs
making the cusp measured at the vertex of the cusp.

If the table D has more than one cusp, then σ2
A is the sum of expres-

sions (2.2) corresponding to individual cusps.
It is common in the studies of nonuniformly hyperbolic maps, like

our F : M → M , to reduce the dynamics onto a subset M ⊂ M so
that the induced map F : M → M will be strongly hyperbolic and
have exponential decay of correlations.

In the present case the hyperbolicity is slow only because of the
cusp. So we cut out a small vicinity of the cusp; i.e., we remove from
M two rectangles, R1 = [r′i1 , r

′
i1

+ ε0] × [−π/2, π/2] and R2 = [r′′i2 −
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ε0, r
′′
i2
]× [−π/2, π/2], with some small ε0 > 0 and consider the induced

map F on the remaining collision space M = M \ (R1 ∪ R2). It
preserves the conditional measure ν on M, where ν(B) = µ(B)/µ(M)
for any B ⊂ M. The map F : M → M is strongly hyperbolic and has
exponential decay of correlations [1, 12].

Now let R(x) = min{m ≥ 1: F mx ∈ M} denote the return time
function on M. The domains

Mm = {x ∈ M : R(x) = m}
for m ≥ 1 are called cells ; note that M = ∪m≥1Mm. It is known [12]
that ν(Mm) = O(m−3).

For m ≥ 1 and i = 0, 1, . . . , m − 1 we denote

Mm,i = F i(Mm) and Mm = ∪m−1
i=0 Mm,i.

Then the sets {Mm,i} constitute a partition of M . Note that

µ(Mm,i) = µ(Mm) = O(m−3) and µ(Mm) = O(m−2).

M1,0M2,0M3,0Mm,0

M2,1M3,1Mm,1

M3,2Mm,2

Mm,m−1

F Π

Figure 1. The tower-like structure of cells Mm,i in the
space M . The bottom level constitutes the subset M =
∪∞

m=0Mm,0. The map F moves each cell one level up,
but the top cell in each column is mapped back down to
M. The projection Π (Section 6) collapses each column
∪m−1

i=0 Mm,i onto its bottom element Mm,0.

For the given function A on M we construct the “induced” function
on M as follows:

(2.3) A(x) =

R(x)−1
∑

m=0

A(F mx).
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Since we assume µ(A) = 0, we also have ν(A) = 0. Note that A is
of order m on Mm, hence in generic situation ν(A2) = ∞. In fact,
ν(A2) < ∞ if and only if σ2

A = 0, which is a degenerate case; cf. [1].
For any p ≥ 1 we denote by A1,p the “truncated” version of A defined

by A1,p(X) = A(X) for X ∈ ∪m≤pMm and A1,p(X) = 0 elsewhere.
The following estimate is proved in [1] by direct calculation:

Lemma 2.1 ([1]). We have µ(A2
1,p) = 2σ2

A log p + O(1).

The map F : M → M is uniformly hyperbolic, i.e., it expands un-
stable curves and contracts stable curves at an exponential rate. More
precisely, if u is an unstable tangent vector at any point x ∈ M, then
‖DxFn(u)‖ ≥ cΛn‖u‖ for some constants c > 0 and Λ > 1 and all
n ≥ 1. Similarly, if v is a stable tangent vector, then ‖DxF−n(v)‖ ≥
cΛn‖v‖ for all n ≥ 1.

The singularities of the original map F : M → M are made by trajec-
tories hitting corner points (other than cusps) or experiencing grazing
(tangential) collisions with ∂D. The singularities of F lie on finitely
many smooth compact curves. Those curves are stable in the sense that
their tangent vectors belong to stable cones. Likewise, the singularities
of F−1 are unstable curves.

The singularities of the induced map F are those of F plus the
boundaries of the cells Mm, m ≥ 1. Those boundaries form a count-
able union of smooth compact stable curves that accumulate near the
(unique) phase point whose trajectory runs directly into the cusp.

The structure of cells Mm and their boundaries are described in [12].
Each cell has length ≍ m−7/3 in the unstable direction and length ≍
m−2/3 in the stable direction. Its measure is µ(Mm) ≍ m−7/3×m−2/3 =
m−3. The notation f ≍ g means that f = O(g) and g = O(f).

The map F = F m expands the cell Mm in the unstable direction
by a factor ≍ m5/3 and contracts it in the stable direction by a factor
≍ m5/3, too. So the image F(Mm) has ‘unstable size’ ≍ m−2/3 and
‘stable size’ ≍ m−7/3. The images accumulate near the (unique) phase
point whose trajectory emerges directly from the cusp.

A characteristic feature of hyperbolic dynamics with singularities is
the competition between hyperbolicity and the cutting by singularities.
The former causes expansion of unstable curves, it makes them longer.
The latter breaks unstable curves into pieces and thus produces shorter
curves. One of the main results of [12] is a so called one-step expan-
sion estimate [12, Eq. (5.1)] for the induced map F , which guarantees
that the expansion prevails over the cutting by singularities, i.e., “on
average” the unstable curves grow fast, at an exponential rate.
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The one-step expansion estimate implies the entire spectrum of sta-
tistical facts: the growth lemmas, the coupling lemma for standard
pairs and standard families, equidistribution estimates, exponential
decay of correlations for bounded Hölder continuous functions, limit
theorems for the same type of functions, etc. All these facts with de-
tailed proofs are presented in [11, Chapter 7] for general dispersing
billiards (without cusps), but those proofs work for our map F almost
verbatim (see [12, p. 749]).

The main tool in our analysis of the map F is standard pairs and
standard families; see [11, Section 7.4] for the definition and basic prop-
erties. Given a standard family G = {(W, νW )} of unstable curves {W}
with smooth probability measures {νW} on them, and a factor mea-
sure λG that defines a probability measure µG on ∪W , its Z-function
is defined by

Z(G) : = sup
ε>0

µG(rG < ε)

ε

where rG(x) denotes the distance from a point x ∈ W ∈ G to the
nearer endpoint of W , i.e., rG(x) = dist(x, ∂W ). If the curves W ∈ G
have lengths of ≍ L, then Z(G) ≍ 1/L (see [11, p. 171]). The images
Gn = Fn(G) are also standard families, and their Z-function satisfies

(2.4) Z(Gn) ≤ c1ϑ
nZ(G) + c2

where ϑ ∈ (0, 1) and c1, c2 > 0 are constants.
A standard family G is said to be proper if Z(G) ≤ Cp where Cp is

a suitable large constant; see [11, p. 172]. The condition Z(G) ≤ Cp

means that the family mostly consists of long unstable curves. If a
family G consists of small curves (of length of order ε), then its Z-
function is of order 1/ε, and due to (2.4) it takes C| log ε| iterations
of F (where C > 0 is a large constant) to transform G into a proper
standard family (of mostly long curves).

3. Proof of Theorem 4

In this section we prove (1.8) modulo two technical lemmas that will
be proved in subsequent sections. Expanding the square gives

µ
(

[SnA]2
)

= nµ(A2) + 2
n−1
∑

k=1

(n − k) µ
(

A · (A ◦ F k)
)

= n
n

∑

k=−n

µ
(

A · (A ◦ F k)
)

+ O(n)
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in the last line we used the fact µ(A · (A ◦F k)) = O(1/k) according to
(1.4). Now (1.8) is equivalent to

(3.1)
n

∑

k=−n

µ
(

A · (A ◦ F k)
)

= 2σ2
A log n + O(1)

or in a slightly different form

(3.2) µ

(

A ·
(

n
∑

k=−n

A ◦ F k
)

)

= 2σ2
A log n + O(1).

Next we estimate the contribution to (3.1) from “high” cells Mm with
m ≥ n/10. We easily see that the contribution from points X ∈ M
such that either X ∈ Mm or F n(X) ∈ Mm or F−n(X) ∈ Mm for some
m ≥ n/10 is bounded by

3‖A‖2
∞n

∞
∑

m=n/10

µ(Mm) = O(1),

hence it can be neglected. Of course, 10 can be replaced here with any
other fixed constant. So we assume that X ∈ Mm,i for some m < n/10
and 0 ≤ i ≤ m − 1.

Our next step is to express the formula (3.2) in terms of the induced
map F : M → M.

Note that X either is in M (away from the cusp) or belongs to a
series of collisions in the cusp that includes all the points F j(X) with
−i < j < m−i. The corresponding values A◦F j(X) for −i < j < m−i
make a part of the longer sequence of values A◦F j(X) for |j| ≤ n that
appears in (3.2). We will see that it is this part that makes the crucial
contribution to (3.2) and determines its asymptotic behavior. Indeed,
if we only take into account the values A ◦ F j(X) for −i < j < m − i,
then after some obvious rearrangements

n/10
∑

m=1

∫

Mm

(m−1
∑

i=0

A ◦ F i

)2

dµ =

n/10
∑

m=1

µ
(

A2|Mm

)

= µ(A2
1,n/10)

= 2σ2
A log n + O(1)(3.3)

according to Lemma 2.1.
So it remains to show that the contribution from values A ◦ F j(X)

for j ≤ −i and j ≥ m − i does not exceed O(1). In other words, the
asymptotic of (3.2) is determined by series of collisions in the cusp that
contains the present point X; the contribution from all future and past
collisions is negligible, as we will show.



CONVERGENCE OF MOMENTS FOR CUSPS 11

We note that the entire sequence of values A ◦ F j(X) for |j| ≤ n
is naturally divided into subsequences corresponding to subsequent re-
turns to M. Between any two consecutive returns to M we have a
series of collisions in the cusp. Of course, the lengths of these subse-
quences and their number depend on X. The very last subsequence
containing the point F n(X) and the very “first” one containing the
point F−n(X) may be incomplete, as the corresponding series of colli-
sions in the cusp may stretch beyond our time limits n and −n.

Our next step is to replace the sum in (3.2) involving the original
map F with another sum in terms of the induced map F : M → M.
More precisely, we will replace (3.2) with

(3.4) µ

(

A1, n
10
·
(

k+(X)
∑

k=k−(X)

A ◦ Fk
)

)

.

The function in the outer brackets is defined and takes non-zero values
only on M1,n/10. The variable summation limits k+(X) and k−(X)
should be selected, roughly, so that

k+(X)
∑

k=0

R(FkX) ≈ n,
−1
∑

k=k−(X)

R(FkX) ≈ n,

where R is the return function on M, so that the new summation
limits in (3.4) roughly correspond to the old ones in (3.2).

In order to construct the sum (3.4) we first replace (3.2) with

(3.5) µ

(

A ·
(

n+(X)
∑

k=−n−(X)

A ◦ F k
)

)

.

We define the function n+(X) as follows. Let X ∈ Mp,i for some
p = p(X) < n/10 and i = i(X) ∈ [0, p − 1]. Let F n−i(X) ∈ Mq′,j′ for
some q′ = q′(X) ≥ 1 and j′ = j′(X) ∈ [0, q′ − 1]. Then we define

(3.6) n+(X) = n − i + q′ − j′ − 1.

The idea is that X is in the series of points F−i(X), . . . , F p−i−1(X)
(corresponding to a series of collisions in the cusp) that lie in the column
of cells Mp,0, . . . , Mp,p−1 (which are the images of the cell Mp; see
Fig. 1). In this column the cell Mp,0 = Mp plays the role of a “base”,
and the point F−i(X) plays the role of a “base point” (it belongs to
Mp). Its image under F n (which is F n−i(X)) falls into another column
of cells Mq′,0, . . . , Mq′,q′−1, i.e., it is a part of the sequence of points
F n−i−j′(X), . . . , F n−i+q′−j′−1(X) lying in those cells. Then we want
that whole sequence be included in (3.5) and nothing beyond it.
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Now for all the points F−i(X), . . . , F p−i−1(X) the summation in (3.5)
will terminate at the end of the same column of cells. This will allow
us to collect all the values of A in each column of cells and replace it
with the corresponding value of the induced function A. After that
(3.5) will be easily converted to (3.4). Precise formulas for k+(X) will
be derived in Section 6, where we will need them.

The lower summation limit n−(X) can be defined similarly, we omit
details.

In the case n+(X) > n we will need to add something to the sum
in (3.2), and in the case n+(X) < n we will need to remove something
from it, in order to convert it to the sum in (3.5). These adjustments
are usually small (of order 1), but occasionally they may be large, up
to order n.

In any case, these additions and removals will alter the value of (3.2),
i.e., the values of (3.2) and (3.5) will differ, and we will need to estimate
by how much. The following lemma will be proved in Section 5:

Lemma 3.1. We have

µ

(

A ·
(

n+(X)
∑

k=n

A ◦ F k
)

)

= O(1)

(if n+(X) < n, then the index k runs from n+(X) to n). A similar
estimate holds when k runs between −n and −n−(X).

From now on we deal with (3.5), in fact with its equivalent version
(3.4). The central term of (3.4), corresponding to k = 0, gives the
entire desired asymptotic 2σ2

A log n, according to (3.3), so it remains to
show that the rest of (3.4) is negligible, i.e.,

(3.7) Σ+
1 : = µ

(

A1, n
10
·
(

k+(X)
∑

k=1

A ◦ Fk
)

)

= O(1),

and a similar estimate for the sum over k = −1, . . . , k−(X). Due to
the time symmetry it is enough to prove (3.7).

It is known that the correlations for the map F and the function A
and all its truncated versions decay exponentially fast:

Lemma 3.2 ([1]). For each k ≥ 1 and any p ≥ 1 we have

(3.8)
∣

∣ν
(

A1,p · (A ◦ Fk)
)
∣

∣ ≤ Cθk

for some C > 0 and θ ∈ (0, 1) that are determined by the function
A but do not depend on p or k. (The condition k ≥ 1 is crucial,
cf. Lemma 2.1.)
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Thus extending the summation in (3.7) to, say, 2n, gives
(3.9)

Σ+
2 : = µ

(

A1, n
10
·
(

2n
∑

k=1

A ◦ Fk
)

)

=

2n
∑

k=1

µ
(

A1, n
10
· (A ◦ Fk)

)

= O(1).

We see that the “longer” sum Σ+
2 is O(1), but this does not immediately

imply that the “shorter” sum Σ+
1 is of the same order. The limits k+(X)

in (3.7) are point-dependent, and they may “conspire” to increase Σ+
1

up to O(n). The following lemma will be proved in Section 6:

Lemma 3.3. We have Σ+
2 − Σ+

1 = O(1).

This implies that Σ+
1 = O(1) and completes our proof of Theorem 4.

Lastly we explain the bizarre doubling effect mentioned in the Intro-
duction, i.e., why the limit of the second moment of (SnA)/

√
n log n is

exactly twice the second moment of its limit distribution.
A closer look at (3.3) reveals that if we truncate the function A at

the level nb with b ≤ 1, instead of n/10, then we get

nb
∑

m=1

µ
(

A2|Mm

)

= µ(A2
1,nb) = 2bσ2

A log n + O(1).

Thus values of A in the range [0, nb] for 0 ≤ b ≤ 1 account for a
fraction of the total second moment proportional to b. However values
of A larger than n1/2 occur too rarely to affect the limit distribution
of (SnA)/

√
n log n, as it was shown in [1]. Thus it is exactly half the

range of relevant values of A that affect the limit distribution, while
the entire range of values affect the second moment.

In Appendix we describe a simple probabilistic model that exhibits
a similar doubling effect in the second moment.

4. Young tower and equidistribution for F

The induced map F : M → M has exponential mixing rates and
can be modeled by a Young tower ∆F with exponential tail bounds
[12]. The hyperbolic set Λ0 ⊂ M used to define the base of that tower
may be constructed pretty much anywhere in M and we can assume
that Λ0 ⊂ M1.

Now one can use the set Λ0 to define the base for a Young tower ∆F

modeling the original map F ; see again [12]. The tail bound on return
times for the tower ∆F will be polynomial of order β = 1, in terms of
our Introduction.

Let us introduce some additional notation concerning the tower ∆ =
∆F . Unless otherwise stated, T : ∆ → ∆ will denote the tower map
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that models the original dynamics F : M → M (that is, the subscript
F is typically omitted). Then ∆0(= Λ0) ⊂ ∆ is the base and ∆m ⊂ ∆
is the mth level of the tower. ∆m,m ⊂ ∆m denotes the part of ∆m that
is mapped down to the base, i.e., ∆m,m = ∆m ∩ T−1(∆0). For r > m,
let ∆m,r = ∆m ∩ Tm−r(∆r,r) be the part of ∆m that goes up another
r − m steps before coming down to ∆0. We will call ∆(m) = ∪m

i=0∆i,m

the mth column of the tower. In our tower, µ∆(∆m) = O(1/m2),
µ∆(∆(m)) = O(1/m2) and µ∆(∆0,m) = O(1/m3); see [15]. Altogether
we obtain a picture similar to the one displayed on Figure 1, however, it
is important to point out that these two towers describe the dynamics
in two different ways. In particular, it is only the base ∆0 of the Young
tower that is in one-to-one correspondence with a subset of the phase
space (notably with Λ0 ⊂ M1 ⊂ M ⊂ M); in general, there is a
projection π : ∆ → M that semi-conjugates the tower map T : ∆ → ∆
with the billiard map F : M → M . In our arguments (for example,
in the proof of Lemma 4.1 below) it will play an important role where
the π-preimages of different parts of the phase space M (that is, of the
picture on Figure 1) appear on the Young tower ∆.

We use the tower to derive useful estimates on the equidisrtibution of
the images of cells Mp,i under the iterations of the original map F . Our
first goal is to estimate the measure of the intersection µ

(

F n(Mp,i) ∩
Mq,j

)

. We will always assume p, q < n/10.
Suppose for a moment that the images of our cells are completely

independent (which is a highly idealized situation). Then we would get

µ
(

F n(Mp,i) ∩ Mq,j

)

= µ(Mp,i) µ(Mq,j) = O(p−3q−3)

and summing over j and q would get

µ
(

F n(Mp,i) ∩ (∪q>m ∪q−1
j=0 Mq,j)

)

= O(p−3m−1)

In fact, we will derive only a slightly weaker bound:

Lemma 4.1. We have

(4.1) µ
(

F n(Mp,i) ∩ (∪q>m ∪q−1
j=0 Mq,j)

)

= O(p−3m−1) + χp

where χp = O(p−3−a) for some a > 0.

Proof. We foliate the cell Mp,i by unstable curves. Then the measure
µ conditioned on Mp,i becomes a standard family, G. As the images
of this family under the iterations of F moves between consecutive
returns to M (i.e., during a series of collisions inside the cusp), the
corresponding unstable curves grow slowly but they cannot be cut by
singularities. At the time of the very first exit from the cusp, their
lengths are of order p−2/3, thus their Z-function will be ≍ p2/3.
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After exiting the cusp, our unstable curves may be cut into pieces
by singularities, those pieces enter other cells Mk and they continue
their motion under F . Our strategy will be based on the following two
principles. First, pieces that enter cells Mk whose index k is “high”
(see below) will be discarded, their union will have a negligibly small
measure. Second, pieces that remain in cells Mk with “low” indices k
will return to M quite frequently and thus will grow sufficiently fast.

The first part of our strategy is based on a standard lemma:

Lemma 4.2 ([30, 15]). There are constants a1, a2 > 0 such that for
any large B > 0 and any p > 0 there is a subset M′

p ⊂ Mp such that

µ(Mp \M′
p) ≤ Cp−a1µ(Mp),

where C = C(B) > 0 is a constant, and for every X ∈ M′
p the images

F t(X) for t = 1, . . . , B log p never appear in cells Mr with r > p1−a2.

This lemma can be applied to Mp = F−i(Mp,i) and it gives a subset
M ′

p,i ⊂ Mp,i of measure

µ(M ′
p,i) ≥

(

1 −O(p−a1)
)

µ(Mp,i)

such that the images of points X ∈ M ′
p,i will move through cells Mp′,i′

for some p′ < p1−a2 until they make B log p returns to M. The set
Mp,i \M ′

p,i is then discarded and its measure is incorporated into χp =
O(p−3−a).

It is important to note that the returns of points X ∈ M ′
p,i to M

are separated by series of iterations of F , and each of these series
has length less than p1−a2 < n1−a2 . Hence, by the time when the
images of points X ∈ Mp,i \ M ′

p,i make B log p returns to M, only

< Bp1−a2 log p < Bn1−a2 log n iterations of the map F will have passed.
This number of iterations is o(n), so we will still have n−o(n) iterations
of F to go.

Now we consider those B log p returns to M assuming that B is
large enough. During the first half of that sequence of returns, i.e.,
during the first 1

2
B log p iterations of F , the images of our unstable

curves will grow exponentially (per number of returns to M), so that
the corresponding Z-function will decrease exponentially, and in the
end (i.e., after 1

2
B log p iterations of F) the Z-function will be of order

one, so get a proper standard family at that time.
Then during the second half, i.e., during the next 1

2
B log p iterations

of F , images of unstable curves in our proper standard family will
start making “full returns” to the hyperbolic set Λ0 used to define the
base of the Young tower, i.e., they will stretch completely across Λ0.
When a curve W stretches across Λ0, we register a “return” for points
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X ∈ W ∩ Λ0, take them out of circulation, and continue iterating
the rest of W , i.e., W \ Λ0, under F . The relative measure of the
remaining points (not yet stopped due to a “full return” to Λ0) will
decrease exponentially per number of returns to M (by a standard
argument used in the proof of the Coupling Lemma [11, Chapter 7]).
Thus at the end of our series of 1

2
B log p iterations of F those remaining

points constitute a subset of measure O(p−3−A) for some large A > 0,
so they can be discarder and their measure can be incorporated into
χp = O(p−3−a).

We denote by M ′′
p,i ⊂ M ′

p,i the set of points whose images do make a
“full return” to Λ0 during the above series of iterations; then

µ(M ′′
p,i) ≥

(

1 −O(p−a1)
)

µ(Mp,i).

We note that each point X ∈ M ′′
p,i makes a “full return” to ∆0 at a

certain time r(X), i.e., F r(X)(X) ∈ ∆0. Accordingly, M ′′
p,i = ∪rM

′′
p,i(r),

where M ′′
p,i(r) = {X : r(X) = r}.

The measure µ conditioned on F r
(

M ′′
p,i(r)

)

induces a probability
measure, we call it µp,i(r), on the base ∆0 of the Young tower ∆ = ∆F .
Due to the regularity properties dµp,i(r)/dµ∆ < C for some constant
C > 0, where µ∆ denotes the invariant measure on the tower ∆. Hence
further images of the measure µp,i(r) under the tower dynamics will
be absolutely continuous with respect to µ∆ with densities bounded
by the same constant C. Since r < n, the measure µ conditioned on
F n

(

M ′′
p,i(r)

)

induces a probability measure on the Young tower ∆ with
density ≤ C with respect to µ∆. Averaging over r implies that the
measure µ conditioned on F n

(

M ′′
p,i

)

induces a probability measure on
∆ with density ≤ C.

Now recall that Λ0 ⊂ M1, so the base of the tower corresponds to
points in M1. Points in Mq,j have to make at least j + 1 iterations
in the past to get to M1 and at least q − j iterations in the future
to get to M1, i.e., it will take at least q/2 > m/2 iterations to get to
M1 either in the past or in the future. Thus the set ∪q>m ∪q−1

j=0 Mq,j

corresponds to kth columns ∆(k) of the tower with k ≥ m/2, and the
combined µ∆-measure of those columns is O(1/m). Therefore

µ
(

F n(M ′′
p,i) ∩ (∪q>m ∪q−1

j=0 Mq,j)
)

= O
(

µ(Mp,i)/m
)

which completes the proof of Lemma 4.1. �

We note that in the above proof we only needed to transform the
images of M ′′

p,i to the set Λ0 corresponding to the base of the Young
tower ∆, it did not matter how long we iterated them further. Thus
we can replace F n with F K with K = Bn1−a2 log n.
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In particular, the measure µ conditioned on F K
(

M ′′
p,i(r)

)

induces a
probability measure on the Young tower ∆ with density ≤ C with re-
spect to the invariant measure µ∆. Now further images of this measure
will converge to µ∆ at a polynomial rate, i.e., after N ≥ 1 iterations
of F they will be O(1/N)-close to µ∆. This follows from Young’s cou-
pling argument [32] in a non-invertible setting, and can be extended to
the present (hyperbolic, invertible) case by an approximation argument
([21], [24, Appendix B]). As a result, we obtain

Corollary 4.3. We have

(4.2)

∫

Mp,i

A ◦ F K+N dµ = µ(Mp,i)
[

µ(A) + O(1/N)
]

+ χp

where K = Bn1−a2 log n and χp = O(p−3−a), as before.

Lastly, all our estimates apply to the inverse map F−1, too.

5. Proof of Lemma 3.1

First, we derive a crude estimate by “brute force”, i.e., by using
the absolute values of the function A. That estimate will be a little
unsatisfactory, and we will then take extra steps to improve it.

Recall that in Lemma 3.1 we need to estimate additions and removals
in the course of replacing the constant time limits ±n in (3.2) with the
variable time limits n±(X) in (3.5).

Note that additions occur when n+(X) > n, i.e., when i+j′+1 < q′.
In that case we add products A(X)A

(

F n+k(X)
)

for k = 1, . . . , q′ −
(i + j′ + 1). Now suppose F n(X) ∈ Mq,j for some q = q(X) ≥ 1 and
j = j(X) ∈ [0, q−1]. We see that q = q′ and j = j′+i. Then the points
F n+k(X) from the above products are in the cells Mq,j+1, . . . , Mq,q−1.
These are the last q − j − 1 cells in the series Mq,0, . . . , Mq,q−1.

We can phrase it differently. Suppose, as before, X ∈ Mp,i and
F n(X) ∈ Mq,j (we do not use q′ and j′ anymore). Then we will need to
add terms if and only if j ≥ i, and precisely we will add the products

(5.1) A(X)A
(

F n+1(X)
)

, . . . , A(X)A
(

F n+q−j−1(X)
)

using the points F n+1(X), . . ., F n+q−j−1(X) from the cells Mq,j+1, . . .,
Mq,q−1, respectively, i.e., until the current column of cells ends. Thus
points from the “end” of every column of cells will be added more
frequently than those from its “beginning”; more precisely points from
Mq,j may need to be added j times. Hence we get the total upper
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bound on the additions:

(5.2) ‖A‖2
∞

n/10
∑

q=1

q−1
∑

j=0

jµ(Mq) ≤ ‖A‖2
∞

n/10
∑

q=1

q2µ(Mq) = O(log n).

This is a little unsatisfactory, as we need O(1), and we will improve
our estimate (5.2) next.

Note that we have not used any mixing properties of the map F
in deriving (5.2). Due to mixing we expect the average values of the
product (5.1) be much smaller than ‖A‖2

∞.
Suppose for a moment that we will add the products (5.1) whenever

F n(X) falls into Mq,j (regardless of the condition j ≥ i). Thus we
will be adding a little more often than according to our actual rules
expressed by (3.6).

Then effectively for each q = 1, . . . , n/10 and j = 0, . . . , q−1 we will
add the terms

(5.3) µ
(

A|Mq,j
· (A ◦ F−n−s−1)

)

for s = 0, . . . , j

to the sum (3.2). These are correlations, which can be estimated by
Corollary 4.3 applied to the map F−1, and we get the desired bound

O
(n/10

∑

q=1

q−1
∑

j=0

j
∑

s=0

[µ(Mq,j)

n
+

1

q3+a

]

)

= O(1).

Now we need to estimate the total contribution of the extra additions
that were introduced above, contrary to the requirement j ≥ i. Those
extra additions correspond to the cases where j < i, i.e., where X ∈
Mp,i with some i > j. These extra additions will be estimated by
“brute force”, i.e., by the absolute values of A. Their total contribution
is bounded by

‖A‖2
∞

n/10
∑

q=1

q−1
∑

j=0

n/10
∑

p=j+2

p−1
∑

i=j+1

(q − j)µ
(

F n(Mp,i) ∩ Mq,j

)

≤ ‖A‖2
∞

n/10
∑

q=1

q−1
∑

j=0

(q − j)µ
(

(

∪n/10
p=j+2 ∪p−1

i=0 Mp,i

)

∩ F−n(Mq,j)
)

Now the estimate (4.1) can be applied to the inverse map F−n; it gives
the bound

const ‖A‖2
∞

n/10
∑

q=1

q−1
∑

j=0

(q − j)
(

q−3j−1 + q−3−a
)

= O(1)

which is small enough to be incorporated in the error term of (3.2).
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This completes our estimation of the additions that we have to make
to convert (3.2) to (3.5).

The analysis of the removals is very similar, we only sketch it. Sup-
pose, as before, X ∈ Mp,i and F n(X) ∈ Mq,j. Then we will need to
remove terms if and only if i > j. More precisely, we will need to
remove at least j + 1 terms, down to the bottom of the column of cells
into which the point F n(X) falls. We may need to remove more, as
we need to go down to the bottom of the column into which the point
F n−i(X) falls. But in any case we will not remove more than i terms.
So we will remove

(5.4) A(X)A
(

F n−1(X)
)

, . . . , A(X)A
(

F n−i′(X)
)

for some i′ ∈ [j +1, i]. Note that the condition i > j implies p > i > 0,
i.e., p ≥ 2.

Again, suppose we remove a little more than our rules dictate, i.e.,
we will remove all the products

A(X)A
(

F n−1(X)
)

, . . . , A(X)A
(

F n−i(X)
)

whenever X ∈ Mp,i with p ≥ 2 (regardless of the condition i > j).
Then effectively, for each p = 2, . . . , n/10 and i = 1, . . . , p − 1 we will
subtract the terms

(5.5) µ
(

A|Mp,i
· (A ◦ F n−s)

)

for s = 1, . . . , i

from the sum (3.2). These are correlations that can be readily esti-
mated by Corollary 4.3, now applied to forward iterations of F .

It remains to estimate the extra removals that we had to make in
order to form complete correlations (5.5). Those extra removals are
made whenever F n(X) ∈ Mq,j with j ≥ i. We will estimate them by
“brute force”, i.e., by the absolute value of A Their total contribution
is bounded by

‖A‖2
∞

n/10
∑

p=1

p−1
∑

i=0

n/10
∑

q=i+1

q−1
∑

j=i

iµ
(

Mp,i ∩ F−(n−1)(Mq,j)
)

≤ ‖A‖2
∞

n/10
∑

p=1

p−1
∑

i=0

iµ
(

F n−1(Mp,i) ∩
(

∪n/10
q=i+1 ∪q−1

j=0 Mq,j

)

)

Now the estimate (4.1) gives the bound

const ‖A‖2
∞

n/10
∑

p=1

p−1
∑

i=0

i
(

p−3i−1 + p−3−a
)

= O(1)

which is small enough to be incorporated in the error term of (3.2).
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This completes our estimation of the removals that we have to make
to convert (3.2) to (3.5).

6. Proof of Lemma 3.3

We need to compare the correlation sum (3.8) with a variable time
limit, k+(X), to the correlation sum (3.9) with a fixed time limit, 2n.
Since 2n > k+(X) for any point X ∈ M1,n/10, we need to show that

(6.1) µ

(

A1, n
10
·
(

2n
∑

k=k+(X)+1

A ◦ Fk
)

)

= O(1).

We can replace µ with ν, as these two measures are proportional on
M. Then we can rewrite the left hand side of (6.1) as follows:

(6.2) µ

(

A|M̃ ·
(

2n
∑

k=k+(X)+1

A ◦ Fk
)

)

,

where M̃ =
∑n/10

m=1 Mm, and we assume that the map F and the function
k+ are naturally extended to M by the rules

(6.3) F(X) = F
(

Π(X)
)

and k+(X) = k+
(

Π(X)
)

where Π(X) = F−iX whenever X ∈ Mm,i is, in a sense, a natural
projection of M onto M; see Fig. 1.

We will describe the expression (6.2) differently. First, recall that
k+(X) for X ∈ M1,n/10 was defined in Section 3 so that

k+(X)
∑

k=0

R(FkX) = n+(X) = n + q′ − j′ − 1,

where we use the notation of Section 3, according to which X ∈ Mp,i

and T n(Π(X)) ∈ Mq′,j′. Therefore k+(X) can be defined by

(6.4)

k+(X)−1
∑

k=0

R(FkX) < n ≤
k+(X)
∑

k=0

R(FkX).

or, by using shorthand notation Sk =
∑k−1

i=0 A ◦ F i, we have

Sk+(X)R(X) < n ≤ Sk+(X)+1R(X).

With the extension (6.3), and a similar extension of R defined by

R(X) = R
(

Π(X)
)

, all the above formulas apply to every point X ∈ M̃ .
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By changing variable Y = F n(X) we can rewrite (6.2) as

(6.5) µ

(

(

A ◦ F−n(Y )
)

·
(

n∗(Y )
∑

k=0

A ◦ Fk
(

F r∗(Y )(Y )
)

)

)

or equivalently

(6.6) µ

(

(

A ◦ F−n(Y )
)

·
(

K∗(Y )
∑

k=r∗(Y )

A ◦ F k(Y )
)

)

.

The number of summands in (6.2) and (6.5) must be the same, so
n∗(Y ) = 2n − k+(F−nY ) − 1, though n∗(Y ) and K∗(Y ) will not be so
important to us. We will determine (and modify) r∗(Y ) next.

As in Section 3, let X ∈ Mp,i and F n(Π(X)) = F n−i(X) ∈ Mq′,j′.
Then r∗(Y ) = q′ − j′ − i, in accordance with (6.4). In other words,
the summation in (6.6) begins when the future trajectory of the point
F n−i(X) first returns to the base M. We want to modify r∗(Y ) so
that the summation will begin when the future trajectory of the point
F n(X) first returns to the base M. Let Y = F n(X) ∈ Mq,j , as in
Section 3. According to the above remarks, we define r∗new = q − j.
There are two cases:

Case 1: i ≤ j. Then F n−i(X) is in the same column of cells as F n(X),
hence q′ = q, j′ = j − i and r∗new = r∗, so no modification is needed.

Case 2: i > j. Then n− i < n− j and moreover n− i+ q′− j′ ≤ n− j.
Thus we need to remove from (6.6) the terms

(6.7) A(X)A
(

F n−i+q′−j′(X)
)

, . . . , A(X)A
(

F n+q−j−1(X)
)

which form (one or several) complete columns.

The procedure for addition and removal of similar terms was well
developed in Section 5; we only sketch our main steps here.

First, we remove all the terms

A(X)A
(

F n−i+1(X)
)

, . . . , A(X)A
(

F n(X)
)

in both cases 1 and 2 (i.e., regardless of the condition i > j). The
averages of the above products are correlations whose contribution to
(6.6) is O(1) based on Corollary 4.3.

Second, in Case 2 (when i > j) we remove the products

A(X)A
(

F n+1(X)
)

, . . . , A(X)A
(

F n+q−j−1(X)
)

.
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Their contribution is estimated by “brute force” as

‖A‖2
∞

n/10
∑

q=1

q−1
∑

j=0

n/10
∑

p=j+2

p−1
∑

i=j+1

(q − j)µ
(

F n(Mp,i) ∩ Mq,j

)

≤ ‖A‖2
∞

n/10
∑

q=1

q−1
∑

j=0

(q − j)µ
(

(

∪n/10
p=j+2 ∪p−1

i=0 Mp,i

)

∩ F−n(Mq,j)
)

which by (4.1) applied to the inverse map F−n gives

const ‖A‖2
∞

n/10
∑

q=1

q−1
∑

j=0

(q − j)
(

q−3j−1 + q−3−a
)

= O(1).

Third, in Case 1 (when i ≤ j) we add back the products

A(X)A
(

F n−i+1(X)
)

, . . . , A(X)A
(

F n(X)
)

Their contribution is estimated by “brute force” as

‖A‖2
∞

n/10
∑

p=1

p−1
∑

i=0

n/10
∑

q=i+1

q−1
∑

j=i

iµ
(

F n(Mp,i) ∩ Mq,j

)

≤ ‖A‖2
∞

n/10
∑

p=1

p−1
∑

i=0

iµ
(

F n(Mp,i) ∩
(

∪n/10
q=i+1 ∪q−1

j=0 Mq,j

)

)

which by (4.1) gives an upper bound of

const ‖A‖2
∞

n/10
∑

p=1

p−1
∑

i=0

i
(

p−3i−1 + p−3−a
)

= O(1).

Lastly, in Case 2 (when i > j and i ≥ q′−j′) we add back the products

A(X)A
(

F n−i+1(X)
)

, . . . , A(X)A
(

F n−i+q′−j′−1(X)
)

.

Their contribution is estimated by “brute force” as

‖A‖2
∞

n/10
∑

q′=1

q′−1
∑

j′=0

n/10
∑

p=q′−j′

p−1
∑

i=q′−j′

(q′ − j′)µ
(

F n(Mp,i) ∩ Mq′,j′
)

≤ ‖A‖2
∞

n/10
∑

q′=1

q′−1
∑

j′=0

(q′ − j′)µ
(

(

∪n/10
p=q′−j′ ∪

p−1
i=0 Mp,i

)

∩ F−n(Mq′,j′)
)

which by (4.1) applied to the inverse map F−n gives

const ‖A‖2
∞

n/10
∑

q′=1

q′−1
∑

j′=0

(q′ − j′)
(

[q′]−3[q′ − j′]−1 + [q′]−3−a
)

= O(1).
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As a result, we can replace r∗ with r∗new and rewrite (6.5) as

(6.8) µ

(

(

A ◦ F−n(Y )
)

·
(

n∗(Y )
∑

k=0

A ◦ Fk
(

F ◦ Π(Y )
)

)

)

+ O(1).

We will denote Π+ = F ◦ Π. This is also a projection of M onto M,
but it takes every point X ∈ M to its first future image in M.

One may wonder why we wanted to transform one sum of correlations
with a variable upper limit into another, i.e., (3.7) into (6.5). The
reason is that k+(X) in (3.7) was determined by the future of the point
X, so it was constant on stable manifolds. On the contrary, n∗(Y ) in
(6.8) is determined by the past of the point Y , so it is constant on
unstable manifolds; this will be essential for the next steps.

Let Wα ⊂ M̃ denote the family of all unstable manifolds for the map
F with conditional probability measures ρα on them; here α ∈ A is
some index set. Let λ denote the respective factor measure on A. We
denote by n∗(Wα) the common value of n∗(Y ) on Wα. Now (6.8) can
be written as

(6.9)

∫

A

[n∗(Wα)
∑

k=0

ρα

(

(A ◦ F−n)(A ◦ Fk ◦ Π+)
)

]

dλ + O(1).

Recall that we need to show that this expression is O(1).
The function A ◦ F−n is almost constant on each Wα, so its fluctua-

tions can be incorporated into the density of ρα. In other words, it is
enough to show that

(6.10)

∫

A

[n∗(Wα)
∑

k=0

Π+ρ′
α

(

A ◦ Fk
)

]

dλ = O(1)

for any regular probability measures ρ′
α on the unstable manifolds Wα

with the above factor measure λ. The rest of this section is devoted to
proving (6.10).

Note that Π+ρ′
α is a smooth probability measure on the curve Π+Wα ⊂

M, which is an unstable manifold for the map F . Thus sum within
brackets in (6.10) is the sum of integrals of a fixed function, A, with
respect to the images, under the iterations of F , of a standard pair,
(Π+Wα, Π+ρ′

α). We consider proper standard pairs first.

Lemma 6.1. For any proper standard pair (W, ρ) in M we have

(6.11)

N
∑

k=0

ρ
(

A ◦ Fk
)

= O(1)

uniformly in (W, ρ) and N ≥ 0.
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Proof. The Z-function of (W, ρ) is ≤ Cp (cf. Section 2), so ρ(Mm) ≤
Cm−7/3 for some absolute constant C > 0 because the width of Mm

in the unstable direction is O(m−7/3). This implies

ρ(|A|) ≤ C‖A‖∞
∑

m≥1

m/m7/3 ≤ CA,

where CA > 0 is independent of (W, ρ).
The images under forward iterations of F of a proper standard pair

(W, ρ) are proper standard families (whose Z-function is ≤ Cp), so the
above argument gives ρ(|A ◦ Fk|) ≤ CA for all k ≥ 0.

Next, after k iterations of F , most of the measure Fkρ will be coupled
with the F -invariant measure ν, due to the Coupling Lemma (Sect. 2).
More precisely, the fraction of Fkρ which has not been coupled with
ν within the first k/2 iterations of F , has norm ≤ Cθk for some ab-
solute constants C > 0 and θ ∈ (0, 1). For brevity let us introduce
the notations ρk = Fkρ, and ρ̂k for the uncoupled part of ρk. Know-
ing that ρ̂k(M) ≤ Cθk, we would like to estimate ρ̂k(|A|), where A
is unbounded: its value is proportional to m on the cell Mm. The
worst case scenario is when ρk gives the largest possible weight to the
“highest” cells ∪m≥m0,k

Mm, and all this weight corresponds to the un-
coupled part ρ̂k. However, as ρk is a proper standard family, by the
above argument we have ρk(Mm) ≤ Cm−7/3 uniformly in k. Hence to
estimate ρ̂k(|A|) we set

Cθk = ρ̂k(M) = ρ̂k(∪m≥m0,k
Mm) =

∞
∑

m=m0,k

Cm−7/3 = Cm
−4/3
0,k

so that m0,k = Cθ−3k/4, and we have

ρ̂k(|A|) ≤ C
∞

∑

m=m0,k

m · m−7/3 = Cm
−1/3
0,k = Cθk/4.

Now due to the coupling we have

(6.12)
∣

∣ρ(A ◦ Fk) − ν(A)
∣

∣ ≤ χ0 + χ1 + χ2,

where χ0 accounts for ρ̂k – the “uncoupled” part of ρk – which we have
estimated as |χ0| ≤ Cθk/4. Similarly, χ1 accounts for the “uncoupled”
part of ν, for which we have

|χ1| ≤ sup
B : ν(B)<Cθk

∫

B

|A| dν ≤ CAθk/2

by a similar argument, using that ν(Mm) = O(m−3). Finally, the
term χ2 in (6.12) accounts for the variation of A on stable manifolds
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containing pairs of points that have been coupled together. If two
points have been coupled during the first k/2 iterations of F , then
during the next k/2 iterations of F their images get exponentially close,
i.e., at the kth iteration of F for any pair of coupled points X, Y we have
dist(X, Y ) ≤ Cθk for some absolute constants C > 0 and θ ∈ (0, 1). If
X, Y ∈ Mm, then

|A(X) −A(Y )| ≤
m−1
∑

i=0

|A(F i(X)) − A(F i(Y ))| = O(mθγAk),

where γA > 0 is the Hölder exponent of A. Therefore

|χ2| = O
( ∞

∑

m=1

mθγAk

m3

)

= O(θγAk).

Thus all the terms in (6.12) are O(θk) for some θ ∈ (0, 1), uniformly in
(W, ρ). Summing up over k proves (6.11). �

If all the standard pairs (Π+Wα, Π+ρ′
α) were proper, then integration

with respect to λ would readily give us (6.10). But there are arbitrarily
short unstable manifolds in M, which cannot be proper; they will be
handled next.

For any point X ∈ Π+Wα let n†(X) denote the first iteration of F

such that F n†(X)(X) ∈ M and the unstable manifold W ′ of the map

F that contains the point F n†(X)(X) is long enough to make a proper
standard pair with any regular probability measure on it. The image
F n†(X) ◦Π+ρα restricted to W ′ and conditioned on W ′ will be a smooth
probability measure ρ′, and (W ′, ρ′) will make a proper standard pair.

It is known that n†(X) is finite ρα-a.e. (we will also see this in the
proof of Lemma 6.2). Note that n†(X) is constant on the subcurve

F−n†(X)(W ′) ⊂ Π+Wα. Thus Π+Wα is divided into subcurves, each
of which is transformed into a proper standard family in M under a
certain iteration of F .

Now further images of the proper standard pair (W ′, ρ′) can be han-
dled by Lemma 6.1. It remains to account for the n†(X) iterations of
each point X ∈ Π+Wα before it falls into a proper standard pair. This
will be done by “brute force”, i.e., by the absolute value of A. It is clear
from (6.10) that the contribution from those iterations are bounded by
‖A‖∞n†(X). Thus it remains to show that

∫

A
Π+ρ′

α(n†) dλ = O(1).
Since the density of ρ′

α with respect to ρα cannot exceed ‖A‖∞, this is
equivalent to

(6.13)

∫

A

Π+ρα(n†) dλ = O(1).
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It may happen that n†(W ) > n∗(Wα) for some X ∈ Π+Wα, so (6.13)
might be an overestimation. But since the integrand in (6.13) is posi-
tive, it would not hurt. Also note that if X ∈ M already belongs to a
proper standard pair, then n†(X) = 0, so (6.13) includes such points,
too. The estimate (6.13) can be stated, equivalently, as follows:

Lemma 6.2. We have µ(n† ◦ Π+) = Π+µ(n†) < ∞.

In other words, the average number of iterations of F it takes for
points Y ∈ M to get into long unstable manifolds is finite. Note that
averaging is done with respect to the projected measure Π+µ, rather
than the invariant measure ν of the induced map F . These measures
are different: Π+µ(Mm) ≍ 1/m2 while ν(Mm) ≍ 1/m3.

Proof. Let ∆ = ∆F again denote the Young tower modeling the map
F : M → M . Throughout the proof, we will us the notations intro-
duced in section 4 concerning the Young tower. That is, T : ∆F → ∆F

will denote the tower map, µ∆ the invariant measure on ∆, ∆0 the
base, ∆m the mth level, and ∆(m) the mth column of the tower. Let,
furthermore, ∆M ⊂ ∆ denote the part of the tower corresponding to
the subset M ⊂ M .

For each point Y ∈ ∆ denote

kM = min{k ≥ 1: T k(Y ) ∈ ∆M}

the first time the trajectory of Y visits ∆M and

k0 = min{k ≥ 1: T k(Y ) ∈ ∆0}

the first time the trajectory of Y returns to the base ∆0.
Suppose Y ∈ ∆ models a point X ∈ M . Then T kM(Y )(Y ) models

the point Π+(X). Next, whenever T n(Y ) ∈ ∆0, the corresponding
point F n(X) belongs to the basic hyperbolic rectangle (which Young
called a horseshoe with hyperbolic structure) on which the tower is
constructed. In particular, F n(X) belongs to a long enough unstable
manifold which qualifies for a proper standard pair. As a result,

n†(Π(X)
)

≤ k0

(

T kM(Y )(Y )
)

= k0(Y ) − kM(Y ).

By the way, note that k0(Y ) < ∞ for every Y ∈ ∆, hence n†(X ′) < ∞
for a.e. point X ′ ∈ M, as we mentioned earlier.

Now to prove Lemma 6.2 it will be enough to show that

(6.14) µ∆(k0 − kM) < ∞.
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Next we prove (6.14) for our Young tower. Note that k0 = m − i + 1
on ∆i,m, hence

(6.15) µ∆(k0) ∼
∑

m

m2µ∆(∆0,m) = ∞,

therefore subtracting kM in (6.14) is essential.
Subtraction of kM requires a delicate procedure. We claim that each

set ∆0,m can be divided into a good part ∆g
0,m and a bad part ∆b

0,m with
the following properties. First, the relative measure of the bad part is
small, i.e., µ∆(∆b

0,m) < Cm−3−a for some constants C, a > 0, thus its

contribution to (6.14) and (6.15) is finite, because
∑

m m2µ∆(∆b
0,m) <

∞, hence it can be neglected.
Second, for each point Y ∈ ∆g

0,m in the good part there are 0 ≤
p < q ≤ m such that T p(Y ) models a phase point X ∈ Mq−p hence
F(X) = F q−p(X). In addition, we have max{p, m − q} < Cm1−a for
some constants C, a > 0. As a consequence, for each Y ∈ ∆g

0,m and

j ∈ [p, q] we have kM(T jY ) = q − j and hence k0(T
jY ) − kM(T jY ) =

m− q < Cm1−a. Thus the contribution of the points Y, TY, ..., Tm−1Y
to (6.14) will be bounded by mp + Cm1−a(m − p) < 2Cm2−a. Hence

µ∆(k0 − kM) ≤ 2C
∑

m

m2−aµ∆(∆0,m) < ∞

as required. This completes the proof of (6.14).
It remains to construct the good and bad parts of ∆0,m. We follow

the argument in [15, Sect. 5]. For each Y ∈ ∆0,m denote by R(Y ) =
#{0 ≤ i ≤ m : T i(Y ) ∈ ∆M} the number of times the trajectory of
Y visits ∆M as it moves up the column. Points Y ∈ ∆0,m for which
R(Y ) > C log m, where C > 0 is a large constant, make a set of measure
< m−3−a, where a = a(C) > 0 (see [15, p. 309]), so they are included
into the bad part. For other points the largest interval [p, q] ⊂ [0, m]
between successive returns to ∆M has length r = q−p ≥ m/(C log m).
Thus the point T p(Y ) models a phase point X ∈ Mr.

Next we use Lemma 4.2 and its notation. If X ∈ Mr \ M′
r, then

we include Y into the bad part, too. If X ∈ M′
r, then the first C log r

images of X under F can only visit cells Ms with s < r1−a2 . Hence
the next C log r ≈ C log m intervals between successive returns to ∆M
within our column are shorter than r1−a2 . This implies m−q < Cm1−a

for some constant C, a > 0. Similarly, we apply Lemma 4.2 to F−1 and
handle the first C log r images of X under F−1, and this will ensure
p < Cm1−a. This completes the proof of (6.14) and Lemma 6.2. �

Now (6.10) is fully established and Lemma 3.3 is proved.
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Appendix

The dynamics in dispersing billiards with cusps is characterized by
intermittence: periods of chaotic bounces away from cusps intersperse
with long series of collisions deep in a cusp; during the latter the ob-
served values A◦F n change slowly. Here we describe a simple stochastic
process which exhibits similar features and show that the doubling ef-
fect takes place as well.

Our stochastic process ξ(t) has continuous time t > 0 and takes
values ±1. Switching from one value to the other occurs at random
moments 0 < T0 < T1 < · · · , and intervals between switching times,
Lk = Tk − Tk−1, are independent identically distributed random vari-
ables with a polynomial tail bound P(Lk > x) ∼ cx−2 for x → ∞. We
denote by E(Lk) = µ their common mean value.

We note that T0 can be chosen so that the sequence {Tk} will be
stationary in the following sense. For each t > 0, denote m(t) =
min{m ≥ 0: Tm > t} and H(t) = Tm(t) − t. Then the stationarity
means that

P(H(t) > u) = P(T0 > u)

does not depend on t (for each u > 0). By [19], Chapter XI, Equation
(4.6) we have

P(T0 > t) =
1

µ

∫ ∞

t

P (Lk > x) dx ∼ c

µt
.

Now we define our process ξ(t). Let ξ0, ξ1, . . . be i.i.d. random vari-
ables taking values ±1, each with probability 1/2. We set ξ(t) = ξk if
t ∈ [Tk−1, Tk] and ξ(t) = ξ0 if t < T0.

Now consider S(T ) =
∫ T

0
ξ(t) dt. Denote Lk = Lkξk and Sm =

∑m
k=0 Lk. Then obviously S(T ) ∼ Sm(T ) as T → ∞. By [19], Section

XVII.5, Theorem 2 the sequence Sm/
√

mVm converges in distribution
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to the standard normal law N(0, 1), where

(A.1) Vm =

∫

√
cm

1

x2 dP(Lk < x) ∼ c lnm.

By the Law of Large Numbers, m(T ) ∼ T/µ, so that

S(T )√
T ln T

⇒ N

(

0,
c

µ

)

as T → ∞. On the other hand,

E
(

S2(T )
)

= 2

∫∫

0<s<t<T

E(ξ(s)ξ(t)) ds dt.

Since ξk’s are independent, we have

E(ξ(s)ξ(t)) = P
(

H(s) > t − s
)

= P(T0 > t − s).

Accordingly

(A.2) E
(

S2(T )
)

∼ 2

∫

0<s<T

c

µ
ln(T − s) ds ∼ 2c

µ
T ln T

hence we observe the doubling effect again. It can be traced to the
upper limit

√
cm in the integration (A.1). If we change it to cm,

then Vm would double and would match the asymptotics of the second
moment (A.2).

The fact that the variance of the limit distribution is only affected
by values of Lk ≤ √

cm is similar to the fact that values of our in-
duced function A larger than

√
n do not affect the limit distribution

of (SnA)/
√

n log n; see the end of Section 3.
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30 P. BÁLINT, N. CHERNOV, D. DOLGOPYAT

[8] Bunimovich L. A., Sinai Ya. G., and Chernov N. I. Statistical properties of

two-dimensional hyperbolic billiards, Russ. Math. Surv. 46 (1991), 47–106.
[9] Chernov N. Decay of correlations and dispersing billiards, J. Stat. Phys. 94

(1999), 513–556.
[10] Chernov N. and Dolgopyat D. Anomalous current in periodic Lorentz gases

with infinite horizon, Russ. Math. Surv., 64 (2009), 73–124.
[11] Chernov N. and Markarian R., Chaotic Billiards, Mathematical Surveys and

Monographs, 127, AMS, Providence, RI, 2006. (316 pp.)
[12] Chernov N. and Markarian R., Dispersing billiards with cusps: slow decay of

correlations, Comm. Math. Phys., 270 (2007), 727–758.
[13] Chernov N. and Zhang H.-K., Billiards with polynomial mixing rates, Nonlin-

earity 18 (2005), 1527–1553.
[14] Chernov N. and Zhang H.-K., A family of chaotic billiards with variable mixing

rates, Stochast. Dynam. 5 (2005), 535–553.
[15] Chernov N. and Zhang H.-K., Improved estimates for correlations in billiards.

Commun. Math. Phys., 277 (2008), 305–321.
[16] Courbage M., Edelman M., Saberi Fathi S. M., and Zaslavsky G. M., Problem

of transport in billiards with infinite horizon, Phys. Rev. E 77 (2008), 036203.
[17] Dettmann, C., New horizons in multidimensional diffusion: The Lorentz gas

and the Riemann Hypothesis, J. Stat. Phys. 146 (2012), 181–204
[18] Durrett R., Probability: Theory and Examples, 4th Ed., Cambridge U. Press,

2010.
[19] Feller W. An introduction to probability theory and its applications, Vol. II. Sec-

ond edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669
pp.

[20] Gallavotti G. and Ornstein D., Billiards and Bernoulli schemes, Comm. Math.
Phys. 38 (1974), 83–101.
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