
Lorentz gas with thermostatted walls

N. Chernov and D. Dolgopyat

Abstract. In a planar periodic Lorentz gas, a point particle (electron)
moves freely and collides with fixed round obstacles (ions). If a constant
force (induced by an electric field) acts on the particle, the latter will ac-
celerate, and its speed will approach infinity [13, 14]. To keep the kinetic
energy bounded one can apply a Gaussian thermostat, which forces the
particle’s speed to be constant. Then an electric current sets in and one
can prove Ohm’s law and the Einstein relation [15, 18, 19]. However, the
Gaussian thermostat has been criticized as unrealistic, because it acts
all the time, even during the free flights between collisions. We propose
a new model, where during the free flights the electron accelerates, but
at the collisions with ions its total energy is reset to a fixed level; thus
our thermostat is restricted to the surface of the scatterers (the ‘walls’).
We rederive all physically interesting facts proven for the Gaussian ther-
mostat in [15, 18, 19], including Ohm’s law and the Einstein relation.
In addition, we investigate the superconductivity phenomenon in the
infinite horizon case.
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1. Introduction and historic overview

We study a two-dimensional periodic Lorentz gas. It consists of a particle
that moves on a plane between a periodic array of fixed scatterers (the latter
are disjoint convex domains with C3 boundaries). The particle bounces off
the scatterers according to the rule ‘the angle of incidence is equal to the
angle of reflection’. The particle may be subject to an external force; see
Fig. 1. Lorentz gas models the motion of electrons in metals [25].
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Figure 1. Lorentz gas with a finite horizon and an external force.

We denote by D̃ the area available to the moving particle, i.e. the plane
R2 minus the union of all the scatterers. Due to the periodicity, the plane
can be covered by replicas of a fundamental domain (unit cell) K ⊂ R2 so

that D̃ is the union of disjoint copies of D = D̃ ∩ K. We denote those copies
by Di (we number them arbitrarily), i.e. D̃ = ∪iDi. Let π̃ denote the natural

projection of D̃ onto D. We will use tildas for objects on the unbounded table.
In particular, we denote points in D̃ by q̃ and those in D by q.

Lorentz gases without external forces. First we review some known facts.
Suppose the particle moves freely between collisions, then its speed remains
constant (and we set it to unity). Due to the periodicity of D̃, the trajectory
of the particle can be projected onto D, and one gets a billiard in the compact
table D with periodic boundary conditions. It is known as Sinai billiard and
has been intensively studied since 1970; see [29].

Let q = q(t) denote the position and v = dq/dt the velocity of the
moving particle in D. Since ‖v‖ = 1, the phase space is a 3D compact mani-
fold Ω = D× S1. The resulting flow Φt on Ω is Hamiltonian; it preserves the
Liouville measure µ, which has a uniform density on Ω.

It is common to study flows by using a cross-section and the respective
return map. In billiards, those can be constructed naturally on the collision
space

M =
{

(q,v) : q ∈ ∂D, ‖v‖ = 1, v points inside D
}

consisting of all post-collisional vectors. The return map F : M → M takes
the particle right after a collision to its state right after the next collision; F
is called the collision map.

We use the standard coordinates (r, ϕ) in M, where r is the arc length
parameter on ∂D and ϕ ∈ [−π/2, π/2] the angle between the outgoing veloc-
ity vector v and the outward normal to ∂D at the collision point q; cf. [7, 17]
and Figure 3 below. The map F preserves a smooth probability measure ν
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on M given by

dν = cν cosϕdr dϕ, cν =
[

2 · length(∂D)
]−1

(1.1)

here cν is just the normalizing factor. For every X = (q,v) ∈ M let

τ(X) = min{t > 0: Φt(X) ∈ M} (1.2)

denote the time of the first collision of the trajectory starting at X . Now Φt

becomes a suspension flow constructed over the base map F : M → M under
the ceiling function τ .

Sinai proved [29] that the billiard flow Φt and the collision map F are
hyperbolic (i.e. have non-zero Lyapunov exponents), ergodic, and K-mixing.
Gallavotti and Ornstein [23] derived the Bernoulli property. Bunimovich and
Sinai [6, 7] studied the Central Limit Theorem and other statistical laws.
Young [31] and Chernov [8] established an exponential decay of correlations
for the map F ; see [10] for bounds on correlations for the flow Φt. In other
words, the Sinai billiards are highly chaotic in every mathematical sense.

Diffusion. We are mostly interested in the dynamics of the particle on the
infinite table D̃. We denote by q̃(t) the position of the moving particle in D̃,

and by q̃n the point of its nth collision with ∂D̃. Typically, both ‖q̃(t)‖ and
‖q̃n‖ grow to infinity as time goes on.

Let ∆n = q̃n+1− q̃n denote the displacement vector between collisions.
Note that q̃n = q̃0 + ∆0 + ∆1 + · · · + ∆n−1, thus based on the central
limit theorem one may expect q̃n/

√
n to converge to a normal distribution,

which would be just a classical diffusion law. This indeed happens when the
horizon is finite, i.e. when the free path between collisions with scatterers is
bounded. Fig. 1 illustrates this situation – the scatterers are large enough to
block the particle from all sides, so that it cannot move indefinitely without
collisions. (We note however that Fig. 1 shows a trajectory affected by an
external field, while in this subsection we describe a field-free model whose
trajectories between collisions must be straight lines.)

Theorem 1 ([6, 7]). Let D̃ have finite horizon. Suppose that the initial position
q̃(0) and velocity v(0) are chosen according to a smooth compactly supported
probability measure. Then
(a) q̃n/

√
n converges, as n→ ∞, to a normal distribution, i.e

q̃n/
√
n⇒ N (0,D)

with a non-degenerate covariance matrix D called diffusion matrix given by
the Green-Kubo formula:

D =

∞
∑

n=−∞
ν
(

∆0 ⊗ ∆n

)

(1.3)

where u ⊗ v denotes the ‘tensor product’ of two vectors, i.e. the product of
the column-vector u and the row-vector v.
(b) q̃(t)/

√
t converges, as t→ ∞, to another normal distribution,

q̃(t)/
√
t⇒ N (0, τ̄−1D)
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where τ̄ = ν(τ) is the mean free path given by

τ̄ = ν(τ) =
πArea(D)

length(∂D)
. (1.4)

The series (1.3) converges exponentially fast. See a recent exposition of
these facts in [17, Chapter 7]; for the proof of (1.4) see [17, Section 2.13].

Force

x

Figure 2. Lorentz gas with infinite horizon.

Super-diffusion. When the horizon is not finite, the particle can move freely
without collisions along infinite corridors stretching between the scatterers,
see Figure 2 (though see the remark before Theorem 1, it applies here, too).
Now Theorem 1 cannot hold because the central term in the Green-Kubo
series (1.3) diverges:

ν
(

∆0 ⊗ ∆0

)

= ∞,

thus the diffusion matrix (1.3) turns infinite. In this case the particle exhibits
an abnormal diffusion (often called ‘superdiffusion’); namely the correct scal-
ing factor is now

√
t log t, rather than

√
t:

Theorem 2 ([30, 15]). Let D̃ have infinite horizon. Suppose that the initial
position q̃(0) and velocity v(0) are chosen according to a smooth compactly
supported probability measure. Then
(a) We have the following weak convergence, as n→ ∞:

q̃n√
n logn

⇒ N (0,D∞),

where D∞ is called superdiffusion matrix given by the formula (1.5) below.
D∞ is non-degenerate iff there are two non-parallel corridors.
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(b) We have the following weak convergence, as t→ ∞:

q̃(t)√
t log t

⇒ N (0, τ̄−1D∞),

where τ̄ is again given by (1.4).

The part (a) is proved by D. Szász and T. Varjú [30], the part (b) by the
present authors [15]. The matrix D∞ is given by a simple explicit formula in
terms of the geometric characteristics of infinite corridors. Namely, suppose
that each infinite corridor in D̃ is bounded by two straight lines, each of which
is tangent to an infinite row of scatterers that are copies of one scatterer in
D; then such lines are trajectories of some fixed points X ∈ M : F(X) = X
(one such point is shown in Figure 8). Now we have

D∞ =
∑

X

cνw
2
X

2 ‖∆(X)‖ ∆(X) ⊗ ∆(X). (1.5)

where the summation is taken over all corridors and all respective fixed points
(note that there are four points X for each corridor). Here ∆(X) = ∆0(X)
is the displacement vector of X introduced earlier and wX is the width of the
corridor bounded by the trajectory of X .

Lorentz gases under external forces. Suppose a constant force E acts on the
particle, i.e. its motion is governed by equations

dq̃/dt = v, dv/dt = E. (1.6)

It is common to interpret E as an electrical field that drives electrons and
produces electrical current. Another popular physical model of this sort is
Galton board [24]. It is commonly pictured as an upright wooden board with
rows of pegs on which a ball rolls down under the gravitation force and
bounces off the pegs. See recent studies in [13, 14].

For convenience we choose the coordinate system so that the x axis is
aligned with the field, i.e. E = (E, 0) for some constant E > 0. Illustrations in
Fig. 1 and Fig. 2 show the trajectories of the particle affected by an external
force.

Equations (1.6) preserve the total energy
1
2‖v‖2 − 〈E, q̃〉 = E = const. (1.7)

In our coordinates the conservation law takes form
1
2‖v‖2 − Ex = E = const, (1.8)

where x denotes the x-coordinate of the particle. As the particle is driven
forward by the field, its x-coordinate grows, and so does its speed v = ‖v‖.

Despite the periodicity of the scatterers, the dynamics is not periodic,
i.e. it is not a factor of any dynamical system in the domain D with periodic
boundary conditions. In fact, the phase space Ω̃ of the system is an unbounded
3D manifold

Ω̃E = {(q̃,v) : q̃ = (x, y) ∈ D̃, ‖v‖2 = 2(Ex+ E)}.
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One can say that the motion of the particle on each domain Di ⊂ D̃ depends
on where Di is located; more precisely it depends on the x-coordinate of
points q̃ ∈ Di, the larger their x-coordinates, the faster the particle moves.

Suppose the particle is in Di at time t0, its x-coordinate is x0 and its
speed v0 (it is roughly v0 ∼ √

2Ex0). If we change the time variable by
t̂ = v0t, then the particle will have unit speed v̂0 = 1 at time t̂0 and it will
move in a rescaled field Ê = E/v0. Otherwise its trajectory will be the same.
Therefore we can approximate the particle’s trajectories in the domain Di
with large x-coordinates by those of the particle moving in D with speed
close to one, but in a weak external field.

In other words, the particle moves as if it always had unit speed but the

field Ê is space inhomogeneous – it gets weaker as the x-coordinate grows,
so that Ê = O(1/

√
x). Hence, as the particle moves on, it will behave more

and more like a billiard particle. Since the net displacement of the latter is
zero, the overall drift of our particle will tend to slow down.

As a result, the x-coordinate will not grow linearly in t. A detailed
analysis shows that x will only grow as t2/3, on average:

Theorem 3 ([13]). Let D̃ have finite horizon. Suppose that the initial position
q̃(0) and velocity v(0) are chosen according to a smooth compactly supported
measure on an energy surface {E = E0} where E0 is sufficiently large. Then
there is a constant c > 0 such that ct−2/3x(t) converges, as t → ∞, to a
random variable with density

3

2Γ(2/3)
exp

[

−z3/2
]

, z ≥ 0.

An explicit formula for c is given in [13, 15]. There exists a limiting dis-
tribution for t−2/3y(t), too, but it is given by a more complicated expression

[14]. The extension of this theorem to tables D̃ with infinite horizon remains
an open problem. Our paper is motivated by an attempt to solve this problem
– we believe our results will be useful.

Gaussian thermostat. Equations (1.6) and the resulting dynamics (Theo-
rem 3) clearly do not give a realistic description of the electrical current –
the real electrons do not accelerate indefinitely, and their average drift must
be linear in t. To keep the energy of the moving particle fixed (and to make
its drift proportional to t), Moran and Hoover [27] modified equations (1.6)
as follows:

dq̃/dt = v, dv/dt = E− ζv, (1.9)

where ζ = 〈E,v〉/‖v‖2. The friction term ζv is called the Gaussian ther-
mostat, it ensures that ‖v‖ = const at all times; again we will assume that
‖v‖ = 1. We also assume that the field is weak, i.e. E = (ε, 0) for a small
ε > 0.

The resulting dynamics is now truly periodic – it can be projected onto
the domain D with periodic boundary conditions, then we obtain a system
with the same phase space Ω = D × S1 and the same collision space M as
for the billiards discussed earlier. We denote by Φtε the resulting flow on Ω
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and by Fε the resulting collision map on M. Also let τε(X) denote the time
of the first collision of the trajectory starting at X ∈ M. And we denote
by ∆ε(X) = q̃1 − q̃0 the displacement of the particle moving in the infinite

domain D̃ before its next collision at ∂D̃.

Theorem 4 ([18, 19]). Let D̃ have finite horizon and ε be sufficiently small.
Then Fε is a hyperbolic map; it preserves a Sinai-Ruelle-Bowen (SRB) mea-
sure (a steady state) νε, which is ergodic and mixing. It is singular but positive
on open sets. The flow Φtε also preserves an SRB measure µε on Ω, which is
ergodic, mixing, and positive on open sets. The electrical current

J = lim
t→∞

q̃(t)/t = µε(v) = νε(∆ε)/τ̄ε

is well defined; here τ̄ε = νε(τε) is the mean free path for which we have
τ̄ε = τ̄ + O(ε). We have

J = 1
2τ̄ DE + o(ε), (1.10)

where D is the diffusion matrix of Theorem 1. We also have the following
weak convergence, as t→ ∞:

q̃(t) − Jt√
t

⇒ N (0,D∗
ε),

where D∗
ε is the corresponding diffusion matrix satisfying

D∗
ε = τ̄−1D + o(1). (1.11)

In physical terms, equation (1.10) can be regarded [18, 19] as classical
Ohm’s law: the electrical current J is proportional to the voltage E (to the
leading order). The fact that the electrical conductivity, i.e. 1

2τ̄ D in (1.10),
is proportional to the diffusion matrix D is known as Einstein relation.

If the horizon is not finite, then there are infinite corridors between
scatterers where the electrons move without collisions. Due to this ballistic
motion, the current and diffusion become abnormal in the following exact
sense:

Theorem 5 ([15]). Let D̃ have infinite horizon. Assume that the force E =
(ε, 0) is not parallel to any of the infinite corridors and ε is sufficiently small.
Then Fε is a hyperbolic map; it preserves an SRB measure (steady state) νε,
which is ergodic, mixing, and positive on open sets. The flow Φtε also preserves
an SRB measure µε on Ω, which is ergodic, mixing, and positive on open sets.
The electrical current

J = lim
t→∞

q̃(t)/t = µε(v) = νε(∆ε)/τ̄ε (1.12)

is well defined; here τ̄ε = νε(τε) is the mean free path for which we have
τ̄ε = τ̄ + O(εa) for some a > 0. We have

J = 1
2τ̄ | log ε|D∞E + O(ε) (1.13)
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where D∞ is the superdiffusion matrix of Theorem 2. We also have the fol-
lowing weak convergence, as t→ ∞:

q̃(t) − Jt√
t

⇒ N (0,D∗
ε), (1.14)

where D∗
ε is the corresponding diffusion matrix satisfying

D∗
ε = τ̄−1| log ε|D∞ + O(1). (1.15)

Observe that now the current becomes proportional to ε| log ε|, rather
than ε, i.e. Ohm’s law fails in this regime. This mathematical fact may be re-
lated to the physical phenomenon of ‘superconductivity’. At low temperatures
(near absolute zero), ions tend to form an almost perfect crystal structure
with long corridors in between resembling our infinite horizon model. Thus
the electron tends to travel fast and one observes superconductivity.

On the other hand, at normal temperatures, ions are somewhat agitated,
their configuration is more randomized, which creates an effect of finite hori-
zon. It slows the electron down and one observes a normal current.

To summarize, the Gaussian thermostatted dynamics (1.9) allows us to
obtain an adequate description of the ordinary electrical current when the
horizon is finite (Theorem 4). It also can be related to superconductivity in
the infinite horizon case (Theorem 5).

However, the Gaussian thermostat may be criticized as an unrealistic
and artificial device – it acts on the particle all the time, even during the ‘free
flights’ between collisions (thus violating Newton’s law (1.6)). It is perhaps
more reasonable to allow the electron move freely (and accelerate naturally)
between collisions, but remove the excess of its energy when it collides with
heavy immovable ions. In other words, the thermostat should be placed on
the boundaries of the ions (i.e. at the walls of D̃).

Our objectives. In this paper we propose a dynamics of that kind. Our elec-
trons move freely, according to Newton’s law (1.6), so that their kinetic energy
may grow. But at every collision with ions the speed of the electron is reset
so that it remains bounded. In fact if the electron was transported back to
the original cell after every collision, then its total energy would remain fixed.
Reflections off the wall ∂D̃ are kept specular, i.e. the angle of incidence is still
equal to the angle of reflection.

Our ultimate goal is to show that all the conclusions of Theorems 4 and
5 remain valid in this new context. Thus we present a more realistic version
of the Lorentz gas in a constant external field than the Gaussian thermostat-
ted model studied in [18, 19, 13]. Our dynamics with thermostatted walls
constitutes the physical novelty of the paper.

Besides being physically more realistic, our dynamics also has mathe-
matical advantages compared to the Gaussian thermostat. Namely, the Gal-
ton board can be regarded as a slow-fast system where the kinetic energy is
a slow variable while particle’s position in D and its velocity direction are
fast variables. The velocity vector of the Gaussian thermostatted model (1.9)
is simply obtained by projecting the velocity vector (1.6) onto the surface of
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constant kinetic energy; therefore the Gaussian thermostatted model repre-
sents the so called frozen system (its slow variable is rigidly fixed, i.e. frozen).
Frozen systems may provide good approximations to slow-fast systems, and
such an approximation played a fundamental role in our studies of the Gal-
ton board with finite horizon [13]. However, in the infinite horizon case this
approximation turns out to be poor, because during long free flights in in-
finite corridors small errors accumulate and grow too much. Here we reset
the energy only at the time of collisions, so our new model provides a much
better approximation to the Galton board dynamics.

Our mathematical constructions and arguments are also unusual in
many ways. In all the previous studies [18, 9, 11, 13, 15] of billiard-like par-
ticles moving under external forces, the dynamics was time-reversible, or at
least invertible. That is, the flow Φt was well defined for all −∞ < t < ∞,
and the collision map F was invertible, i.e. F−1 existed. Thus the Lyapunov
exponents could be computed and the dynamics could be (and usually were)
hyperbolic. Then all the mathematical tools developed for hyperbolic systems
(Markov partitions, Young tower construction, Coupling method, etc.) could
be applied with a remarkable success resulting in Theorems 3–5.

Our model is different. The energy of the electron is ‘reset’ at every col-
lision to a fixed level, thus it ‘forgets’ its past. As a result, its past trajectory
cannot be uniquely recovered from its present state. The dynamics ceases to
be invertible – some phase points have multiple preimages, while others have
none. Lyapunov exponents can only be computed under forward iterations
(but not under backward iterations), and the system cannot be hyperbolic in
the ordinary sense.

More precisely, our collision map F : M → M will be piecewise smooth
in the sense that M will be a finite union of subdomains, M = ∪iM+

i , on
each of which F will be smooth and diffeomorphic, but the images F(M+

i )
and F(M+

j ) will overlap for some i 6= j. Furthermore, their union ∪iF(M+
i )

will not cover M entirely – there will be open gaps (or ‘cracks’) in between. In
the gaps, F−1 will not be defined, thus there will be no unstable manifolds. At
points in the overlapping regions, F−1 will be multiply defined, thus unstable
manifolds will not be unique.

Dynamically, our map F resembles a hyperbolic map with singularities,
in particular it has stable and unstable cones (though defined only under
forward iterations). Stable manifolds are well defined, but unstable manifolds
may not exist or may not be unique. In a way, our map F can be compared
to non-invertible expanding maps where only the future evolution is uniquely
defined.

In other words, our map F does not belong to any standard class of
chaotic dynamical systems, it is somewhere ‘between’ invertible hyperbolic
maps and non-invertible expanding maps (though much closer to the former
than to the latter). Such maps are interesting from a purely dynamical point
of view, but very little is known about them.
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Many examples of such maps can be easily constructed. For one, let
F0 : T → T be a hyperbolic toral automorphism of a unit 2-torus; let T =
M1 ∪ · · ·Mk be a finite partition of T into domains with piecewise smooth
boundaries, and let F1 : T → T be a map that is smooth on each Mi and
its restriction to Mi is a C2-perturbation of the identity map on Mi. Then
F = F0 ◦ F1 is a map of the sort described above – it has strong hyperbolic
features, but the images of Mi may overlap and/or leave uncovered gaps.
Despite the simplicity of such examples, they were rarely studied in the past.

In recent papers [2, 3], Baladi and Gouëzel considered non-invertible
maps with stable and unstable cones and bounded derivatives; they used
operator techniques to derive the existence and ‘finitude’ of physical invariant
measures. A particular countable-to-one map with stable and unstable cones
was investigated in [16], where natural extensions were used to cope with
non-invertibility. In our current model, the derivatives are unbounded, so we
have to use methods different from [2, 3]. We develop a general approach
to the construction of SRB-like (“physical”) invariant measures which works
for countable-to-one maps and does not require strong a priori bounds on
the probabilities of particular inverse branches which were needed in [16].
So we develop alternative methods that hopefully will be useful for future
similar studies. Our ideas are similar to those developed in [1] in the context
of partially hyperbolic diffeomorphisms.

We also note that [2, 3] and [16] deal with statistical properties of indi-
vidual systems, while we study a continuous family of systems. Its dependence
on the parameter ε plays an important role. The question of smoothness of
SRB measures for piecewise hyperbolic systems is far from being settled, see
discussions in [4, 28]. Our model provides a new example where transport
theory works (i.e., Ohm’s law and the Einstein relation hold), so we hope it
could be useful for the development of a more general theory.

In the next section we precisely describe our dynamics with ‘thermostat-
ted walls’ and state our main results.

2. The model and main results

We define the dynamics in D as follows. First we fix an external field E =
(ε, 0); here ε > 0 is a small constant. In our dynamics the particle has a fixed
total energy so that ‖v‖2 − 2εx = 1, cf. (1.8), and moves under the field E

between collisions.
More precisely, let q = (x, y) ∈ ∂D be a point where the particle collides

with a scatterer and v denotes the outgoing velocity vector. Since the total
energy is fixed, we have

v = ‖v‖ =
√

1 + 2εx. (2.1)

Leaving the scatterer, the particle moves under the external field E according
to the standard equations

dq/dt = v, dv/dt = E, (2.2)
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until it collides with another scatterer. The motion between collisions is
smooth, so that it is better visualized if we allow the particle move on the
unbounded domain D̃. In particular, if the particle crosses the border of the
fundamental cell K, it leaves D and enters another domain Di, etc. In this way
the x-coordinate of the moving particle changes continuously, and so does its
speed, according to (2.1). But when the particle collides with a scatterer in

R2, i.e. when its hits ∂D̃, it is instantaneously projected back onto D, under
the natural projection π̃. As we apply the projection π̃, the x-coordinate of
the particle can change, thus we need to adjust its speed, too, in order to keep
the total energy fixed, according to (2.1); when adjusting the speed, we keep
the direction of the velocity vector unchanged. Then the motion continues.

In this way our obstacles act not only as scatterers but also as ‘heat
baths’ or ‘thermostats’, which remove the excess of the particle’s kinetic
energy and keep it bounded (but not constant).

Remark. It is tempting to define a thermostat simply by resetting the kinetic
energy (i.e., the speed) of the particle to a constant value after every colli-
sion. We will show that such dynamics would cause formidable complications,
though. In fact the only way to keep the features of the model tractable is to
reset the total energy in the above sense; see Appendix.

Remark. Our dynamics clearly depends on the choice of the fundamental
domain, which is far from unique, but this choice does not affect our main
results. For example, if K = [0, 1] × [0, 1] is a unit square, then one can
alternatively define K = [a, 1 + a]× [b, 1 + b] for any a, b > 0. In that case the
trajectories of our particle would change by O(ε2), which is too small to affect
our results. (Loosely speaking, our dynamics is a O(ε)-perturbation of the
field-free billiard system, and further changes of order O(ε2) are negligible.)
One can also combine several copies of K into a bigger fundamental domain.
For example, if K = [0, 1] × [0, 1], then one can define K = [0,m] × [0, n] for
any positive integers m,n ≥ 1. The resulting changes in the dynamics are
not essential either, as we will explain at the end of Section 5.

It is important to estimate how far the particle can travel between col-
lisions and thus how much its speed can change. In the finite horizon case,
the free path is bounded, hence the speed remains 1 + O(ε). In the infinite
horizon case, we assume that the corridors between scatterers are not parallel
to the field E.

Lemma 2.1. The longest free path (i.e., the length of the trajectory segment
between consecutive collisions) is O(ε−1/2). Thus the speed of the particle
between collisions remains 1 + O(ε1/2). At the same time, its speed right
after each collision is 1 + O(ε), according to (2.1).

Proof. Between collisions the particle moves along parabolas. The proof re-
quires elementary calculations which we leave to the reader. �
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We see that the magnitude of the velocity vector remains close to one
(and is completely determined by the x-coordinate of the particle). Hence the
velocity vector is specified uniquely by its direction, the fact we use below.

We can define the collision space by

M =
{

(q,v) : q = (x, y) ∈ ∂D, ‖v‖ =
√

1 + 2εx, v points inside D
}

.

We will use standard coordinates r, ϕ on M, where r denotes the arclength
parameter on the boundary ∂D and ϕ the angle between the outgoing velocity
vector v and the normal vector to ∂D pointing inside D; thus ϕ ∈ [−π/2, π/2].
We orient the coordinates so that r increases when one traverses ∂D in such a
way that the domain D remains on the left hand side, and the value ϕ = π/2
corresponds to direction of growth of r; see Figure 3.

ϕ = 0

+π/2−π/2 ϕ

r

Figure 3. Orientation of r and ϕ.

Note that the domain of the variables r, ϕ does not depend on ε. In the
coordinates r, ϕ the space M becomes a rectangle

M = [0, L]× [−π/2, π/2], where L = length(∂D)

(topologically, it is rather a union of cylinders, as r is a cyclic coordinate on
each scatterer). Thus we regard M as independent of ε, so the collision map
Fε : M → M acts on the same space for all small ε. Note that F0 = F is the
billiard collision map discussed earlier. In a sense, Fε is a small perturbation
of F0, see below.

Next, for every point X ∈ M we denote by τε(X) the time it moves

until the next collision with ∂D̃. Thus we obtain a suspension flow Φtε over
the map Fε under the function τε. We denote by

Ω = {(X, t) : X ∈ M, 0 ≤ t ≤ τε(X)}
the phase space of the suspension flow. Note that now our trajectories are
parameterized by t.

Lastly we lift our dynamics from the compact domain D with periodic
boundary conditions to the unbounded table D̃. This can be done naturally
as follows. Recall that the particle starts at a point q = (x, y) on a scatterer
in D with initial speed v0 =

√
1 + 2εx. It moves according to (2.2) until

its trajectory lands at a point q̃1 = (x1, y1) on another scatterer in some
domain D(1) ⊂ R2. Before the collision, its speed is v−1 =

√
1 + 2εx1. After
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the collision its speed is reset to v+
1 =

√

1 + 2ε(x1 − Z
(1)
x ), where Z

(1)
x denotes

the displacement, in the x direction, between the domains D and D(1) (this
means that D(1) is obtained from D by translation along vector Z(1) whose

x-coordinate is denoted by Z
(1)
x ).

Instead of translating the particle’s position from q̃1 ∈ D(1) to q̃1 −
Z(1) ∈ D(0), as we did before, we now let it continue its motion in the un-
bounded domain D̃, i.e. its trajectory will run from q̃1, with initial speed
v+
1 , until it hits a scatterer in another domain D(2) ⊂ R

2, and we de-
note the collision point by q̃2 = (x2, y2). By that time its speed is v−2 =
√

1 + 2ε(x2 − Z
(1)
x ), but we reset it to v+

2 =

√

1 + 2ε(x2 − Z
(2)
x ), where Z

(2)
x

is the displacement, in the x direction, between the domains D and D(2).
Then the particle runs further, from the point q̃2 until its next collision with
∂D̃, etc.

The so defined motion on D̃ is a natural lift to the plane R2 of the
motion on D constructed before. Thus for each initial state (q,v) ∈ M we
get a sequence q̃n ∈ R2 of collision points and a continuous trajectory q̃(t) of
the particle, where the time variable t corresponds to our suspension flow Φtε.
We also have velocity v = dq̃(t)/dt. We denote by ∆ε = (∆ε,x,∆ε,y) = q̃1−q

the displacement vector between consecutive collisions; it is a function on M.
Now the particle’s position q̃(t) ∈ R2 represents the electrical current,

and we can state our main results. The first one is an analogue of Theorem 4:

Theorem 6. Let D̃ have finite horizon and ε be sufficiently small. Then Fε is
a hyperbolic map; it preserves a unique Sinai-Ruelle-Bowen (SRB) measure
(a steady state) νε, which is ergodic and mixing and enjoys exponential decay
of correlations. The flow Φtε also preserves a unique SRB measure µε on Ω,
which is ergodic and mixing. The electrical current

J = lim
t→∞

q̃(t)/t = µε(v) = νε(∆ε)/τ̄ε (2.3)

is well defined; here τ̄ε = νε(τε) is the mean free path for which we have
τ̄ε = τ̄ + O(εa) for some a > 0. We have

J = 1
2τ̄ DE + o(ε), (2.4)

where D is the diffusion matrix of Theorem 1. We also have the following
weak convergence, as t→ ∞:

q̃(t) − Jt√
t

⇒ N (0,D∗
ε), (2.5)

where D∗
ε is the corresponding diffusion matrix satisfying

D∗
ε = τ̄−1D + o(1). (2.6)

The second main result is an analogue of Theorem 5:

Theorem 7. Let D̃ have infinite horizon. Assume that the force E = (ε, 0) is
not parallel to any of the infinite corridors and ε is sufficiently small. Then
Fε is a hyperbolic map; it preserves a unique SRB measure (steady state)
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νε, which is ergodic and mixing and enjoys exponential decay of correlations.
The flow Φtε also preserves a unique SRB measure µε on Ω, which is ergodic
and mixing. The electrical current

J = lim
t→∞

q̃(t)/t = µε(v) = νε(∆ε)/τ̄ε (2.7)

is well defined; here τ̄ε = νε(τε) is the mean free path for which we have
τ̄ε = τ̄ + O(εa) for some a > 0. We have

J = 1
2τ̄ | log ε|D∞E + O(ε) (2.8)

where D∞ is the superdiffusion matrix of Theorem 2. We also have the fol-
lowing weak convergence, as t→ ∞:

q̃(t) − Jt√
t

⇒ N (0,D∗
ε), (2.9)

where D∗
ε is the corresponding diffusion matrix satisfying

D∗
ε = τ̄−1| log ε|D∞ + O(1). (2.10)

We note that the invariant measures in Theorems 6 and 7 are not posi-
tive on open sets (unlike SRB measures for the Gaussian thermostatted dy-
namics). We do not know if their support (i.e., the intersection of all closed
sets of full measure) has a positive Lebesgue measure or not; we return to
that issue in Section 8.

We will prove Theorems 6 and 7 in parallel. Our arguments follow a
general scheme developed in [15, 18] for the Gaussian thermostatted Lorentz
gases, but we have to modify many steps of that scheme to deal with the
non-invertibility of our dynamics.

In Section 3–5 we show that the map Fε is a small (in a certain sense)
perturbation of the billiard map F0, it has stable and unstable cones and
estimate the sizes of overlaps and gaps in M. Our technical analysis here is
essentially different from that in all the previous studies [9, 15, 18], so we
give a detailed presentation.

In Section 6 we describe the singularities of Fε and in Section 7 build
up our main tools – standard pairs and families – and prove the key growth
lemma. Our arguments are similar to those of [15], so we only present them
briefly. But the construction of the SRB measure νε in Section 8 is quite novel
and is presented in full.

All the formulas in Theorems 6 and 7 are then derived in Sections 9 and
10, based on a substantial modification of the arguments of [15].

3. Perturbative analysis

Here we derive formulas for the differential of our collision map Fε and show
that it is a small perturbation of the billiard map F0.

Let X = (r, ϕ) ∈ M be a phase point and X1 = Fε(X) = (r1, ϕ1)
denote its image. Denote by (x, y) ∈ ∂D and (x1, y1) ∈ ∂D the coordinates
of the boundary points corresponding to r and r1. Denote by ω and ω1 the
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γ
ψ

ω

(x, y)

(x1, y1)

τ

ψ1

ψ1

Figure 4. Action of the map in coordinates.

angles made by the outgoing velocity vector at the point X and the incoming
velocity vector at the point X1, respectively, with the x axis; see Fig. 4. Here
and in what follows we use notation of [17, Section 2.11], where a similar
analysis was done for the billiard dynamics. Our aim is to express dr1 and
dϕ1 in terms of dr and dϕ, and we use differentials of other variables in the
process.

We denote by γ and γ1 the slopes of the tangents to ∂D at the points
r and r1, respectively. We also denote

ψ = π/2 − ϕ and ψ1 = π/2 − ϕ1.

Observe that

ω = γ + ψ and ω1 = γ1 − ψ1. (3.1)

Our trajectory curves under the action of the field E, and so in general
ω1 6= ω. We put δ = ω1 − ω.

Let K > 0 and K1 > 0 denote the curvature of ∂D at the points r and
r1, respectively. Note that, in terms of differentials,

dγ = −K dr and dγ1 = −K1 dr1. (3.2)

Also note that

dx = cos γ dr and dy = sin γ dr,

as well as

dx1 = cos γ1 dr1 and dy1 = sin γ1 dr1.

Let v denote the speed of the particle when it departs from the point
(x, y), and v1 denote its speed right before it arrives at (x1, y1). Of course,
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the conservation of the total energy implies

v2 − 2εx = v2
1 − 2εx1 = 1.

In particular,
v dv = ε cosγ dr. (3.3)

Now solving the equations (2.2) we obtain

v1 cosω1 = v cosω + ετ and v1 sinω1 = v sinω (3.4)

and
x1 = x+ vτ cosω + 1

2 ετ
2 and y1 = y + vτ sinω, (3.5)

where τ is the travel time between the points (x, y) and (x1, y1). Equations
(3.4) can be rewritten as

v1 = v cos δ + ετ cosω1 and v sin δ + ετ sinω1 = 0. (3.6)

Differentiating (3.5) yields

cos γ1 dr1 = cos γ dr + v cosω dτ − vτ sinω dω + τ cosω dv + ετ dτ

sinγ1 dr1 = sin γ dr + v sinω dτ + vτ cosω dω + τ sinω dv.
(3.7)

Using (3.4) we can rewrite (3.7) as

cos γ1 dr1 = cos γ dr + v1 cosω1 dτ − vτ sinω dω + τ cosω dv

sin γ1 dr1 = sin γ dr + v1 sinω1 dτ + vτ cosω dω + τ sinω dv.
(3.8)

Next we eliminate dτ from (3.8) using (3.1) and arrive at

sinψ1 dr1 + sin(ψ + δ) dr − vτ cos δ dω + τ sin δ dv = 0. (3.9)

Similarly, eliminating dω from (3.7) gives

cos(ψ1 + δ) dr1 = cosψ dr + (v + ετ cosω) dτ + τ dv. (3.10)

Now the second equation in (3.6) implies

v + ετ cosω = −ετ cos δ sinω

sin δ
(3.11)

thus (3.10) can be written as

sin δ cos(ψ1 + δ) dr1 = sin δ cosψ dr − ετ cos δ sinω dτ + τ sin δ dv. (3.12)

Differentiating the second equation in (3.6) yields

v cos δ(dω1 − dω) + sin δ dv + ε sinω1 dτ + ετ cosω1 dω1 = 0

and combining this with the first equation in (3.6) gives

v1 dω1 − v cos δ dω + sin δ dv + ε sinω1 dτ = 0. (3.13)

Now eliminating dτ from (3.12) and (3.13) gives

sin δ cosψ sinω1 dr − sin δ cos(ψ1 + δ) sinω1 dr1

+ v1τ cos δ sinω dω1 − vτ cos2 δ sinω dω

+ τ sin δ sinω1 dv + τ sin δ cos δ sinω dv = 0. (3.14)

Recall (3.3) and observe that

dω = −K dr + dψ and dω1 = −K1 dr1 − dψ1
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thus we can solve the two equations (3.9) and (3.14) for dr1 and dψ1. We
record their solutions by using the standard variables ϕ = π/2 − ψ and
ϕ1 = π/2 − ψ1:

− cosϕ1 dr1 = [Kvτ cos δ + cos(ϕ− δ)]dr + τ sin δ dv + vτ cos δ dϕ (3.15)

and

−v1τ dϕ1 =
[

Kvτ cos δ + sin δ sinϕ(1 + tan δ cotω)
]

dr

+ τ sin δ
[

1 + sinω1/(cos δ sinω)
]

dv + vτ cos δ dϕ

−
[

K1v1τ + sin δ sin(ϕ1 − δ)(1 + tan δ cotω)
]

dr1, (3.16)

where

dv = (ε cosγ/v)dr (3.17)

according to (3.3). Equations (3.15)–(3.16) represent the derivative of the
map Fε in the (r, ϕ) coordinates.

When ε = 0, our system reduces to the usual billiard dynamics in which
v = v1 = 1 and δ = 0, and we recover the derivative of the billiard collision
map, in the rϕ coordinates (see (2.26) in [17]):

DF0 =
−1

cosϕ1

[

τK + cosϕ τ
τKK1 + K cosϕ1 + K1 cosϕ τK1 + cosϕ1

]

. (3.18)

Next we estimate corrections due to the external field E. First note that
ετ = O(ε1/2) is small, by Lemma 2.1. Then we note that

v = 1 + O(ε) and v1 = 1 + O(ετ)

and it follows from the second equation in (3.6) that

sin δ ∼ − ετ sinω

1 + O(ετ)
(3.19)

thus all the cotω factors in (3.16) will be neutralized by sin δ.

Now a direct analysis shows that the derivative of Fε satisfies

DFε = DF0 +
1

cosϕ1
O2×2(ετ), (3.20)

where O2×2(ετ) denotes a matrix 2 × 2 whose entries are O(ετ) uniformly
over M.

We note that (3.20) does not really mean that Fε is C1-close to F0.
What it means is that the derivative of the map Fε at a point (r, ϕ), whose
image is (r1, ϕ1), is close to the derivative of a (hypothetical) billiard map
that takes (r, ϕ) to the same image (r1, ϕ1). But the real billiard map F0

on D may take (r, ϕ) to a quite different point, which may even be on a
different scatterer. Still, the closeness in the sense of (3.20) has important
implications.
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4. ‘Cone’ hyperbolicity

Here we establish certain hyperbolic properties of the map Fε. Similar maps
were studied recently by Baladi and Gouëzel [2, 3] who described them by
the term cone hyperbolicity.

Recall that the billiard map F0 is hyperbolic [17]. Its unstable vectors
dX = (dr, dϕ) can be defined by

0 < C1 ≤ dϕ/dr ≤ C2 <∞, (4.1)

where C1 < C2 are some constants. The expansion factor satisfies

‖DF0(dX)‖∗/‖dX‖∗ ≥ 1 + a/ cosϕ1 (4.2)

for some constant a = a(D) > 0, where ϕ1 again denotes the reflection angle
at F(X) and ‖dX‖∗ is an adapted metric. The latter can be defined in various
ways, for example (see [17, Section 5.10])

‖dX‖∗ = |K dr + dϕ|, (4.3)

where K > 0 again denotes the curvature of ∂D at the given point.
The estimate (3.20) shows that Fε expands the same unstable vectors

(4.1), and the expansion factor satisfies (4.2), with a possibly smaller constant
a > 0. More precisely, the expansion factor of unstable vectors satisfies

(dr21 + dϕ2
1)

1/2

(dr2 + dϕ2)1/2
≍ dr1

dr
≍ τ

cosϕ1
, (4.4)

which for billiards is a standard formula [17, Eq. 4.20]; we use the notation
A ≍ B in the sense that 0 < c1 ≤ A/B ≤ c2 < ∞ for some constants c1, c2
that may depend on D but not on ε.

Unstable curves are described by functions ϕ = ϕ(r) whose slope is
positive and bounded above and below, i.e. unstable curves are increasing in
the rϕ coordinates. Let W ⊂ M be an unstable curve andWn = Fn

ε (W ) is its
image under Fn

ε (which is a union of unstable curves). For X ∈ W , we denote
by JWFε(X) the Jacobian of Fε restricted to W (i.e., the factor of expansion
of W under the map Fε) at the point X . We also denote by JW1

F−1
ε (X1)

the Jacobian of the inverse map W1 → W at the point X1 = Fε(X). Next
we verify two standard regularity properties for unstable curves.

Lemma 4.1 (Curvature bounds). Suppose that |d2ϕ/dr2| ≤ C0 at all points
(ϕ, r) ∈ W , for some C0 > 0. Then there is a constant C = C(C0,D) > 0
such that for all n ≥ 1 we have |d2ϕn/dr

2
n| ≤ C at all points (ϕn, rn) ∈Wn.

Due to this lemma, we can (and will) assume that all our unstable curves
have uniformly bounded curvature; this assumption is standard for billiards
and their perturbations [9, 17].

Proof. For the billiard maps and their perturbations by external forces (though
different from ours) this lemma was proved in [9]. A more direct proof (for
the billiard maps only) is given in [12, Equation (B.2)]. The last proof can
be adapted to our case if we estimate the corrections to the second order
derivatives due to the external field E. In fact, all those corrections are of
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order O(ετ). For example, in billiards dv/dr = 0 and in our model dv/dr =
O(ετ) due to (3.17). Differentiating the second equation in (3.6) gives dδ =
O(ετ dr1). Solving (3.10) for dτ gives dτ = cosψ1 dr1 − cosψ dr+O(ετ dr1),
while for the billiard map we have dτ = cosψ1 dr1−cosψ dr, so the remainder
O(ετ dr1) is due to the field; it is is small.

We should note that the quotient Q : = sin δ/ sinω requires a special
care, because its derivative is not small: dQ = O(ε dτ), as it follows from
(3.11). However we note that in all the expressions (3.15)–(3.16) the fraction
sin δ/ sinω is multiplied either by sin δ = O(ετ) or by dv = O(ετ dr), thus
dQ will be always suppressed by a small factor. Then the direct proof of
curvature bounds (see the proof of equation (B.2) in [12]) can be carried over
to our case; we leave the details to the reader. Thus, the corrections to the
second order derivatives due to the external field E are all relatively small.

Next the proof of (B.2) in [12] uses the value B, the curvature of the
orthogonal cross-section of the wave front corresponding to the unstable curve
right before the collision with ∂D. We cannot use it here, so it has to be
eliminated from the above proof as follows. First,

d2ϕn/dr
2
n = cosϕndBn/drn +Dn

where |Dn| ≤ D < ∞ are bounded (see page 169 in [12]). Second it was
proved on page 171 in [12] that

|dBn/drn| = θn(wn/wn−1)|dBn−1/drn−1| +Rn

where |θn| ≤ θ < 1, |Rn| ≤ R < ∞, and 0 < wmin < wn < wmax < ∞ are
bounded away from zero and infinity. Combining the above formulas we see
that

∣

∣

∣

d2ϕn
dr2n

∣

∣

∣
≤ θ

cosϕn
cosϕn−1

wn
wn−1

[

∣

∣

∣

d2ϕn−1

dr2n−1

∣

∣

∣
+Dn−1

]

+ θ
wn
wn−1

|Rn| + |Dn|.

The lemma now follows easily. �

Next, to ensure distortion control we need to construct homogeneity
strips in M, in a standard way:

Hj = {(r, ϕ) : π
2 − j−2 < ϕ < π

2 − (j + 1)−2} ∀j ≥ j0

H0 = {(r, ϕ) : − π
2 + j−2

0 < ϕ < π
2 − j−2

0 },
H−j = {(r, ϕ) : − π

2 + (j + 1)−2 < ϕ < −π
2 + j−2} ∀j ≥ j0

(4.5)

where j0 > 1 is a large constant, see [9, p. 216] and [17, Section 5.3]. We cut
M along their boundaries, i.e. replace M with a countable union of the above
strips. Accordingly, unstable curves must respect these new boundaries, i.e.
each unstable curve must lie in one of the strips. If an unstable curve crosses
several strips, it must be cut into pieces by the boundaries of the strips.

Lemma 4.2 (Distortion bounds). There is a constant C = C(D) > 0 such
that for any unstable curve W and any point X1 = (ϕ1, r1) ∈ W1 on its image

∣

∣

∣

∣

d lnJW1
F−1
ε (X1)

dr1

∣

∣

∣

∣

≤ C

|W1|2/3
(4.6)
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The first construction of homogeneity strips (4.5) and the first proof of
distortion bounds were given in [7]. A more recent and direct proof is given in
[12]; see equation (B.3) there. That proof can be adapted to our case because
the corrections due to the field are small, as we explained above. �

We emphasize that all the constants in Lemmas 4.1 and 4.2 are uniform
in ε.

Next we turn to stable vectors and stable curves. The estimate (3.20) is
insufficient for the control over the contraction of stable vectors. To estimate
contraction rates, we use the Jacobian of DFε:
Lemma 4.3. In terms of differential forms, we have

v1 cosϕ1 dr1 ∧ dϕ1 = v cosϕdr ∧ dϕ. (4.7)

Proof. It follows from (3.15)–(3.16) that

v1τ cosϕ1 dr1 ∧ dϕ1 = vτ
[

cos(ϕ− δ) cos δ − sin δ cos δ sinϕ

− sin2 δ sinϕ cotω
]

dr ∧ dϕ
−

(

vτ2 sin δ sinω1/ sinω
)

dv ∧ dϕ (4.8)

Observe that

cos(ϕ− δ) cos δ = cosϕ− sin2 δ cosϕ+ sin δ cos δ sinϕ,

therefore (4.8) becomes

v1τ cosϕ1 dr1 ∧ dϕ1 = vτ cosϕdr ∧ dϕ
− vτ sin2 δ

[

cosϕ+ sinϕ cotω
]

dr ∧ dϕ
−

(

vτ2 sin δ sinω1/ sinω
)

dv ∧ dϕ (4.9)

Lastly, we note that

cosϕ+ sinϕ cotω = sin(ω + ϕ)/ sinω = cos γ/ sinω,

and use equation (3.17) and the second equation in (3.6). �

When ε = 0, then v = v1 = 1 and δ = 0, and (4.7) becomes

cosϕ1 dr1 ∧ dϕ1 = cosϕdr ∧ dϕ,
which shows that the billiard map F0 preserves the measure

dν0 = cosϕdr dϕ (4.10)

and is positively oriented in the rϕ coordinates (these are standard facts
[17]). The map Fε, with respect to the measure (4.10) has (local) Jacobian

ν0(Fε(dX))/ν0(dX) = v/v1 = 1 + O(ετ). (4.11)

One can also explain (4.11) as follows: the dynamics (2.2) is Hamiltonian
and preserves Liouville measure (volume) in the 4-dimensional phase space

D̃×R2. It obviously expands in the flow direction, between the two collisions,
by a factor of v1/v, thus it contracts areas in the orthogonal directions by a
factor of v/v1, and the measure ν0 corresponds to the area in the directions
orthogonal to the velocity vector.
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Now we can analyze the contraction of stable vectors. The billiard map
F0 is known to have a family of stable cones defined by

−∞ < C1 ≤ dϕ/dr ≤ C2 < 0, (4.12)

where C1 < C2 are some negative constants. Stable vectors dX = (dr, dϕ)
are contracted by a factor

‖DF0(dX)‖∗/‖dX‖∗ ≤
(

1 + a/ cosϕ
)−1

< 1 (4.13)

for some constant a = a(D) > 0, where ‖dX‖∗ is again the adapted metric
(4.3).

Our estimate (3.20) implies that Fε, being close to F0, also contracts sta-
ble vectors defined by (4.12), and the contraction factor also satisfies (4.13),
with a possibly smaller constant a > 0.

For the billiard map F0, the contraction factor of stable vectors satisfies
a more accurate asymptotic formula

(dr21 + dϕ2
1)

1/2

(dr2 + dϕ2)1/2
≍ dr1

dr
≍ cosϕ

τ
, (4.14)

see [17, Section 4.4]. The same is true for our map. Indeed, due to (4.11)
the inverse maps DF−1

ε and DF−1
0 are also close to each other, hence they

expand images of stable vectors at nearly the same rates. These facts also
follow from the ‘local’ time reversibility of our dynamics described next.

5. Local time reversibility, overlaps and gaps

It is helpful to note that the map Fε is (locally) time reversible in the following
sense.

Let I : M → M denote the standard involution; it acts by

I : (r, ϕ) 7→ (r,−ϕ),

i.e. it takes (q,v) ∈ M to (q,v′) ∈ M, so that the vector v′ is obtained by
reflecting v across the normal line to ∂D at the point q. Note that I−1 = I.

Now consider any point (r, ϕ) ∈ M that starts on a scatterer B ⊂ D
and whose trajectory lands on another scatterer B1 ⊂ R2, which is in another
cell containing some domain Di (Figure 5). Its initial velocity v and the final
velocity v1 (right before landing) satisfy

‖v‖2 − 2εx = ‖v1‖2 − 2εx1 = 1,

where (x, y) ∈ ∂B denotes the starting point and (x1, y1) ∈ ∂B1 the landing
point. The domain Di is obtained from D by translation along some vector
Zi = (Zi,x, Zi,y). Our dynamics requires that we project the reflection point
from ∂B1 back onto D under π̃, i.e. the point (x1, y1) will be moved to (x′1, y

′
1)

so that x′1 = x1 − Zi,x. Note also that

B′
1 = π̃(B1) = B1 − Zi
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is a scatterer in the central cell K and (x′1, y
′
1) ∈ ∂B′

1. If we translate the
precollisional vector v1 from ∂B1 to ∂B′

1 along the vector −Zi, its total
energy becomes

1
2 ‖v1‖2 − ε(x1 − Zi,x) = 1

2 + εZi,x.

Let us now reverse the velocity vector v1 attached to ∂B′
1 and let it move

under the field ε. Clearly its trajectory will be the translate, under the vector
−Zi, of the previous trajectory (from (x, y) to (x1, y1)), but now it is traversed
backwards. It will land at point (x′, y′) = (x − Zi,x, y − Zi,y) on a scatterer
B − Zi in a cell containing some domain Dj ; see Figure 5.

v

v1

−v1

−v

D

Di

Dj

B

B1

Figure 5. Weak time reversibility.

We emphasize that in the above analysis the new total energy

E = Ei = 1
2 + εZi,x (5.1)

will be the same for all points (r, ϕ) starting on a given scatterer, B, and
landing on another given scatterer, B1. This implies that

FE,ε ◦ I ◦ Fε = I, (5.2)

where FE,ε denotes the collision map similar to Fε, but constructed for the
dynamics with the total energy E , instead of 1/2. Clearly our choice of E =
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1/2 for the total energy in (2.1) was quite arbitrary, and any other constant
would give us a map with similar properties.

Equation (5.2) can be rewritten as

F−1
ε = I ◦ FE,ε ◦ I (5.3)

which is only valid locally, on the set of points (r1, ϕ1) that start from the
scatterer B and land on the scatterer B1; the constant E is computed by (5.1)
for the given pair of scatterers B and B1.

Still, the local time reversibility in the above sense is helpful. In par-
ticular, it shows that since FE,ε expands unstable vectors, Fε will contract
stable vectors (i.e. those that are the images of unstable vectors under I).

Given a pair of scatterers B and B1, the set of points (r1, ϕ1) that have
come from B and land on B1 is bounded by the images of points that make
grazing (tangential) collisions either with B or with some other scatterers
on their way from B to B1. Grazing collisions are described by the lines
ϕ = ±π/2, hence their images are unstable curves. So this set of points
is bounded by unstable curves and possibly by some segments of the lines
ϕ = ±π/2.

Similarly, the set of points (r, ϕ) that start from B and land on B1 is
bounded by stable curves (as well as some parts of the lines ϕ = ±π/2); this
follows from our local time reversibility.

Thus the space M is naturally partitioned into a finite collection of
domains, M = ∪M+

i , on each of which Fε is smooth (for a moment, let us
forget that M was divided into homogeneity strips (4.5)). The domains M+

i

are bounded by ∂M = {ϕ = ±π/2} and by some smooth stable curves. The
set S+ = ∪∂M+

i is the singularity set for the map Fε.
The images M−

i = Fε(M+
i ) are also domains in M on which F−1

ε is
(locally) defined and smooth. The domains M−

i are bounded by ∂M = {ϕ =
±π/2} and by some smooth unstable curves.

The billiard map F0 has all these properties, too, but its domains M−
i

make a partition of M, i.e. they are disjoint and cover the entire M. Their
boundaries are singularities for the inverse map F−1

0 .

But for our map Fε, the domains M−
i may overlap and they may not

cover the entire M, i.e. some gaps are left in between.

Fig. 6 shows how overlaps occur. In that figure (unlike Fig. 5), we draw
trajectories as if they started from different domains Di,Dj but landed on
the same scatterer in the main domain D. Two trajectories shown land at a
point q ∈ ∂B ⊂ K. One (the solid line) starts from a scatterer B1 (in Di),
and the other (the dashed line) – from another scatterer B2 (in Dj) and it
comes infinitesimally close to B1.

Since Zi,x < Zj,x, the first trajectory is less energetic (thus more curved)
than the segment of the second trajectory running betweenB1 andB. Though
both trajectories land at the same point q, they arrive at different incidence
angles ϕ1 and ϕ2, and the difference |ϕ1 − ϕ2| corresponds to the size of
overlap of the respective domains M−

i1
and M−

i2
(one consists of trajectories
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q

Di

D

Dj

B1

B1

B

B2

Zi,x

Zj,x

Figure 6. How the images can overlap. Both the solid and
dashed trajectories are tangent to the scatterer B1 (see the
inset).

coming to ∂B from ∂B1, and the other – from ∂B2). An elementary analysis
shows that the size of the overlap (in the ϕ direction on M) is

∆ϕ = O
(

ε2|Zij,x|(|Zi,y| + 1)
)

, (5.4)

where Zij,x = Zi,x − Zj,x is the displacement in the x direction between the
domains Di and Dj , and Zi,y is the displacement in the y direction between
the domains Di and D. So for finite horizon Lorentz gases we simply have
∆ϕ = O(ε2). In the infinite horizon case (5.4) leads to larger overlaps, to be
described later.

Similarly, Fig. 7 shows how gaps occur. The trajectory coming from
B1 is less energetic (i.e., more curved) than the one coming from B2. The
difference between their angles of incidence at the landing point q corresponds
to the size of the gap between the respective domains M−

i1
and M−

i2
. Again

an elementary analysis shows that the size of the gap is given by the same
formula (5.4), so for finite horizon Lorentz gases the gaps are O(ε2). In the
infinite horizon case, gaps may be larger, see below.

Remark. As we mentioned in Section 2, the fundamental domain K can be
doubled, tripled, etc. We describe how “multiplying” K would affect the gaps
and overlaps. First, they occur only when trajectories cross from one copy of
K to another. So if we make K larger, we would have fewer gaps and overlaps.
But since Zij,x in (5.4) corresponds to the size of K (in the x direction), our
gaps and overlaps would get wider. Roughly speaking, if we double the size
of K, then the space M also doubles in size, and in the new, bigger M half of
the gaps would close up and disappear, half of the overlaps would disappear,
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q
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D

Dj

B1

B1

B

B2

Zi,x

Zj,x

Figure 7. Creation of a gap between the images. Both the
solid and dashed trajectories are tangent to the scatterer B1

(see the inset).

too, but the other half of the gaps and overlaps would get about twice as
wide. It seems that such a change would not alter the basic properties of our
dynamics, though.

6. Structure of singularities

Next we analyze the singularities of the map Fε. We begin by recalling the
properties of the singularities of the billiard map F0.

When the horizon is finite, the singularity set S of F0 is a finite union
of smooth compact stable curves. They have a continuation property ([17,
Section 4.9]), i.e. each curve S ⊂ S either terminates on the boundary of M
(i.e., on the lines ϕ = ±π/2), or it is a part of a longer monotonic continuous
curve S′ ⊂ S that extends (continues) to the boundary of M (of course, then
S′ is a union of several smooth components of S). In other words, S divides M
into domains M+

i with piecewise smooth boundaries (‘curvilinear polygons’)
such that at their corner points the interior angles are ≤ π (polygons are
‘convex’).

The singularity set for our map Fε with finite horizon has all the same
properties. This follows from the local time reversibility.

For the billiard map F0, the images M−
i = Fε(M+

i ) are also ‘convex’
curvilinear polygons bounded by smooth compact unstable curves. The same
remains true for the map Fε, except the domains M−

i no longer make a
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partition of M: some of them overlap by O(ε2) near their boundaries, and
between others there are gaps of size O(ε2).

In the infinite horizon case, the singularity set S of the billiard map F0

is a countable union of smooth compact stable curves, which accumulate near
finitely many points X ∈ M whose trajectories run along the borders of the
infinite corridors ([17, Section 4.10]). These are exactly the points entering
the formula (1.5); see one of them in Figure 8. The singularity curves near the
fixed points X form a cell structure [17] whose features essentially determine
global properties of the map F0.

Unlike F0, our map Fε has finitely many singularity lines even in the
infinite horizon case, because the length of the free path is always bounded
(Lemma 2.1). But the number of singularity lines is O(ε−1/2), i.e. it is not
uniformly bounded. The structure of the singularity lines and the correspond-
ing cells is similar to that of the collision map for the thermostatted dynamics
[15]. We briefly describe it next.

x

y X

total  m
U

total  m
L

B1

B 2

B 3

Figure 8. A row of scatterers forming the border of an
infinite corridor.

Trajectories leaving D into an infinite corridor can land on scatterers
on either side of the corridor; see Fig. 8. The number of scatterers that our
trajectories can reach is O(ε−1/2), due to Lemma 2.1. More precisely, let mU

denote the number of reachable scatterers on the upper side of the corridor,
and let mL denote those on the lower side; see Fig. 8. Since our trajectories
are parabolas, an elementary computation shows that

mU ∼ C1/
√
ε, mL ∼ C2/

√
ε, 0 < C1 < C2

The singularity lines near the point marked byX in Fig. 8 are shown in Fig. 9.
The long singularity curve S corresponds to grazing collisions with the very
next scatterer in the corridor (marked by B2 in Fig. 8). The short singularity
curves are made by grazing collisions with other scatterers in the corridor.
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The regions between singularity curves (cells) are made by trajectories land-
ing on a particular scatterer. Thus, the cells can be naturally numbered by
1, . . . ,mU (corresponding to the upper scatterers) and 1, . . . ,mL (for the

lower scatterers). Accordingly, we denote the cells by D
(U)
1 , . . . , D

(U)
mU and

D
(L)
1 , . . . , D

(L)
mL (here U and L stand for ‘Upper’ and ‘Lower’, respectively).

1
m2

1
m

1√
m

1
m2

L

m
m2

L

√
m

mL

SS

D
(U)
m

D
(L)
m

XX
ϕ = π/2ϕ = π/2

Figure 9. Singularity curves and cells. On the left, an ‘up-

per’ cell D
(U)
m is shown, with all its dimensions, in light grey;

the union of all the ‘lower’ cells D
(L)
m ’s is painted dark grey.

On the right, a ‘lower’ cell D
(L)
m is shown, with all its dimen-

sions, in dark grey; the union of all the ‘upper’ cells D
(U)
m ’s

is painted light grey.

In Fig. 9 the cells are depicted as follows. First (farther from S) come

the cells D
(U)
1 , . . . , D

(U)
mU (in this order). The height of D

(U)
m is ≍ 1/

√
m and

its width is ≍ 1/m2, just like in classical billiards with infinite horizon, see

e.g. [17, Section 4.10]. Unstable curves inside D
(U)
m are expanded by a factor

Λ
(U)
m ≥ cm3/2 for some c > 0, due to (4.4), in which τ ≍ m and cosϕ1 =

O(m−1/2).

Second (closer to S) come the cells D
(L)
mL , . . . , D

(L)
1 (in the reverse order;

the cell D
(L)
1 is adjacent to the point X). The height of D

(L)
m is ≍ √

m/mL

and its width is ≍ 1/m2
L. Unstable curves inside D

(L)
m are expanded by a

factor Λ
(L)
m ≥ cmL

√
m for some c > 0, again due to (4.4), in which τ ≍ m

and cosϕ1 = O(
√
m/mL).

We record the following formulas for the measures of the cells:

ν0
(

D(U)
m

)

≍ 1/m3, ν0
(

D(L)
m

)

≍ m/m4
L ≍ mε2 (6.1)
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Indeed, the billiard measure ν0 is smooth and has density cosϕ, thus the mea-
sure of each cell is of the same order of magnitude as the product width×(height)2.

1 42

13

2
4

3

Fε

Figure 10. The map F0 transforms a cellDm into a similar-
looking domain. The corners of Dm and their respective im-
ages are numbered to indicate the action of F0.

For the billiard map F0, there are no ‘lower’ cells, but there are infinitely

many ‘upper’ cells D
(U)
m = Dm, m = 1, 2, . . ., each having the shape and

size as described above. The map F0 transforms cells into similar-looking
domains, but the images are bounded by unstable curves; see Fig. 10 and
more details in [17, Section 4.10]. The image F0(Dm) has the same dimensions
as Dm, so the expansion factor of the map F0 acting on unstable curves in
Dm is

Λ ∼ height of F0(Dm)

width of Dm
∼ height of Dm

width of Dm
≍ m3/2 (6.2)

This rule can be used to verify our previous formulas for the expansion factor

of the map Fε in D
(U)
m and D

(L)
m .

For our map, the domains Fε(D(U)
m ) and Fε(D(L)

m ) also look like the cells

D
(U)
m and D

(L)
m , respectively, and the images are also bounded by unstable

curves. But, unlike F0, the images of cells under Fε can overlap and there
may be gaps between them.

Fig. 11 shows the images of cells depicted in Fig. 9. There are gaps of

size ≍ mε2 between the images of neighboring upper cells D
(U)
m and D

(U)
m+1.

The image of each lower cell D
(L)
m overlaps by ≍ mε2 with the images of the

two neighboring lower cells. (Since mε2 is much less than the width of the
m-th cell, only neighboring cells can overlap.) The image of each cell Dm

(upper or lower) overlaps by ≍ mε2 with the region beyond (i.e., to the left
of) the long singularity curve S−. And there is a wide gap of size ≍ ε between

the image of the last upper cell D
(U)
mU and that of the last lower cell D

(L)
mL . All

these formulas follow from (5.4), which describes the extent of overlaps and
gaps.

In some other cases, the images Fε(D(U)
m ) and Fε(D(L)

m ) may form a
different structure: images of the upper cells may overlap (instead of leaving
gaps in between), and images of the lower cells may leave gaps (instead of
overlapping); it is also possible that the lower cells (and their images) are
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S−

ϕ = π/2

Figure 11. Images of cells under Fε. There is a narrow
(white) gap between two (light grey) ‘upper’ cells. Two (dark
grey) lower cells overlap along a black narrow strip between
them. There is a wider white gap between the last (top) up-
per cell and the last (bottom) lower cell. All the cells overlap
with the long curve S− and stretch slightly beyond (to the
left of) it.

missing altogether. But in all cases the sizes of gaps and overlaps are given
by the same formula ≍ mε2 as above.

The total ν0-measure of all the gaps and overlaps is

ν0(gaps + overlaps) ≍ ε

[

1√
mU

]2

+

mU
∑

m=1

mε2

(
√
m)2

+

mL
∑

m=1

mε2
[√

m

mL

]2

≍ ε3/2 + ε3/2 + ε3/2 ≍ ε3/2, (6.3)

where the first term accounts for the ‘big’ gap of width ε between the images
of the last upper cell and the last lower cell (that gap has the largest measure
of all our gaps and overlaps). We note that the height of every cell in (6.3) is
squared to account for the density of ν0, which is cosϕ.

7. Growth lemmas and standard families

Next we derive a key fact about the growth of unstable curves, known as
Growth Lemma. Given an unstable curve W , let us denote by Wi ⊂ W
the connected components of W \ S, i.e. the segments of W on which Fε is
smooth, and by Λi the (minimal) factor of expansion of Wi under Fε in the
adapted metric (4.3).

Lemma 7.1 (One-step expansion). We have

lim inf
δ0→0

sup
W : |W |<δ0

∑

i

Λ−1
i < 1, (7.1)

where the supremum is taken over unstable curves W of length < δ0.
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The bound (7.1) is called the one-step expansion estimate [20, Section 5],
it shows how much unstable curves stretch under one iteration of the map.

Proof. For dispersing billiards with finite horizon, the proof of (7.1) is stan-
dard (see [17, Lemma 5.56]), and it readily carries over to our dynamics with
an external field. Without finite horizon, infinite corridors add new compli-
cations – it is possible that a short unstable curve W intersects many cells

described above. Suppose W intersects cells D
(U)
p , p0 ≤ p ≤ mU , and D

(L)
q ,

q0 ≤ q ≤ mL, then

∑

i

Λ−1
i ≤

mU
∑

p=p0

C

p3/2
+

mL
∑

q=q0

C

mLq1/2

≤ C

p
1/2
0

+
C

m
1/2
L

.

If W is small, then p0 must be large, and the above bound is ≪ 1. This
completes the proof of (7.1) in the infinite horizon case.

For simplicity, we have ignored additional singularities that come from
the artificially constructed boundaries of the homogeneity strips (4.5). Taking
them into account would make the analysis somewhat more complicated, but
the final result would remain the same as for billiards; see [8, Section 8] and
[20, Section 7]. �

The one-step expansion estimate (7.1) implies several properties known
collectively as Growth Lemmas, see [17, Chapter 5], [20, Section 4.7], [9,
Proposition 5.3], [12, Lemma 4.10], and the proofs therein. We state their
most common versions below.

Given an unstable curve W , we denote by mW the Lebesgue measure
on it. For every n ≥ 0, its image Fn

ε (W ) is a finite or countable union of
unstable curves (components), and for every X ∈ W we denote by Wn(X)
the component containing the point Fn

ε (X). Now let

rn(X) = dist
(

Fn
ε (X), ∂Wn(X)

)

(7.2)

denote the distance from the point Fn
ε (X) to the nearer endpoint of Wn(X).

Clearly, rn is a function on W that characterizes the size of the components of
Fn
ε (W ). We also denote by Λ > 1 the hyperbolicity constant, i.e. the minimal

expansion factor of unstable curves in the adapted metric.

Lemma 7.2 (“Growth lemma”). Unstable curves W ⊂ M have the following
properties:
(a) There are constants ϑ0 ∈ (0, 1) and c1, c2 > 0, such that for all n ≥ 0
and ζ > 0

mW (rn(X) < ζ) ≤ c1(ϑ0Λ)nmW (r0 < ζ/Λn) + c2ζ mW (W )

(b) There are constants c3, c4 > 0, such that if n ≥ c3
∣

∣ lnmW (W )
∣

∣, then for
any ζ > 0 we have mW (rn(X) < ζ) ≤ c4ζ mW (W ).
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(c) There are constants ϑ1 ∈ (0, 1) c5, c6 > 0, a small ζ0 > 0 such that for
any n2 > n1 > c5

∣

∣ lnmW (W )
∣

∣ we have

mW

(

max
n1<n<n2

rn(X) < ζ0

)

≤ c6ϑ
n2−n1

1 mW (W ).

For the proof and implications of this lemma we refer to [17, 20]. We
emphasize that the lim inf in (7.1) and all the constants in Growth Lemma
are independent of ε, i.e. the respective properties hold uniformly in ε.

In plain words, the Growth Lemma means that the images of any unsta-
ble curve W grow, on average, exponentially fast, until they reach a certain
minimal average size, and then that minimal average size is maintained for-
ever. More precisely, the proportion of small components (of size < ζ) among
all the components of Fn

ε (W ) remains O(ζ).
Such a fast expansion of unstable curves allows us to construct stable

manifolds for the map Fε. A stable manifold W s is a stable curve such that
Fn
ε (W s) is also a stable curve for every n ≥ 1. In that case the size of Fn

ε (W s)
is ≤ Cλn, where λ < 1 is the weakest contraction factor of stable curves.

Lemma 7.3. Let W be an unstable curve and mW the Lebesgue measure on
it. For mW -almost every point X ∈ W there is a stable manifold W s(X)
passing through X. Moreover, for any ζ > 0

mW

(

X ∈W : rs(X) < ζ
)

≤ Cζ,

where

rs(X) = dist
(

X, ∂W s(X)
)

denotes the distance from X to the nearer endpoint of the curve W s(X), and
C > 0 a constant.

Proof. It is standard (see, e.g., [17, Section 4.12]) that

rs(X) ≥ c min
n≥0

Λndist(Fn
ε (X), ∂M)

for some constant c > 0, and we obviously have

dist(Fn
ε (X), ∂M) ≥ c′rn(X)

for some constant c′ > 0. Thus if rs(X) < ζ, then rn(X) < c′′ζΛ−n for some
n ≥ 0, where c′′ > 0 is another constant. Due to Growth Lemma (a) such
points make a set of mW -measure O(ε). �

As usual, stable manifolds W s ⊂ M cannot cross each other, and the
foliation of M into stable manifolds is a measurable partition; see [17, Sec-
tion 5.1]. That foliation is absolutely continuous in the following sense.

Let W1 andW2 be two nearby unstable curves andW s a stable manifold
crossing each Wi in a point Xi, then the Jacobian of the holonomy map
h : W1 →W2 at X1 satisfies

e−C(γ+[dist(X1,X2)]
1/3) ≤ Jh(X1) ≤ e−C(γ+[dist(X1,X2)]

1/3) (7.3)

where γ is the angle between the tangent vectors to W1 and W2 at the points
X1 and X2, respectively. The property (7.3) is proved for the billiard map
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F0 in [17, Theorem 5.42], and it extends to our case because the corrections
to derivatives due to the field are O(τε), as we established in the proof of
Lemma 4.1.

Next, for any two points X,Y ∈ M we denote by s+(X,Y ) ≥ 0 the
future separation time: it is the first time when the images Fn

ε (X) and Fn
ε (Y )

land on different scatterers or in different homogeneity strips (i.e. the first
time when Fn−1

ε (X) and Fn−1
ε (Y ) belong to different connected components

of M\S). Observe that if X and Y lie on one unstable curve W ⊂ M, then
dist(X,Y ) ≤ CΛ−s+(X,Y ), cf. [17, Eq. (5.32)]. Now (7.3) implies (just like in
the case billiards; see Section 5.8, in particular Proposition 5.48 of [17]) that
for any pair of nearby unstable curves W1,W2 and any X,Y ∈W1

| lnJh(X) − lnJh(Y )| ≤ Cϑs+(X,Y ), (7.4)

for some constant ϑ < 1 (in fact, ϑ = Λ−1/6). Following Young [31, p. 597],
we call the property (7.4) the ‘dynamically defined Hölder continuity’ of Jh.

Next we define a class of probability measures supported on unstable
curves. A standard pair ℓ = (W,ρ) is an unstable curve W ⊂ M with a
probability measure Pℓ on it, whose density ρ (with respect to the Lebesgue
measure on W ) satisfies

| ln ρ(X) − ln ρ(Y )| ≤ Cr Λ−s+(X,Y ). (7.5)

Here Cr > 0 is a sufficiently large constant (independent of ε). For any stan-
dard pair ℓ = (W,ρ) and n ≥ 1 the image Fn

ε (W ) is a finite or countable
union of components on which the density of the measure Fn

ε (Pℓ) satisfies
(7.5), due to the distortion bounds (Lemma 4.2); see a proof in [17, Proposi-
tion 7.12]. Hence the image of a standard pair under Fn

ε is a countable family
of standard pairs (with a factor measure).

More generally, a standard family is an arbitrary (countable or uncount-
able) collection G = {ℓα} = {(Wα, ρα)}, α ∈ A, of standard pairs with a
probability factor measure λG on the index set A. Such a family induces a
probability measure PG on the union ∪αWα (and thus on M) defined by

PG(B) =

∫

Pα(B ∩Wα) dλG(α) ∀B ⊂ M.

Any standard family G is mapped by Fn
ε into another standard family Gn =

Fn
ε (G), and PGn = Fn

ε (PG).

For every α ∈ A, any point X ∈ Wα divides the curve Wα into two
pieces, and we denote by rG(X) the length of the shorter one. Now the quan-
tity

ZG = sup
ζ>0

ζ−1
PG(rG < ζ)

reflects the ‘average’ size of curves Wα in G, and we have

ZG ≤ C

∫

dλG(α)

|Wα|
(7.6)
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see [17, Exercise 7.15]. We only consider standard families with ZG <∞. The
growth lemma implies that for all n ≥ 0 and some constant θ ∈ (0, 1)

ZGn ≤ C(θnZG + 1), (7.7)

see a proof in [17, Proposition 7.17]; this estimate effectively asserts that
standard families grow under Fn

ε exponentially fast.
We say that a standard pair (W,ρ) is proper if |W | ≥ δp, where δp > 0 is

a small but fixed constant. We say that a standard family G is proper if ZG ≤
Cp, where Cp is a large but fixed constant (chosen so that a family consisting
of a single proper standard pair is proper). We note that the image of a proper
standard family under Fn

ε is proper for every n ≥ const=const(C, θ).
We note that the measure ν0 can be represented by a proper standard

family. Indeed, foliating M by unstable curves and conditioning the measure
ν0 on them gives a standard family G0 such that PG0

= ν0.

In systems with infinite horizon, trajectories starting in cells D
(U)
m and

D
(L)
m have a long free flight – they travel the distance ≍ m before landing on

another scatterer. It is important to estimate the integral effect of the long
free flights. Let A be the ‘cell number’ function on M, i.e. A = m on every

cell D
(U)
m and D

(L)
m (and A = 0 on the rest of M). It easily follows from (6.1)

that

ν0(A) ≍
mU
∑

m=1

m

m3
+

mL
∑

m=1

m2ε2 = O(1) (7.8)

i.e. ν0(A) is bounded uniformly in ε. Similarly,

ν0(A
2) ≍

mU
∑

m=1

m2

m3
+

mL
∑

m=1

m3ε2 = O(| ln ε|), (7.9)

and for any k ≥ 3

ν0(A
k) ≍

mU
∑

m=1

mk

m3
+

mL
∑

m=1

mk+1ε2 = O(ε−
k−2

2 ). (7.10)

Let G be a proper standard family. Since D
(U)
m has width ≍ 1/m2, in

the unstable direction, we have PG(D
(U)
m ) = O(1/m2). Similarly, PG(D

(L)
m ) =

O(1/m2
L). Therefore

PG(A) ≤
mU
∑

m=1

m

m2
+

mL
∑

m=1

m

m2
L

= O(| ln ε|), (7.11)

and similarly

PG(Ak) = O(ε−
k−1

2 ), (7.12)

which is not much worse than (7.8)–(7.10).
Next we estimate possible effect of gaps and overlaps on our integral

formulas. Let ν⋄ denote the measure ν0 restricted to all gaps and overlaps
between domains M−

i . Due to (6.3), its norm is ‖ν⋄‖ = O(ε3/2). Gaps and
overlaps are strips stretching in the unstable direction. We can foliate them
by unstable curves, condition ν⋄ on those curves, and get a ‘standard family’
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G⋄ (though the norm of the corresponding measure PG⋄
will be ‖ν⋄‖, rather

than one). We can see directly that

ZG⋄
= sup

ζ>0
ζ−1

PG⋄
(rG⋄

< ζ)

≍ ε1/4ε+

mU
∑

m=1

m−1/2mε2 +

mL
∑

m=1

√
mεmε2

≍ ε5/4

(in the middle line, the first term accounts for the gap of width ε between
the last upper cell and the last lower cell, the first sum – for gaps/overlaps of
width mε2 between the upper cells, and the second – the same for the lower
cells; the factors ε1/4, m−1/2, and

√
mε simply account for the density cosϕ

of ν0). Thus (7.11) now takes form

PG⋄
(A) = O(ε5/4| ln ε|) (7.13)

and (7.12) takes form

PG⋄
(Ak) = O(ε

5
4
− k−1

2 ) = O(ε
7−2k

4 ). (7.14)

Furthermore, the image Fn
ε (G⋄) is a ‘standard family’ (with the same norm

of the total measure, though) whose Z-value can only decrease with n, due
to (7.7), hence we have

PG⋄
(A ◦ Fn

ε ) = O(ε5/4| ln ε|). (7.15)

for all n ≥ 1. In the same way we can estimate the measure of gaps and

overlaps in each cell D
(U)
m or D

(L)
m . Since the width of the cell is 1/m2 or

1/m2
L, respectively, we have for all n ≥ 0

(

Fn
ε ν⋄

)

(D(U)
m ) = O(ε5/4/m2) (7.16)

and
(

Fn
ε ν⋄

)

(D(U)
m ) = O(ε5/4/m2

L) (7.17)

Lastly, let M−
⋄ denote the union of the preimages of all the overlaps; this is

the subset of M on which Fε fails to be injective. We have seen in (6.3) that

ν0(D
(U)
m ∩M−

⋄ ) = O(ε2) and ν0(D
(L)
m ∩M−

⋄ ) = O(ε2m2/m2
L), hence

∫

M−

⋄

Adν0 ≍
mU
∑

m=1

mε2 +

mL
∑

m=1

ε2m3/m2
L = O(ε). (7.18)

We will use the estimates (7.8)–(7.18) later.

8. Physical invariant measure

Here we construct a natural (‘physical’) Fε-invariant measure on M that
attracts Lebesgue a.e. point X ∈ M.
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Recall that the basin of attractionBν of an ergodic Fε-invariant measure
ν is the set of points X ∈ M such that

1

n

[

f(X) + f(Fε(X)) + · · · + f(Fn−1
ε (X))

]

→
∫

M
f dν

for every bounded continuous function f . By the ergodic theorem, ν(Bν) = 1.
We say that ν is a physical measure if Leb(Bν) > 0, i.e. there is a positive
chance of ‘seeing’ this measure in a physical experiment where one observes
an orbit of a randomly selected point X ∈ M.

In hyperbolic systems like ours, the basin Bν of every measure ν is (mod
0) a union of stable manifolds. Thus the condition Leb(Bν) > 0 is equivalent
tomW (W∩Bν) > 0 for some unstable curveW . It is then natural to construct
a physical measure by iterating the Lebesgue measure mW defined on an
unstable curve, i.e. by taking a Cesaro limit point of the sequence of its
images Fn

ε (mW ).
Suppose we start with a standard pair ℓ0 (or more generally, with a

standard family G0 that has a finite ZG0
<∞). Then we consider the sequence

of measures PGn = Fn
ε (PG0

). For all n ≥ n0 ∼ C| lnZG0
|, the measure PGn

will be supported on a proper standard family Gn. As such, it will be mostly
supported on long unstable curves. More precisely, for any ζ > 0 we have

PGn

(

∪Wα∈Gn : |Wα|<ζWα

)

≤ Cζ (8.1)

for some constant C > 0.
Next, for any ζ > 0, consider the class Cu(ζ) of unstable curves W ⊂ M

of length ≥ ζ. Denote by Cu(ζ) its closure in the Hausdorff metric. Recall
that our unstable curves are C2 with uniformly bounded curvature, and their
tangent vectors satisfy (4.1). Therefore ([17, Lemma 4.60]) all the curves in

the class Cu(ζ) are of length ≥ ζ, they are at least C1 (but not necessarily C2,
though their derivatives are Lipschitz continuous), and their tangent vectors

also satisfy (4.1). We will call curves W ∈ ∪ζ>0Cu(ζ) generalized unstable
curves. Accordingly, we define generalized standard pairs and families as those
supported on generalized unstable curves. (For brevity, we will omit the word
‘generalized’ most of the time.)

Proposition 8.1. For every generalized standard family G the sequence of Ce-
saro averages of the images Fn

ε (PG) has a weakly convergent subsequence. The
limit measure νε will be Fε-invariant, and it will be supported on a proper
generalized standard family Gε.
Proof. Our argument is similar to that used in [1] for construction of physical
measures for partially hyperbolic diffeomorphisms. First we define a metric
on the space of all generalized standard pairs. Given two pairs ℓ1 = (W1, ρ1)
and ℓ2 = (W2, ρ2), we parameterize W1 and W2 by a normalized arclength
parameter s, i.e. W1 = {r1(s), ϕ1(s)} and W2 = {r2(s), ϕ2(s)} for 0 ≤ s ≤
1. We assume that the orientations of these parameterizations agree – for
example, s = 0 corresponds to the bottom left endpoint and s = 1 to the
top right endpoint of each curve (recall that the curves are monotonically
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increasing in the rϕ coordinates, i.e. they run from bottom left to top right).
The metric is now defined as

dist(ℓ1, ℓ2) = max
0≤s≤1

{|r1(s) − r2(s)|, |ϕ1(s) − ϕ2(s)|, |ρ1(s) − ρ2(s)|}.

For any ζ > 0 we denote by Ψζ the metric space of standard pairs supported
on unstable curves of length ≥ ζ. Observe that this space is compact. Now
any standard family G is a measure on ∪ζ>0Ψζ , we denote that measure by

P̃G (note that it is different from PG , as it is defined on the space of standard
pairs, while PG is defined on M).

Now let {Gi} be any sequence of proper standard families, then

inf
i

P̃Gi(Ψζ) → 1 as ζ → 0,

due to (8.1). Thus, the sequence P̃Gi has a weakly convergent subsequence.
Now let G be any standard family with ZG <∞. Then for all n ≥ nG the

image Fn
ε (P̃G) will be a proper standard family. Due to the above, its Cesaro

averages will have a weak limit point, which will be supported on a proper
standard family, we denote it by Gε. It will obviously be invariant under Fε,
and its projection onto M will be an Fε-invariant probability measure νε. �

We will show later that the physical measure νε is unique, ergodic, and
mixing.

Next we investigate the support of the so defined measure P̃Gε . We

say that a standard pair ℓ = (W,ρ) belongs in the support of P̃Gε if for any
δ > 0 the measure of the δ-neighborhood of ℓ is positive. The δ-neighborhood
consists of standard pairs on unstable curves W ′ of length |W ′| ≥ |W | − 4δ

that are δ-close to W . Since P̃Gε is invariant, we see that (at least some of)
the curves W ′ are images of other unstable curves (or components thereof).
By continuity, W is an image of an unstable curve, too, we will call it W−1.
In other words, at least one branch of F−1

ε is defined and continuous on W ,
and it takes W to the unstable curve W−1 (of course, W−1 will be shorter
than W ). In that case W−1 belongs to the support of νε as well.

We say that an unstable curve W0 ⊂ M is an unstable manifold if there
is a sequence of unstable curves W−i such that Fε(W−i−1) = W−i for all
i ≥ 0. Our previous analysis implies

Proposition 8.2. The proper generalized standard family PGε constructed above
and corresponding to the invariant measure νε consists of unstable manifolds.
In other words, νε is supported on a union of unstable manifolds.

In this sense, our invariant measure νε is an analogue of Sinai-Ruelle-
Bowen (SRB) measures for hyperbolic systems – it is absolutely continuous
on unstable manifolds and ergodic (see below). (We note, however, that the
measure νε can be represented by many different generalized standard fami-
lies, not all of them consisting of unstable manifolds.)

We also note that our unstable manifolds do not foliate M, in fact
they may cross each other (because our map Fε is not invertible). One can
think of PGε as a family of unstable manifolds that are ‘scattered’ all over
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M with plenty of mutual intersections. Their distribution in M may be very
inhomogeneous, i.e. they may ‘pile up’ in some places and completely avoid
other places (in fact their union may possibly be nowhere dense in M).

The above proposition is included here for the purpose of comparing
our invariant measure νε with “usual” SRB states; our further analysis will
not rely on it.

Next we turn to the Coupling Lemma. This is a useful tool in the studies
of hyperbolic maps; and it is flexible enough to be applied to non-invertible
maps like ours.

We briefly describe the relevant constructions, see a detailed exposition
in [17, Section 7.5] and [12, Appendix A]. First, every standard pair ℓ = (W,ρ)

is replaced with a ‘rectangle’ Ŵ : = W × [0, 1] equipped with a probability

measure P̂ℓ defined by

dP̂ℓ(X, t) = dPℓ(X) dt = ρ(X) dX dt, (8.2)

i.e. the density of P̂ℓ is also ρ. The map Fn
ε can be naturally defined on

‘rectangles’ Ŵ by Fn
ε (X, t) = (Fn

ε X, t).
Given a standard family G = (Wα, ρα), α ∈ A, with a factor measure

λG , we denote by Ĝ = (Ŵα, ρα) the family of the corresponding rectangles
equipped with the same factor measure λG , and denote by µ̂G the induced

measure on the union ∪αŴα.

Lemma 8.3 (Coupling Lemma). Let G = (Wα, ρα), α ∈ A, and E = (Wβ , ρβ),
β ∈ B, be two proper standard families. Then there exist a bijection (a cou-

pling map) Θ: ∪α Ŵα → ∪βŴβ that preserves measure; i.e. Θ(µ̂G) = µ̂E ,

and a (coupling time) function Υ : ∪αŴα → N such that two properties hold:

A. Let (X, t) ∈ Ŵα, α ∈ A, and Θ(X, t) = (Y, s) ∈ Ŵβ, β ∈ B. Then
the points Fm

ε (X) and Fm
ε (Y ) lie on the same stable manifold W s ⊂ M for

m = Υ(X, t).
B. There is a uniform exponential tail bound on the function Υ:

µ̂G
(

Υ > n
)

≤ CΥϑ
n
Υ, (8.3)

for some constants CΥ = CΥ(D) > 0 and ϑΥ = ϑΥ(D) < 1.

We emphasize that the constants CΥ and ϑΥ are uniform in ε.

Proof The argument goes along the same lines as in [17, Section 7.5] and [12,
Appendix A] (we have already prepared all the necessary technical tools). The
only new issue is the uniformity in ε. To settle it, we recall that the proof
uses a quadrilateral R ⊂ M bounded by two stable curves and two unstable
curves (called a ‘rhombus’ in [17]) where the coupling is defined explicitly
(R contains all the points Fm

ε (X) and Fm
ε (Y ) mentioned in part A). That

rhombus must first be constructed for the billiard map F0, and then, because
Fε is a small perturbation of F0, the rhombus R will have nearly the same
properties for all small ε. In particular the fact that there exists m0 such that
for any proper unstable curve Fm0

ε W
⋂

R 6= ∅ is first proven for ε = 0 using
mixing of F0 and then extended to ε 6= 0 using compactness of the set of
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proper unstable curves. This perturbative argument is described in detail in
[9, pp. 229–233], and it works in our case as well. �

Remark. The above perturbative argument puts severe restrictions on ε, i.e.
it works only for very small ε; see a remark on page 232 in [9] for explana-
tions and related issues. One can expect that hyperbolicity, regularity con-
ditions, and the existence of physical measures hold for reasonably small ε,
but the uniqueness and strong statistical properties (see below) hold only
for extremely small ε. We expect that if we increase ε continuously, one first
observes a unique physical measure, then a finite collection of physical (SRB-
like) measures, and then singular non-SRB stationary states. For models with
Gaussian thermostats numerical experiments of this sort were done in [21].

In plain words, the Coupling Lemma means that the images of any
two measures supported on proper standard families will get close together
(exponentially fast), and their further images will become almost indistin-
guishable. In particular, one of the two standard families in Lemma 8.3 can
be Gε supporting the invariant measure νε = PGε ; then the images of any
other measure PG converge to νε exponentially fast (in the sense specified by
the coupling map).

Corollary 8.4. The measure νε = PGε described in Proposition 8.1 is unique
and independent from the initial standard family G. It is ergodic and mixing.
In addition, we have the following weak limit

lim
n→∞

Fn
ε

(

PG
)

= νε (8.4)

for any standard family G with a finite ZG <∞.

Note that PG in (8.4) can be replaced with ν0, as one can foliate M by
unstable curves and condition the measure ν0 on them to get a PG .

Proof. The uniqueness and ergodicity readily follow from the Coupling Lemma,
and so does (8.4). To show that νε is mixing it is enough to verify that

lim
n→∞

νε
(

f · (g ◦ Fn
ε )

)

= νε(f)νε(g) (8.5)

for any continuous functions f, g on M. Clearly, f and g can be approximated
by smooth functions, then f can be replaced with a linear combination of
smooth functions with values in the interval [1− δ0, 1+ δ0] for a small δ0 > 0
and mean values =1, and then fPGε will be a proper standard family; thus
(8.5) follows from (8.4). �

Now we address the statistical properties of the system (M,Fε, νε). We
say that a function f : M → R is dynamically Hölder continuous if there are
ϑf ∈ (0, 1) and Kf > 0 such that for any X,Y ∈ W lying on one unstable
curve W

|f(X) − f(Y )| ≤ Kfϑ
s+(X,Y )
f (8.6)

and for any X,Y ∈ W s lying on one stable manifold W s

|f(X) − f(Y )| ≤ Kfϑ
s−(X,Y )
f , (8.7)



Lorentz gas with thermostatted walls 39

where s−(X,Y ) is the largest m ≥ 0 such that W s = Fm
ε (W s

1 ) for another
stable manifold W s

1 . The value s+(X,Y ) is called the future separation time
for the points X and Y , and we can naturally call s−(X,Y ) the past separa-
tion time.

We denote the space of such functions by H. It contains every piece-
wise Hölder continuous function whose discontinuities coincide with those of
Fm
ε for some m > 0. For example, the components ∆ε,x,∆ε,y of the vector

displacement function ∆ε belong in H (to be proven in Section 10).
The following two propositions follow from the Coupling Lemma; see

the proofs of Theorems 7.31 and 7.37 in [17].

Proposition 8.5 (Equidistribution). Let G be a proper standard family. For
any dynamically Hölder continuous function f ∈ H and n ≥ 0

∣

∣

∣

∣

∫

M
f ◦ Fn

ε dPG −
∫

M
f dνε

∣

∣

∣

∣

≤ Bfθ
n
f (8.8)

where Bf = 2C
(

Kf + ‖f‖∞
)

and θf =
[

max{ϑΥ, ϑf}
]1/2

< 1; here C > 0 is
a constant independent of G and ε.

In other words, iterations of measures on standard pairs weakly converge
to the measure νε, and the convergence is exponentially fast in the sense of
(8.8).

Proposition 8.6 (Exponential bound on correlations). For any pair of dynam-
ically Hölder continuous functions f, g ∈ H and n > 0

∣

∣νε
(

f · (g ◦ Fn
ε )

)

− νε(f)νε(g)
∣

∣ ≤ Bf,g θ
n
f,g (8.9)

where
θf,g =

[

max
{

ϑΥ, ϑf , ϑg, e
−1/c3

}]1/4
< 1,

where c3 > 0 is the constant from Lemma 7.2, and

Bf,g = C
(

Kf‖g‖∞ +Kg‖f‖∞ + ‖f‖∞‖g‖∞
)

.

Remark. The invariant measure νε in (8.9) can be replaced with any measure
PG supported on a proper standard family (in particular, by the F0-invariant
measure ν0). In that case (8.9) takes form

∣

∣PG
(

f · (g ◦ Fn
ε )

)

− PG(f)νε(g)
∣

∣ ≤ Bf,g θ
n
f,g.

The proof of this is just a simple adaptation of the standard proof of the
above theorem, see e.g. the proof of Theorem 7.37 in [17]. This fact was used
in [15].

The last theorem can be extended to multiple correlations and it implies,
via a standard argument, Central Limit Theorem for the map Fε, see [17,
Chapter 7] and [11].

Lastly we derive the Kawasaki-type formula for any dynamically Hölder
continuous function f ∈ H. Due to (8.4)

νε(f) = ν0(f) + lim
n→∞

n
∑

k=1

ν0
[

(f ◦ Fk
ε ) − (f ◦ Fk−1

ε )
]

. (8.10)
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Also recall that ν0 = PG0
for a proper standard family G0. Thus, due to

Equidistribution property, ν0(f ◦ Fk
ε ) converges to νε(f) exponentially fast.

Therefore the series in (8.10) converges at an exponential rate, and we have
the following tail bound:

∣

∣

∣

∣

∞
∑

k=n

ν0
[

(f ◦ Fk
ε ) − (f ◦ Fk−1

ε )
]

∣

∣

∣

∣

≤ 2Bfθ
n
f /(1 − θf ). (8.11)

We note that if the Hölder exponent ϑf of the function f , its Hölder norm
Kf , and its ∞-norm ‖f‖∞ are all independent of ε, then the above estimate
is uniform in ε, too.

9. Electrical current

Now we turn to the physically interesting feature – electrical current. In this
section we present our arguments in a relatively general way suppressing some
model-specific details; the latter will be supplied in the next section.

We first investigate the discrete-time current defined by

Ĵ = lim
n→∞

1
n q̃n = νε(∆ε),

where ∆ε = (∆ε,x,∆ε,y) = q̃1 −q denotes the displacement vector, cf. (2.3).
We write ∆ε for both components ∆ε,x and ∆ε,y of ∆ε. The function ∆ε is
bounded and dynamically Hölder continuous (see Corollary 10.4), hence the
Kawasaki formula (8.10) applies:

νε(∆ε) = ν0(∆ε) +

∞
∑

n=1

ν0
[

(∆ε ◦ Fn
ε ) − (∆ε ◦ Fn−1

ε )
]

, (9.1)

in which the series converges exponentially. In fact, its Hölder exponent θ∆ε ∈
(0, 1) is independent of ε and its norm is K∆ε = O(ε−a) with some constant
a > 0 (see Corollary 10.4). Due to (8.11) we can choose N = L| ln ε| with a
large constant L > 0 and rewrite (9.1) as

νε(∆ε) = ν0(∆ε) +

N
∑

n=1

ν0
[

(∆ε ◦ Fn
ε ) − (∆ε ◦ Fn−1

ε )
]

+ χ1, (9.2)

where χ1 = O(ε2). Here and in what follows we will denote by χ1, χ2, . . .
various remainder terms, they will all satisfy χi = O(ε1+ai) for some ai > 0.
Now let

M = ∪∞
k=0Mk,

where Mk consists of points with exactly k preimages under F−1
ε . In other

words, Mk consists of points where exactly k domains M−
i (described in

Section 5) overlap. (In fact, all Mk 6= ∅ only for k ≤ k0, with some k0

independent of ε.)
The set M1 is overwhelmingly large, and we denote its complement by

M⋄ = M\M1. In the finite horizon case, ν(M⋄) = O(ε2), and in the infinite
horizon case ν0(M⋄) = O(ε3/2) due to (6.3). The inverse map F−1

ε is uniquely
defined on M1, and we put M−

1 = F−1
ε (M1) and M−

⋄ = M\M−
1 .
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We also split ν0 = ν01 + ν0⋄, where ν01 denotes ν0 restricted to M1 and
ν0⋄ is ν0 restricted to M⋄. Now the measure ν−01 = F−1

ε (ν01) is supported on
M−

1 , and according to Lemma 4.3, for any X ∈M−
1 we have

dν−01
dν0

(X) =
v

v1
=

√

1 + 2εx

1 + 2εx+ 2ε∆ε,x
(9.3)

(using the notation of Section 3). Now Taylor expansion gives

v/v1 = 1 − ε∆ε,x + εRε,

where Rε is the remainder, whose contribution in the end will be negligible
(see discussion after (10.7)). Let ν−0⋄ denote the measure on M−

⋄ = M\M−
1

having the same density v/v1 as the measure ν−01 on M−
1 . Note that ν−01 + ν−0⋄

is not necessarily a probability measure, in fact we have
∫

M

v

v1
dν0 =

∞
∑

k=1

kν0(Mk) = 1 − χ3

where χ3 = O(ε3/2). Normalizing ν−01 +ν−0⋄ gives a probability measure µ̃0 on
M with density

g(X) =
dµ̃0

dν0
=

v

v1(1 − χ3)
= 1 − ε∆ε,x + εRε + χ4, (9.4)

where χ4 = O(ε3/2). Summarizing our formulas, we obtain for every n ≥ 1

ν0(∆ε ◦ Fn−1
ε ) = µ̃0(∆ε ◦ Fn

ε ) + χ5,n, (9.5)

where

χ5,n = ν0⋄(∆ε ◦ Fn−1
ε ) − ν−0⋄(∆ε ◦ Fn

ε ) − χ3 µ̃0(∆ε ◦ Fn
ε )

= O(ε5/4| ln ε|) + O(ε3/2| ln ε|)
(here we used (7.11) and (7.13)). Now the Kawasaki formula (9.2) can be
rewritten as

νε(∆ε) = ν0(∆ε) +

N
∑

n=1

ν0
[

(1 − g)(∆ε ◦ Fn
ε )

]

+ χ5, (9.6)

where

χ5 =

N
∑

n=1

χ5,n = O
(

ε5/4| ln ε|2
)

.

Next we observe that

ν0(g∆ε) =
1

1 − χ3

∫

M−

1

v

v1
∆ε dν0 +

1

1 − χ3

∫

M−

⋄

v

v1
∆ε dν0 (9.7)

and note that the integral I : =
∫

M−

⋄

∆ε dν0 is O(ε2) for systems with finite

horizon, but I = O(ε) for systems with infinite horizon; recall (7.18). Now
we define a new function

∆−
ε =

{

∆ε ◦ F−1
ε on M1

0 on M⋄
(9.8)
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and rewrite (9.7) as

ν0(g∆ε) =
1

1 − χ3

∫

M1

∆−
ε dν0 + I + χ6

= ν0(∆
−
ε ) + I + χ7, (9.9)

where χ6 and χ7 are O(ε3/2). Therefore

ν0(∆ε) = ν0(∆
−
ε ) + ν0

[

(1 − g)∆ε

]

+ I + χ7

and so

ν0(∆ε) = 1
2

[

ν0(∆ε) + ν0(∆
−
ε )

]

+ 1
2 ν0

[

(1 − g)∆ε

]

+ I/2 + χ7/2.

We will show that ν0(∆ε) + ν0(∆
−
ε ) = O(εa), where a = 2 for systems with

finite horizon and a = 1 for systems with infinite horizon (Lemma 10.1).
Combining all our formulas gives

νε(∆ε) = 1
2 ν0

[

(1 − g)∆ε

]

+
N

∑

n=1

ν0
[

(1 − g)(∆ε ◦ Fn
ε )

]

+ O(εa), (9.10)

where a > 1 for systems with finite horizon and a = 1 for systems with
infinite horizon. Using Taylor expansion (9.4) gives

νε(∆ε) = 1
2 εν0(∆ε,x∆ε) + ε

N
∑

n=1

ν0
[

(∆ε ◦ Fn
ε )∆ε,x

]

− 1
2 εν0(Rε∆ε) − ε

N
∑

n=1

ν0
[

(∆ε ◦ Fn
ε )Rε

]

+ O(εa). (9.11)

The contribution of the remainder Rε is small and can be incorporated into
the last term O(εa). The correlations ν0

[

∆ε,x(∆ε ◦Fn
ε )

]

decay exponentially
and uniformly in ε (see Proposition 10.6). The vector ∆ε = (∆ε,x,∆ε,y)
depends on ε continuously, so using a priori bounds of Lemma 10.2 we see
that for every n ≥ 1 we have

lim
ε→0

ν0
[

∆ε,x(∆ε ◦ Fn
ε )

]

= ν0
[

∆0,x(∆0 ◦ Fn
0 )

]

, (9.12)

where ∆0,x and ∆0 denote the components of the displacement vector ∆0 in
the field-free (billiard) dynamics. In the finite horizon case, (9.12) holds for
n = 0 as well. Thus, in the finite horizon case we arrive at

Ĵ = νε(∆ε) = 1
2 DE + o(ε), (9.13)

where D is the diffusion matrix (1.3).
In the infinite horizon case, the very first term in (9.11), i.e. 1

2 εν0(∆ε,x∆ε)
is dominant, it is O(ε| ln ε|) due to (7.9). In fact, we will show in Section 10,
see (10.12), that

ν0(∆ε ⊗ ∆ε) = | log ε|D∞ + O(1) (9.14)

where D∞ is the super-diffusion matrix (1.5) for the respective field-free
(billiard) system. Therefore the current is given by

Ĵ = νε(∆ε) = 1
2 | log ε|D∞E + O(ε). (9.15)
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Next, basic facts from the theory of suspension flows (see [22, pp. 292–295],
[5, pp. 21–22], or [17, Section 2.9]) readily give (2.3) and (2.7). Thus in order
to complete the proofs of the main formulas (2.4) and (2.8) it suffices to show
that, as stated in Theorems 6 and 7,

τ̄ε = τ̄ + O(εa), (9.16)

for some a > 0. This will be done in Section 10 (see Lemma 10.8).
It remains to prove the Central Limit Theorem and the corresponding

formulas for the diffusion matrices, i.e. equations (2.5)-(2.6) and (2.9)-(2.10).
According to general results, cf. [26] or [17, Theorem 7.68], the continuous-
time CLT follows from its discrete-time counterpart whenever the correspond-
ing ceiling function is bounded and dynamically Hölder continuous. Our ceil-
ing function τε has these properties, as we show in the next section.

Now the discrete-time CLT (mentioned in Section 8) says that

q̃n − nĴ√
n

⇒ N (0, D̂∗
ε), (9.17)

where the covariance matrix D̂∗
ε is given by the sum of correlations

D̂∗
ε = νε

(

∆ε ⊗ ∆ε

)

− νε(∆ε) ⊗ νε(∆ε)

+ 2

∞
∑

n=1

(

νε
[

(∆ε ◦ Fn
ε ) ⊗ ∆ε

]

− νε(∆ε) ⊗ νε(∆ε)
)

. (9.18)

The series in (9.18) converges exponentially fast, and we will show in the
next section that the convergence is uniform in ε. We will also show (see
Lemma 10.8) that, for each n ≥ 0,

νε
(

(∆ε ◦ Fn
ε ) ⊗ ∆ε

)

= ν0
(

(∆ε ◦ Fn
ε ) ⊗ ∆ε

)

+ O(εa) (9.19)

for some a > 0. (We also recall that νε(∆ε) is small, according to (9.13) and
(9.15).) This, along with (9.12) and (9.14), implies that

D̂∗
ε = D + o(1)

for systems with finite horizon and

D̂∗
ε = | log ε|D∞ + O(1) (9.20)

in the infinite horizon case. We also recall that D∗
ε = τ̄−1

ε D̂∗
ε by a standard

formula [17, Theorem 7.68]. This completes the proof of (2.5)-(2.6) and (2.9)-
(2.10), and thus that of Theorems 6 and 7.

10. Finishing the proofs

Here we prove various technical statements made in Section 9. Our arguments
mostly follow the lines of Sections 8–10 in [15] where Gaussian thermostatted
Lorentz gases were treated. We sketch the steps that repeat those of [15] and
give details whenever our arguments differ from those of [15], in particular
when gaps and overlaps are involved.
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Recall that ∆ε denotes either component, ∆ε,x or ∆ε,y, of the displace-
ment vector ∆ε. Our map Fε is not invertible, but the function ∆−

ε defined
by (9.8) plays the role of ∆ε ◦ F−1

ε .

Lemma 10.1. We have ν0(∆ε) + ν0(∆
−
ε ) = O(εa), where a = 2 for systems

with finite horizon and a = 1 for systems with infinite horizon.

Proof. Let X = (r, ϕ) ∈ M1 be a point such that we also have I(X) =
(r,−ϕ) ∈M1 (recall that I denotes the involution on M). Since the density
cosϕ of the measure ν0 is equal at the points X and I(X), we can combine
them and estimate the following sum:

∆ε(r, ϕ) + ∆−
ε (r,−ϕ) + ∆ε(r,−ϕ) + ∆−

ε (r, ϕ). (10.1)

The key observation is that ∆ε(r, ϕ) and ∆−
ε (r,−ϕ) nearly cancel each other

(and so do the other two terms). Indeed, they are projections (on the x
or y axis) of two trajectories starting at the same point r, shooting at the
same angle ϕ, but having slightly different initial velocities (according to the
local time reversibility of our dynamics; see Section 5). In fact, the difference
between their velocities is O(ε|∆ε(X)|). Note that if the velocities were equal,
then the trajectories would coincide, all the way up the next collision, and
because they run in the opposite directions the first two terms in (10.1) would
perfectly cancel out. But since the velocities differ a little, the trajectories
run very closely, and the sum of the first two terms is (usually) small, see
next.

An elementary analysis shows that when the above two trajectories cover
the distance |∆ε(X)|, i.e. when they are about to come to the next collision,
they are O(ε2|∆ε(X)|3) apart from each other. If they land on the same
scatterer, at some angle ϕ1, the landing points will be O(ε2|∆ε(X)|3/ cosϕ1)
apart. The overall contribution of such trajectories amounts to

J : = ν0
(

ε2|∆ε(X)|3/ cosϕ1

)

.

In the finite horizon case, J = O(ε2). For infinite horizon,

J ≍ ε2
∑

m

m0.5 + ε2m−3
L

∑

m

m3.5 = O(ε5/4).

If the above two trajectories land on different scatterers, then ∆ε(r, ϕ) +
∆−
ε (r,−ϕ) is of order one, and we just need to estimate the measure of

the set of such points X . Those points are characterized by the fact that
their trajectories run O(ε2m3)-closely to the edge of a scatterer that is at
distance ≍ m away from X . Thus such points X are located in the (ε2m2)-

neighborhood of the borders of the cells D
(U)
m and D

(L)
m for all m. Thus such

points make a set of measure
mU
∑

m=1

ε2m2
(

1/
√
m

)2
+

mL
∑

m=1

ε2m2
(√
m/mL

)2
= O(ε).

It remains to account for points X ∈ M⋄ and X ∈ I−1(M⋄). In the finite
horizon case, they make a set of measure O(ε2). For infinite horizon, we have
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seen that
∫

M⋄

∆ε dν0 = O(ε5/4| ln ε|). A similar analysis for the set I−1(M⋄)
shows that

∫

I−1(M⋄)

∆ε dν0 = O(ε), (10.2)

which is an analogue of (7.18). The lemma is proven. �

Lemma 10.2. For each n ≥ 0 we have

(Fn
ε ν0)

(

D(U)
m

)

≍ 1/m3, (Fn
ε ν0)

(

D(L)
m

)

≍ m/m4
L (10.3)

and the same estimates hold for the limit measure νε.

Proof. The proof is almost identical to that of Lemma 8.1 in [15]: for small
n (say, for n < ε−0.1), we use the fact that the (local) Jacobian (4.11) of the
map Fε is very close to one, hence the (local) Jacobian of Fn

ε is still close
to one (it is enough for us that the Jacobian of Fn

ε is between 0.9 and 1.1).
For larger n we use the equidistribution (Theorem 8.5): it shows that the
sequence of the above measures converges exponentially fast, hence it will
already be close to its limit when n ≥ ε−0.1.

In addition, now we need to estimate the effect of gaps and overlaps
on the above measures for small n. Due to (7.16), the measure of gaps and

overlaps that come to D
(U)
m during the first n iterations is O(nε5/4/m2) which

is o(1/m3) for n < ε−0.1. Similarly, due to (7.17), the measure of gaps and

overlaps that come to D
(L)
m during the first n iterations is O(nε5/4/m2

L) which
is o(m/m4

L) for n < ε−0.1. �

Lemma 10.3. Let X,Y ∈ M be two nearby points such that their trajectories
in D land, at the next collision, on the same scatterer in R2. Then we have

‖∆ε(X) − ∆ε(Y )‖ ≤ C
√

‖∆ε(X)‖ · dist(X,Y ),

where C > 0 is a constant independent of ε.

This is an analogue of Lemma 8.2 in [15]. Its proof is an elementary
calculation, because the trajectories between collisions are parabolas; we leave
the details to the reader.

Corollary 10.4. ∆ε is a dynamically Hölder continuous function with Hölder
exponent ϑ∆ε = 1/2 and Hölder constant K∆ε ≍ ‖∆ε‖∞ ≍ 1/

√
ε.

This proves the Kawasaki formula (9.1) with the error estimate
∣

∣

∣

∣

∫

M
∆ε ◦ Fn

ε dν0 −
∫

M
∆ε dνε

∣

∣

∣

∣

≤ Cε−1/2θn. (10.4)

Furthermore, for every k ≥ 2 we have K∆k
ε

+ ‖∆k
ε‖∞ ≍ ε−k/2, and so

∣

∣

∣

∣

∫

M
∆k
ε ◦ Fn

ε dν0 −
∫

M
∆k
ε dνε

∣

∣

∣

∣

≤ Cε−k/2θn. (10.5)

For k = 1, we can get a uniform bound, independent of ε:
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Proposition 10.5. For some constants C > 0 and θ < 1, independent of ε,
∣

∣

∣

∣

∫

M
∆ε ◦ Fn

ε dν0 −
∫

M
∆ε dνε

∣

∣

∣

∣

≤ Cθn. (10.6)

The proof repeats that of Proposition 8.3 in [15] verbatim. The uniform
convergence here justifies our choice of N = L| ln ε| in (9.2).

Next we examine the remainder Rε: (9.3) implies

1 − v

v1
= η − 1 · 3

2!
η2 +

1 · 3 · 5
3!

η3 − · · ·

where η =
ε∆ε,x

1+2εx , thus

Rε =
2εx∆ε

1 + 2εx
+

1 · 3
2!

· ε∆2
ε

(1 + 2εx)2
− 1 · 3 · 5

3!
· ε2∆3

ε

(1 + 2εx)3
+ · · · (10.7)

This expansion is similar to (8.8) in [15]. One can easily see that Rε is dynam-
ically Hölder continuous with the same exponent and norm as the function
∆ε,x. Besides, Rε is bounded (uniformly in ε), and Rε → 0 pointwise, as
ε → 0. For all these reasons its contribution to (9.11) will be much easier
to handle than that of ∆ε,x. In particular, ν0(Rε∆ε) = O(

√
ε), as the main

contribution comes from the second term of (10.7), and we can apply (7.10)
with k = 3.

Next we establish a uniform bound on correlations:

Proposition 10.6. For some constants C > 0 and θ ∈ (0, 1) independent of ε
and all n ≥ 1

∣

∣

∣
νε

[

(∆ε ◦ Fn
ε )∆ε,x

]

− νε(∆ε)νε(∆ε,x)
∣

∣

∣
≤ Cθn (10.8)

and
∣

∣

∣
ν0

[

(∆ε ◦ Fn
ε )∆ε,x

]

− νε(∆ε)ν0(∆ε,x)
∣

∣

∣
≤ Cθn (10.9)

This is our analogue of Proposition 9.3 in [15], which in turn is an
extension of the bounds on correlations in the infinite horizon Lorentz gas
given in Proposition 9.1 in [15]. The proofs in [15] only use the estimates on

the sizes, shapes, and measures of the cells D
(U)
m and D

(L)
m , which are the

same here, so they apply to the present situation without changes.
Proposition 10.6 implies

ν0
[

(∆ε ◦ Fn
ε )∆ε,x

]

= νε(∆ε)ν0(∆ε,x) + O(θn) (10.10)

and similarly, replacing one ∆ε with a much milder function Rε we get

ν0
[

(∆ε ◦ Fn
ε )Rε

]

= νε(∆ε)ν0(Rε) + O(θn). (10.11)

These uniform bounds and (9.11) imply our final results. Precisely, in the
case of finite horizon they imply (9.13). For infinite horizon we obtain

J = νε(∆ε) = 1
2 εν0(∆ε ⊗ ∆ε) + O(ε),

so it remains to verify (9.14). This is done by direct integration, see below.
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Figure 12. An infinite corridor bounded by two lines tan-
gent to the scatterers.

First we note that the contribution from the lower cells D
(L)
m is O(1), see

the second sum in (7.9), hence they can be ignored. Second we can choose a
large constant C ≫ 1 and ignore all phase points with ‖∆ε‖ ≤ C. So we only
consider trajectories that shoot from the initial scatterer facing an infinite
corridor (see B1 in Fig. 12) and landing on distant scatterers on the opposite
side of that corridor (the upper row in Fig. 12).

Next, let L1 and L2 denote two parallel lines bordering our corridor,
i.e. the two common tangent lines to all the scatterers along the corridor,
see Fig. 12. Our trajectories leave the scatterer B1, cross L1 first, then after
a long trip in the corridor they cross L2 and land very shortly on the next

scatterer in the top row. Let ∆̂ε = (∆̂ε,x, ∆̂ε,y) denote the vector between the

two crossing points, on L1 and L2 respectively. Note that ∆ε,x = ∆̂ε,x+O(1)

and ∆ε,y = ∆̂ε,y + O(1), thus

ν0(∆
2
ε,x) = ν0(∆̂

2
ε,x) + O(1), ν0(∆ε,x∆ε,y) = ν0(∆̂ε,x∆̂ε,y) + O(1),

and so we can replace ∆ε,x,∆ε,y with ∆̂ε,x, ∆̂ε,y.
Let γ denote the angle between the line L1 and the field direction (i.e.,

the x axis). The equation of the line L1 is ay − bx = 0, where a = cos γ and
b = sin γ , and that of the other line L2 is ay− bx = w, where w denotes the
width of the corridor.

Let I ⊂ L1 be a segment of L1 between two consecutive scatterers,
one of which is in D, and let r be the arclength parameter on I, so that
0 ≤ r ≤ rmax = |I|. We regard I as an ‘artificial’ part of the boundary of

our table D̃, and then the measure ν0 on it would be a smooth measure with
density cν cosϕdr dϕ, where ϕ is the angle made by the trajectory crossing
I and the normal vector to L1.

At every point Xr = (xr , yr) ∈ I we consider trajectories leaving Xr

into the corridor, with velocity vector v such that v = ‖v‖ =
√

1 + 2εxr



48 N. Chernov and D. Dolgopyat

according to (2.1). Let ψ = π/2 − ϕ denote the angle that v makes with the
line L1. There is a minimum ψmin > 0 so that the trajectory crosses L2 before
coming back to L1. Let (xr + ∆̂ε,x, yr + ∆̂ε,y) denote the (first) intersection
of our trajectory with L2.

Proposition 10.7. We have
∫ rmax

0

∫ π/2

ψmin

(∆̂ε,x)
2 sinψ dψ dr = 1

2 a
2w2rmax| ln ε| + O(1)

and
∫ rmax

0

∫ π/2

ψmin

∆̂ε,x∆̂ε,y sinψ dψ dr = 1
2 abw

2rmax| ln ε| + O(1).

This proposition easily implies

ν0(∆ε ⊗ ∆ε) = | log ε|D∞ + O(1) (10.12)

see details in the proof of Eq. (10.5) in [15]. Note that sinψ = cosϕ.

Proof. This follows by an elementary calculation, we only outline the main
steps. The initial velocity vector of the moving particle is (v cos(γ+ψ), v(sin γ+
ψ)), and its position at time t is

(

xr + tv cos(γ + ψ) + 1
2εt

2, yr + tv sin(γ + ψ)
)

Substituting this into the equation ay − bx = w of the line L2 gives

εbt2 − 2tv sinψ + 2w = 0.

Solving this quadratic equation for 1/t gives the time of intersection of the
trajectory with the line L2:

t =
2w

v sinψ(1 +
√

1 − 2εbw/(v2 sin2 ψ))

Incidentally, we see that ψmin = sin−1
√

2bwε/v2 ≍ √
ε. If we ignore small

terms of order ε, we get

t ≈ w

v sinψ
, ∆̂ε,x ≈ aw

sinψ
, ∆̂ε,y ≈ bw

sinψ
. (10.13)

We note that
∫ C

c
√
ε

dψ

sinψ
= 1

2 | ln ε| + O(1)

for any constants c > 0 and 0 < C < π/2, thus the approximation (10.13)
gives the right answer. To take care of terms of order ε we note that their
contribution is of order

∫ C

c
√
ε

εdψ

sin2 ψ
= O(

√
ε),

thus they will not affect the final result. �

Lemma 10.8. Formulas (9.16) and (9.19) hold.
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We prove (9.16) in two steps:

νε(τε) = ν0(τε) + O(εa) (10.14)

and

ν0(τε) = ν0(τ0) + O(εa). (10.15)

It is easy to verify directly that if a trajectory starts from a phase point
(q,v) ∈ M and moves without collisions for a time τ , then it deviates from
a billiard trajectory starting from the same phase point by O(ετ2). Then the
argument used in [15, Section 10] gives (10.15).

Now (10.14) and (9.19) are similar, except (10.14) applies to τε and
(9.19) applies to (∆ε ◦ Fn

ε ) ⊗ ∆ε for n ≥ 0. One can check directly that
the function τε has all the same properties as ∆ε – it is dynamically Hölder
continuous with exponent ϑτε ∈ (0, 1) independent of ε and norm Kf =
O(ε−a) for some a > 0, and it has the same order of magnitude as ‖∆ε‖.
Thus all of these estimates can be treated in the same way. We work out the
most difficult of them, (9.19) for n = 0:

νε(∆ε ⊗ ∆ε) = ν0(∆ε ⊗ ∆ε) + O(εa) (10.16)

for some a > 0. To this end we apply the Kawasaki formula (9.1) to each
component of the matrix

∆ε ⊗ ∆ε =

[

∆2
ε,x ∆ε,x∆ε,y

∆ε,x∆ε,y ∆2
ε,y

]

.

They are treated similarly, and we only show the formulas for ∆2
ε,x:

νε(∆
2
ε,x) = ν0(∆

2
ε,x) +

∞
∑

n=1

ν0
[

(∆2
ε,x ◦ Fn

ε ) − (∆2
ε,x ◦ Fn−1

ε )
]

, (10.17)

in which the series converges exponentially. As we have shown, its Hölder
exponent ϑ∆2

ε,x
∈ (0, 1) is independent of ε and its norm isK∆2

ε,x
+‖∆2

ε,x‖∞ =

O(ε−1). Hence, due to (8.11), the terms of the above series are O(ε−1θn) for
some constant θ ∈ (0, 1). Thus we can choose N = L| ln ε| with a large
constant L > 0 and rewrite (10.17) as

νε(∆
2
ε,x) = ν0(∆

2
ε,x) +

N
∑

n=1

ν0
[

(∆2
ε,x ◦ Fn

ε ) − (∆2
ε,x ◦ Fn−1

ε )
]

+ O(ε). (10.18)

Next we apply the analysis developed in Section 9 to the function ∆2
ε,x,

instead of ∆ε. In particular, an analogue of (9.5) will be

ν0(∆
2
ε,x ◦ Fn−1

ε ) = µ̃0(∆
2
ε,x ◦ Fn

ε ) + χ9,n, (10.19)

where

χ9,n = ν0⋄(∆
2
ε,x ◦ Fn−1

ε ) − ν−0⋄(∆
2
ε,x ◦ Fn

ε ) − χ3 µ̃0(∆
2
ε,x ◦ Fn

ε )

= O(ε3/4) + O(ε)



50 N. Chernov and D. Dolgopyat

(here we used (7.12) and (7.14) with k = 2). Now the Kawasaki formula
(10.18) can be rewritten as

νε(∆
2
ε,x) = ν0(∆

2
ε,x) +

N
∑

n=1

ν0
[

(1 − g)(∆2
ε,x ◦ Fn

ε )
]

+ χ9, (10.20)

where

χ9 =

N
∑

n=1

χ9,n = O
(

ε3/4| ln ε|
)

.

Using Taylor expansion (9.4) gives

νε(∆
2
ε,x) = ν0(∆

2
ε,x) + ε

N
∑

n=1

ν0
[

(∆2
ε,x ◦ Fn

ε )(∆ε,x + Rε)
]

+ χ10, (10.21)

where the remainder is χ10 = O(ε3/2| ln ε|2) because χ4 = O(ε3/2) and
ν0(∆

2
ε,x ◦ Fn

ε ) = O(| ln ε|) for every n ≥ 1; see (7.9) and Lemma 10.2. Now
using Hölder inequality gives
∣

∣ν0
[

(∆2
ε,x ◦ Fn

ε )(∆ε,x + Rε)
]∣

∣ ≤
[

(ν0 ◦ Fn
ε )

(

|∆3
ε,x|

)]2/3[
ν0

(

|∆ε,x + Rε|3
)]1/3

,

and each of these integrals is bounded by

C

mU
∑

m=1

m3

m3
+ C

mL
∑

m=1

m4

m4
L

≤ C(mU +mL) ≤ Cε−1/2,

recall (7.10) for k = 3 and Lemma 10.2. Summing over n ≤ L| log ε| gives

ε

L| log ε|
∑

n=1

ν0
[

(∆2
ε,x ◦ Fn

ε )(∆ε,x + Rε)
]

= O
(

ε1/2 | log ε|
)

,

which completes the proof of (10.16).

Appendix: The choice of a thermostat

In our model, we control the particle’s kinetic energy indirectly, via dealing
with its total energy; see Section 2. It might be tempting to control the kinetic
energy directly, by resetting the speed of the particle to a constant value (say,
to one) after every collision. Here we show that this would cause intractable
complications.

Let us consider trajectories arriving at a fixed point (x0, y0) on the
border of a scatterer B0 with a velocity vector making a fixed angle θ0 with
the x-axis. The angle θ0 would completely determine the direction of the
trajectory after the reflection at ∂B0, thus all our trajectories would arrive
at a single point X0 ∈ M determined by (x0, y0, θ0); we will see under what
conditions there might be more than one preimage of X0 in M.

Let the trajectory originate at a point (x, y) with initial velocity (u, v).
Then by the rules (2.2) we have

x0 = x+ ut+ 1
2 εt

2, y0 = y + vt
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where t is the travel time. Note that (u+ εt)/v = cot θ0 =: k, so that we can
eliminate t and obtain

x = x0 +
u2 − k2v2

2ε
, y = y0 +

uv − kv2

ε
. (A.22)

Let us first suppose the particle starts with a unit speed, i.e., u = cos θ and
v = sin θ. Then x, y in (A.22) become functions of θ, and we get a one-
parameter family of phase points that will arrive at the same collision point
X0 ∈ M. By elementary calculation, all the points (x, y) lie on an ellipse E,
and the corresponding outgoing velocity vectors (u, v) make a vector field on
E transversal to E.

Now it is well possible that the boundary of another scatterer,B, crosses
E more than once. Then from every point (x, y) ∈ E ∩ ∂B a trajectory may
originate that is mapped by Fε to X0. Thus the collision map Fε would take
several points from the surface of the scatterer B to a single point X0 ∈ M.
This means that the map Fε would fail to be one-to-one even on the set of
points that travel from one given scatterer, B, to another given scatterer,
B0. As a result, the map Fε may create “wrinkles” and “folds” even within
the domains where it is naturally continuous. The map Fε may have infinite
contraction rates within the domains of continuity, and its Jacobian may be
zero at some points. All this would severely complicate our analysis of the
hyperbolicity of Fε.

In order to avoid the above complications, let us abandon our assump-
tion of the initial unit speed (i.e., u = cos θ and v = sin θ) and return to the
more general situation where (A.22) hold. There will be still a family of phase
points (x, y, u, v) that arrive at the given point (x0, y0) with velocity directed
at the given angle θ0. Now a natural way to prevent the above complications
(and guarantee that the map Fε diffeomorphic on the set of points traveling
from one given scatterer, B, to another given scatterer, B0) is to make sure
that this family of phase points is a single trajectory, i.e. ẏ/ẋ = v/u, where
dots denote differentiation with respect to a family parameter. Differentiating
(A.22) gives

u̇v + uv̇ − 2kvv̇

uu̇− k2vv̇
=
v

u

from which v̇(u− kv)2 = 0. Note that u− kv = 0 implies x = x0 and y = y0,
which holds only at the last point (x0, y0). Thus in the rest of the family we
must have v̇ = 0, hence, v = const (the constant may depend on x0, y0, θ0
and ε, of course). Combining with the first equation of (A.22) we obtain

1
2 (u2 + v2) = const + εx.

This means that the total energy must be kept constant. This brings us back
exactly to the dynamics defined in Section 2.
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