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Abstract

We construct Markov approximations to the billiard flows and es-
tablish a stretched exponential bound on time-correlation functions
for planar periodic Lorentz gases (also known as Sinai billiards). Pre-
cisely, we show that for any (generalized) Hölder continuous functions
F,G on the phase space of the flow the time correlation function is
bounded by const · e−a

√
|t|, here t ∈ R is the (continuous) time and

a > 0.
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1 Introduction

A billiard is a mechanical system in which a point particle moves freely (by
inertia) at constant (unit) speed in a compact domain D and bounces off its
boundary ∂D according to the classical law “the angle of incidence is equal to
the angle of reflection”. The dynamical properties of billiards are determined
by the shape of ∂D, and they may vary from completely regular (integrable)
to strongly chaotic. The main class of chaotic billiards was introduced by
Ya. Sinai in 1970, see [Si3], who considered containers defined by

(1.1) D = Tor2 \ ∪p
i=1Bi,
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where Tor2 is the unit 2-torus and Bi ⊂ Tor2 disjoint strictly convex domains
(scatterers) with C3 smooth boundary whose curvature nowhere vanishes.

By lifting the billiard tableD from Tor2 to its universal cover R2 one gets a
billiard in an unbounded table where the particle bounces off a periodic array
of fixed obstacles (scatterers); this system is known as a periodic Lorentz gas.
If the free path between collisions is uniformly bounded, then the system is
said to have finite horizon. We always assume finite horizon in this paper.

The phase space of the billiard system is the compact 3D manifold M =
D × S1, and the billiards dynamics generates a flow Φt : M → M. It is a
Hamiltonian (contact) flow, and it preserves Liouville (uniform) measure µ
on Ω.

At every reflection the velocity vector changes by the rule v+ = v− −
2 〈v, n〉n, where v+ and v− refer to the postcollisional and precollisional
velocities, respectively, n denotes the inward unit normal vector to ∂D at
the reflection point q ∈ ∂D, and 〈·〉 denotes the scalar product. The family
of postcollisional velocity vectors with footpoints on ∂D makes a 2D manifold
called the collision space:

Ω = {x = (q, v) : q ∈ ∂D, 〈v, n〉 ≥ 0}.

The billiard flow induces the return map T : Ω → Ω called the billiard map
or collision map.

Standard coordinates on Ω are the arc length parameter r on the bound-
ary ∂D and the angle ϕ ∈ [−π/2, π/2] between the vectors v and n. Note
that 〈v, n〉 = cos ϕ. The map T : Ω → Ω preserves smooth measure dν =
cν cos ϕ dr dϕ, where cν is the normalizing factor.

For x ∈ Ω denote by τ(x) the distance of the free path between the col-
lision points x and T (x). The flow Φt can be represented as a suspension
flow over the map T : Ω → Ω under the ceiling function τ(x). In the sus-
pension flow, every point y ∈ M is a pair y = (x, t), where x ∈ Ω is the
latest collision (in the past) along the trajectory of y and t ∈ (0, τ(x)) is the
time elapsed since that collision. There is a natural projection πΩ : M→ Ω
defined by πΩ(x, t) = x. Our finite horizon assumption means that τ(x) is
bounded above.

Sinai [Si3] proved that the billiard map T is hyperbolic. We denote by
W u(x) and W s(x) the unstable and stable manifolds through the point x ∈ Ω,
respectively. These are smooth curves, so we will call them fibers. The
derivatives of the map T are unbounded (they blow up near grazing collisions,
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where ϕ = 0), and Sinai proposed [BSC2] a refinement of stable and unstable
fibers to enforce distortion bounds (we define it in Section 3). The resulting
(shorter) fibers are said to be homogeneous. We always consider homogeneous
stable and unstable fibers, unless stated otherwise.

Each fiber has a finite (and uniformly bounded) length, and there are
plenty of arbitrarily short fibers, but the following tail bound holds. For every
x ∈ Ω denote by ru(x) and rs(x) the distance from x to the nearest endpoints
of the (longest) unstable fiber W u(x) and stable fiber W s(x), respectively.
Then for some constants C, a > 0 and all ε > 0

(1.2) ν
(
x ∈ Ω: ru(x) < ε

)
≤ Cεa,

and a similar estimate holds for rs(x). Such bounds are standard for hyper-
bolic maps with singularities [KS]. For our billiards, in fact, (1.2) holds with
a = 1, see [CM, Section 4.12]. Moreover, for any unstable fiber (or more
generally, unstable curve [CM]) W u ⊂ Ω we have

(1.3) `W u{x ∈ W u : rs(x) < ε} ≤ Cε

where `W u denotes the Lebesgue measure on W u, see [CM, Section 5.12].
The partition of Ω into unstable fibers is measurable, and the condi-

tional measures on unstable fibers are absolutely continuous and called u-
SRB measures (here SRB stands for Sinai, Ruelle, and Bowen who studied
such measures for Axiom A diffeomorphisms [Bo1, R, Si4]), see a detailed
presentation in [CM, Chapter 5]. Similarly, we call the conditional measures
on stable fibers s-SRB measures.

The flow Φt is also hyperbolic. We denote by Wu(x) and Ws(x) the
unstable and stable fibers through the point x ∈M. (Generally, we will use
‘script’ characters M, W , etc., to denote objects related to the flow Φt and
regular Latin characters for objects related to the map T .) The partitions
of M into unstable and stable fibers are measurable, and the corresponding
conditional measures on those fibers are called u-SRB and s-SRB measures,
respectively. Estimates similar to (1.2) and (1.3) hold for the flow as well.

Sinai proved [Si3] that the map T and hence the flow Φt are ergodic,
mixing and K-mixing, see [CM] for a recent presentation of his results. The
mixing property of the flow is equivalent to the decay of correlations. Given
two functions F, G : M→ R the time correlation function is defined by

CF,G(t) =

∫
M

(F ◦ Φt) G dµ−
∫
M

F dµ ·
∫
M

G dµ.
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The flow is mixing if and only if CF,G(t) → 0 as t →∞ for all F, G ∈ L2
µ(M).

The rate of the decay of correlation (the speed of convergence of CF,G(t)
to zero) is an important characteristic of the flow and plays a role in physics
applications. For arbitrary observables this speed cannot be controlled, but
for reasonably smooth observables (and Hölder continuity of F, G is usually
sufficient) a certain rate can be guaranteed. One expects that correlations
for the billiard flow decay exponentially fast [CY, BV], but currently we are
unable to prove this. We obtain a weaker (stretched exponential) bound on
correlations.

The reason why the flow correlations are hard to study is the (natural)
lack of hyperbolicity in the flow direction (the time one map Φ1 is only par-
tially hyperbolic). Even for smooth hyperbolic flows bounds on correlations
have been established fairly recently [C3, L1, D1, D2, L2]. In [C3], Markov
approximations were used and a (suboptimal) stretched exponential bound
on correlations was derived for Anosov flows on 3D manifolds. This method
was improved in [L1], where the same suboptimal bound was extended to
multidimensional Anosov flows. In the later papers [D1, D2, L2] operator
techniques were applied and an optimal exponential bound was obtained,
though under some more stringent conditions.

In the context of singular flows (including billiard flows) much less is
achieved so far. An exponential decay of correlations was proven for a very
special case of ‘open flows’ [St], where the particle bounces off finitely many
scatterers in the open plane with ‘no eclipse’ condition (the latter effectively
eliminates the influence of singularities). For generic Sinai billiards it is only
shown that correlations decay faster than any power function (this property
is often referred to as a ‘rapid mixing’ or ‘super-polynomial decay of correla-
tions’), see [M]. This last result only applies to functions that are smooth in
the direction of the flow, which is not the case for some physically interesting
functions, such as position and velocity of the particle.

As opposed to the flow, the billiard map T : Ω → Ω is known to enjoy ex-
ponential decay of correlations [Y1, C4]. This fact implies certain statistical
properties of the flow Φt, such as Bernoulliness [GO], Central Limit Theorem
(CLT), Weak Invariance Principle (WIP), and well as Almost Sure Invari-
ance Principle (ASIP), see [BSC2, MN, C5]. But bounds on correlations for
the flow Φt cannot be derived from those for the map T .

Here we obtain a stretched exponential bound on correlations for the bil-
liard flow Φt; our bound is perhaps less than optimal (as it is widely believed
that correlations decay exponentially), but it is stronger that the super-
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polynomial bound of [M] and it holds for a much larger class of observables:
the so called generalized Hölder continuous functions defined next. Given
F : M→ R, x ∈ M, and r > 0 we put oscr(F, x) = supB F − infB F , where
B = Br(x) is the ball of radius r centered on x. Now F is said to be general-
ized Hölder continuous if there is α > 0 (generalized Hölder exponent) such
that

‖F‖α : = sup
r

r−α

∫
M

oscr(F, x) dµ(x) < ∞.

Every Hölder continuous and piecewise Hölder continuous function is gener-
alized Hölder continuous [C3]. Lastly we put

varα(F ) = ‖F‖α + sup
M

F − inf
M

F.

Here is our main result:

Theorem 1.1. Let Φt : M →M be a Lorentz gas billiard flow (with finite
horizon) and F, G : M → R two generalized Hölder continuous functions.
Then

|CF,G(t)| ≤ c varα(F ) varα(G) e−a
√
|t|.

Here c, a > 0 depend on α and the billiard flow only.

As a consequence one gets the following equidistribution property. Let
Wu ⊂ M be a smooth unstable curve of length |Wu| and m the uniform
probability measure on it. Denote by mt = Φtm its image at time t.

Corollary 1.2. Let F : M→ R be a Hölder continuous function. Then for
all t > 0 ∣∣∣∣∫

M
F dmt −

∫
M

F dµ

∣∣∣∣ ≤ |Wu|−1c′ varα(F ) e−a′
√

t,

where c′, a′ > 0 depend on α and the billiard flow only.

Proof. Let U = Uε(Wu) denote the ε-neighborhood of Wu. We can foliate
U by stable manifolds Ws of length ∼ 2ε, except for a subset U∗ ⊂ U where
the stable manifolds happen to be too short; we have µ(U∗) = O(ε3) due
to the estimate (1.3) for the flow (the value of ε will be determined later).
Now we fix a smooth function G ≥ 0 whose support is a slightly larger
domain than U and such that

∫
MG dµ = 1 and its integral over every stable

curve Ws foliating U \ U∗ does not depend on Ws. It is easy to choose G
so that sup G = O

(
ε−2|Wu|−1

)
and ‖G‖α = O(ε−α), so that varα(G) =
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O
(
ε−2|Wu|−1

)
. Now we apply Theorem 1.1 and note that the set Φt(U \U∗)

will be in the ε-neighborhood of Φt(Wu), thus∣∣∣∣∫
M

F dmt −
∫
M

F dµ

∣∣∣∣ ≤ c varα(F ) varα(G) e−a
√
|t| + Cε|Wu|−1varα(F )

where the last term accounts for the loss of the measure due to U \ U∗. Now

we choose ε = e−
1
3

a
√

t and complete the proof.

This corollary can also be extended to measures m that are absolutely
continuous and have the so called ‘dynamically Hölder continuous density’
[CD, CM]. We also note that the equidistribution itself implies certain
bounds on correlations [CD, CM].

One may wonder why we only get a stretched exponential bound on cor-
relations, instead of an exponential (optimal) one. There are two types of
techniques used to estimate correlations for hyperbolic systems. One is based
on ‘coarse-graining’ where the phase space is partitioned into coarse ‘atoms’
and the dynamics is approximated by a Markov chain. These techniques
are inherently too crude to produce optimal bounds on correlations, see also
[BSC2, C1]. There exist much finer techniques using functional analysis
tools (Perron-Frobenius operator) that can achieve optimal bounds on cor-
relations, but they are very sensitive to little details and often unable to
cope with various unpleasant features (singularities) of the dynamics. It ap-
pears that the fine techniques cannot handle billiard flows yet, but the crude
‘coarse-graining’ methods (popular in physics [NMT, CELS]) are just flexible
enough for this purpose. The ‘only’ price we pay is the non-optimality of the
correlation bounds.

A related issue is the difference between smooth (Anosov and Axiom A)
flows and singular billiard flows. In the smooth case, finite Markov partitions
exist and they do a fine job – many constructions are relatively simple and
elegant. In billiard flows, singularities are a major source of trouble – in
many cases we have to divide their vicinities into fractal-like necklaces, thus
our constructions become cumbersome and overcomplicated. We combine
here the methods of other papers [BSC2, C3, CD, C5, CM] to handle billiard
singularities, in all cases we are trying to suppress billiard-specific technical
details but describe our ideas clearly.
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2 H-structure

Here we describe our main construction. Its idea is derived from a clas-
sical proof, due to Sinai [Si3], of the K-mixing property for billiard flows.
Take an unstable fiber, Wu ⊂ M, for the billiard flow Φt. The union
S = ∪x∈WuWs(x) of stable fibers intersecting Wu has measure zero, but
the union U = ∪y∈SWu(y) of the unstable fibers crossing S has a positive
measure, and this fact implies the K-mixing property by a general argument
[Si3], see also [CM, Chapter 6].

We will refine this construction as follows. First, we can take only suf-
ficiently long stable fibers lying close to each other. We take stable fibers
Ws(x) for points x ∈ Wu in a small ball-like neighborhood around some
point x0 ∈ Wu, and, likewise, unstable fibers Wu(y) for points y in a small
ball around some point y0 ∈ Ws(x0). Let RH be the distance between x0

and y0 along Ws(x0). Denote by B1 and B2 the above balls around x0 and
y0, respectively, and by rH � RH their common radius. In addition, we can
only take stable fibers Ws(x) that stick out of those two balls by at least
LH , and unstable fibers Wu(y) that stick out of the ball B2 by at least LH

in both directions, here LH � RH is a constant.
Second, we run our construction ‘backwards’. Fix one of the above fibers

Wu(y). For every z ∈ Wu(y)∩B2 we take the stable fiber Ws(z) that sticks
out of B2 by at least LH in both directions; then for every w ∈ Ws(z) ∩ B1

we take the unstable fiber Wu(w) that sticks out of B1 by at least LH in
both directions (of course, if all these fibers exist). Denote by Vy the union
of the fibers Wu(w). We mark the fiber Wu(y) if µ(Vy) > 0. We can assume
that the union of our marked fibers {Wu(y)} has positive measure, too.

Lastly, we can find a subset of marked fibers Wu(y), whose union we de-
note by V2, such that (i) the intersection V1 = ∩y∈V2Vy has positive measure,
and (ii) the union of the fibers Wu(y) ⊂ V2 has positive measure, too.

Since our measure µ is proportional to the volume in M and stable (un-
stable) fibers make measurable partitions of M, it can be shown by standard
measure-theoretic arguments that the sets V1 and V2 will have positive mea-
sure for some points x0, y0 and some small RH and rH .

Summarizing the above properties, we obtain:

Proposition 2.1 (H-structure). There are two (uncountable) families of un-
stable fibers, Wu

α, α ∈ A, and Wu
β , β ∈ B, such that
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(H1) their unions V1 = ∪Wu
α and V2 = ∪Wu

β are measurable sets of positive
measure;

(H2) for every Wu
α and Wu

β there exists a stable fiber, Ws
αβ, that intersects

both Wu
α and Wu

β ;

(H3) the points xαβ = Wu
α ∩Ws

αβ and xβα = Wu
β ∩Ws

αβ lie in two small balls
(B1 and B2, respectively) of radius rH ; all the fibers Wu

α, Wu
β , and Ws

αβ

stick out of B1 and B2 by at least LH in both directions.

Here rH � RH � LH , and RH is the distance between the centers of the
balls B1 and B2.

This structure resembles the letter ‘H’ with two thin bundles of parallel
unstable fibers joined by a thin bundle of stable fibers. The crucial property
of this structure is that every Wu

α is joined (coupled) with every Wu
β .

We can provide the following ‘high density’ of unstable fibers of the H-
structure, by reducing the sets V1 and V2, if necessary:

(H4) There is a small constant sH > 0 such that for every α ∈ A there is
an sα ∈ [0, sH ] such that on the surface Φ[sα−sH ,sα](Wu

α ∩B1) the points
belonging to the set V1 make a subset of ‘high density’ – its area at
least 0.99 times the area of the entire surface (in the inner Riemannian
metric on it). The same holds for every β ∈ B.

Here 0.99 can be changed to any number below 1. We used Bowen’s
notation Φ[a,b](A) = ∪b

t=aΦ
t(A) for a < b and A ⊂M.

For any α, β and any point x ∈ Wu
α close to xαβ = Wu

α ∩Ws
αβ we denote

by u the distance between x and xαβ and by ταβ(u) the temporal distance
between the fibers Wu

β and Ws(x), i.e. the (unique) small number satisfying

Φταβ(x)(Wu
β ) ∩ Ws(x) 6= ∅. Of course, the function τα,β(u) is defined at u

only if Ws(x) is long enough to intersect the surface Φ[−rH ,rH ]Wu
β , hence its

domain is a Cantor-like subset of R. The following is a standard fact, see
[KM, Lemma 5.1] and [CM, Section 6.11]:

Lemma 2.2 (Lipschitz regularity of the temporal distance). There are pos-
itive constants 0 < d < d̄ < ∞ such that

(2.1) du ≤ |τα,β(u)| ≤ d̄u

for all α, β and all u where the function ταβ(u) is defined.
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The fact that τα,β(u) 6= 0 ensures the K-mixing property of the billiard
flow, see [CM, Chapter 6]. The linear bounds (2.1) (especially the lower
bound) are essential for our estimates on correlations.

We can guarantee an abundance of points x ∈ Wu
α near xαβ for which

Ws(x) crosses the surface Φ[−rH ,rH ]Wu
β (i.e., where the function ταβ is de-

fined) by further reducing the sets V1 and V2, if necessary. More precisely,
let Wu0

α ⊂ Wu
α denote a subset of points for which the stable fiber Ws(x)

extends by at least RH +LH in the direction of B2 and by at least LH in the
opposite direction.

(H5) There is a small constant εH > 0 such that for every ε < εH and every
pair Wu

α, Wu
β

`
(
Wu0

α ∩Bε(xαβ)
)
/`
(
Wu

α ∩Bε(xαβ)
)
≥ 0.99,

and this ratio approaches 1 as ε → 0. Here Bε(xαβ) denotes the ball
of radius ε centered on the point xαβ = Wu

α ∩Ws
αβ and ` the Lebesgue

measure on Wu
α.

This property can be easily ensured with the help of Lebesgue density
points of the subsets {xαβ : β ∈ B} ⊂ Wu

α.
Let {Ws

γ}, γ ∈ G, denote the family of all stable fibers passing through
both balls B1 and B2 and extending beyond them by at least LH . The
property (H5) ensures that each fiber Ws

αβ is a sort of ‘density point’ in the
family {Ws

γ}.
We denote by H0 the above H-structure (it consists of two families of

unstable fibers, {Wu
α} and {Wu

β}, and a family of stable fibers {Ws
γ}). Since

the image of each fiber under the flow Φτ , at least for small τ , is also a fiber,
then Hτ = Φτ (H0) for any small τ , say |τ | ≤ rH , is also an H-structure, it

has all the same properties as H0, with the balls B
(τ)
k = Φτ (Bk) replacing

Bk, k = 1, 2. Thus we get a one-parameter family of H-structures.
We also denote by H1

0 = V1 and H2
0 = V2 the unions of unstable fibers in

the two families {Wu
α} and {Wu

β}. Then Hk
τ = Φτ (Hk

0), for k = 1, 2, will be
the unions of the corresponding unstable fibers in the H-structure Hτ .

In the H-structure Hτ every unstable fiber W u
1 ⊂ H1

τ is coupled with every
unstable fiber W u

2 ⊂ H2
τ by a stable fiber. But all these fibers are located

in a tiny part of the phase space M. Next we will use the H-structures to
couple images of arbitrary unstable fibers Wu ⊂M.
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Let Wu ⊂M be an unstable fiber and νu denote the u-SBR probability
measure on it. For any t > 0 let νu

t be the image of νu on Wu
t = Φt(Wu).

The set Wu
t is a finite or countable union of unstable fibers, Wu

t,i, i ≥ 1, and
the measure νu

t conditioned on each Wu
t,i coincides with the u-SBR measure

on Wu
t,i.

One may expect (based on the K-mixing property of Φt) that the set
Wu

t is asymptotically dense in M, as t → ∞, and the measure νu
t weakly

converges to the invariant measure µ (this is actually true, but we will not
use this fact here). In particular, some components Wu

t,i may come arbitrary
close to the set Hk

τ (here k = 1 or 2 and |τ | < rH) of our H-structure Hτ .
We are interested in the components Wu

t,i such that

(W1) dist(Wu
t,i,H

k
τ ) ≤ CΦλt

Φ;

(W2) the curve Wu
t,i sticks out of the ball B

(τ)
k by at least LH in both direc-

tions.

Here CΦ and λΦ are hyperbolic constants, i.e. such that for any points x, y
on the same stable fiber dist(Φtx, Φty) ≤ CΦλt

Φ for all t > 0. The union of
such components Wu

t,i we denote by Wu
t (Hk

τ ).

Remark 2.3. The conditions (W1) and (W2) imply that Wu
t,i is close to Hk

τ

‘all the way’ in the ball B
(τ)
k , i.e. there exists an unstable fiber W ⊂ Hk

τ such

that the curves Wu
t,i ∩ B

(τ)
k and W ∩ B

(τ)
k are (Cλt

Φ)-close in the Hausdorff
metric for some constant C > 0 (we can put C = 2CΦ).

The existence (and abundance) of W u
t,i for large t is guaranteed by the

following:

Proposition 2.4. Given the family of H-structures {Hτ} described above,
there are positive constants aH > 0, bH > 0, and dH > 0 such that for any
|τ | < rH , k = 1, 2, any unstable fiber Wu ⊂M, and any

t > t0(W
u) : = aH

∣∣ln |Wu|
∣∣+ bH

there is a measurable set S(Wu
t ,Hk

τ ) ⊂ [0, sH ] such that

(i) for any s ∈ S(Wu
t ,Hk

τ ) we have νu
t+s

(
Wu

t+s(H
k
τ )
)
≥ dH ;

(ii) `
(
S(Wu

t ,Hk
τ )
)
≥ 0.98sH , where ` stands for the Lebesgue measure on

the interval [0, sH ].
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Here 0.98 can be changed to any number below 1 (but this might require
replacing 0.99 in (H4) with a constant closer to 1).

Remark 2.5. Obviously, we have

S(Wu
t ,Hk

τ ) = S(Wu
t−τ ,H

k
0)

and for every s ∈ S(Wu
t ,Hk

τ ) = S(Wu
t−τ ,H

k
0) we have

Wu
t+s(H

k
τ ) = Wu

t−τ+s(H
k
0)

for small τ .

According the the above remark, it is enough to prove Proposition 2.4 for
τ = 0, and its proof is given in Appendix.

Next let Wu
1 and Wu

2 be a pair of unstable fibers. By Proposition 2.4, if
t is large enough, then some components of Wu

t+s1,1 = Φt+s1(Wu
1 ) for s1 ∈

S(Wu
t,1,H

1
0) will be close to H1

0 and some components ofWu
t+s2,2 = Φt+s2(Wu

2 )
for s2 ∈ S(Wu

t,2,H
2
0) will be close to H2

0. Since both sets S(Wu
t,1,H

1
0)

and S(Wu
t,2,H

2
0) have high density on the interval [0, sH ], we can pick s ∈

S(Wu
t,1,H

1
0) ∩ S(Wu

t,2,H
2
0).

Corollary 2.6. Let Wu
1 ,Wu

2 ⊂M be two unstable fibers. Then for every

(2.2) t > max{t0(Wu
1 ), t0(Wu

2 )}

there exists s ∈ [0, sH ] such that

(2.3) νt+s,k

(
Wu

t+s,k(H
k
0)
)
≥ dH

for both k = 1, 2. Equivalently,

(2.4) νt,k

(
Wu

t,k(H
k
−s)
)
≥ dH for k = 1, 2

In other words, given two unstable fibers of size≥ ε, their future images at
any time t > aH | ln ε|+bH contain a certain fraction (measured by dH > 0) of
components such that every component of the image of the first fiber can be
‘almost’ joined (coupled) with every component of the image of the second
fiber by a stable fiber (meaning that the coupling stable fiber misses our
components by less than Cλt

Φ).
The advantage of (2.4) over (2.3) is that the coupling time t is arbitrary,

whereas t + s in (2.3) depends on the pair Wu
1 ,Wu

2 .
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Lemma 2.2 also ensures a certain stability of the connecting stable fiber
W s

γ joining two components W u
t,1,i ⊂ Φt(W u

1 ) and W u
t,2,j ⊂ Φt(W u

2 ) under
small perturbations: if we replace W s

γ with another stable fiber W s
γ′ that

crosses W u
t,1,i a distance δ from W s

γ , then W s
γ′ will miss W u

t,2,j by at most
O(δ).

3 Solid and Cantor rectangles

Markov partitions (and their variations) are useful in the studies of general
smooth hyperbolic maps [Si1, Si2, Si4, Bo1, R] and specific hyperbolic bil-
liards [BSC1, BSC2, Y1]. Atoms (building blocks) of such partitions are
called rectangles (or parallelograms).

For linear automorphisms of a 2D torus, these atoms are true rectangles
or parallelograms [AW]. For Anosov maps in 2D they are open domains,
each bounded by two unstable and two stable fibers [Si1, Si2] (in higher
dimension their boundary is necessarily very irregular [Bo2]). For generic
Axiom A diffeomorphisms and billiard maps these atoms are complicated
Cantor-like objects. In this section we recall necessary definitions and facts.

A solid rectangle Q ⊂ Ω is a closed domain bounded by two unstable
fibers and two stable fibers (here we allow non-homogeneous fibers). We call
these fibers u-sides and s-sides of Q, respectively. If an unstable (stable)
fiber W crosses both s-sides (resp., u-sides) of Q, we say that W fully crosses
Q. Any closed set R ⊂ Ω with the property

x, y ∈ R =⇒ ∅ 6= [x, y] : = W s(x) ∩W u(y) ∈ R

is called a (Cantor) rectangle; it is always a closed nowhere dense (Cantor-
like) set. Let z ∈ R and C = W u(z) ∩R and D = W s(z) ∩R. Then

R = [C, D] = {[x, y] : x ∈ C, y ∈ D},

and for every w ∈ R there is a unique representation w = [x, y], where x ∈ C
and y ∈ D. Thus R has a direct-product structure.

Given a rectangle R ⊂ Ω, we denote by Q(R) the minimal solid rectangle
containing R (we call it the hull of R). Given a solid rectangle Q, we denote
by R(Q) the maximal rectangle contained in Q (it is made by points of
intersection of all unstable fibers fully crossing Q with all stable fibers fully
crossing Q).
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We will only deal with rectangles of positive measure. We have ν(R) > 0
if and only if for any (and hence, for every) point z ∈ R we have νu(W u(z)∩
R) > 0 and νs(W s(z)∩R) > 0 (as usual, νu and νs are the u-SRB and s-SRB
measures on the corresponding curves). We call

ρu(R) = inf
x∈R

νu
(
W u(x) ∩R

)
νu
(
W u(x) ∩Q(R)

)
the (minimal) u-density of R. Similarly the (minimal) s-density ρs(R) is
defined and we call

(3.1) ρ(R) = min{ρu(R), ρs(R)}

the (minimal) density of the rectangle R. Note that 0 ≤ ρu,s(R) < 1; if ρ(R)
is close to one, then the rectangle R is “very dense”, i.e. it occupies nearly
the entire available area of its hull Q(R). In particular, we have

(3.2) 1− ν(R)

ν(Q(R))
≥ const

(
1− ρ(R)

)
.

The abundance of rectangles in Ω is guaranteed by the bound (1.2).
Let R be a rectangle. A rectangle R1 ⊂ R is called a u-subrectangle if

W u(x) ∩ R = W u(x) ∩ R1 for any point x ∈ R1. Similarly, R2 ⊂ R is an
s-subrectangle if W s(x) ∩R = W s(x) ∩R2 for any x ∈ R2.

Given a rectangle R, its image T n(R) is a finite or countable union of
rectangles {Ri}. For n > 0, their preimages T−n(Ri) are s-subrectangles in
R. For n < 0, they are u-subrectangles in R.

Given two rectangles R1 and R2 and n ≥ 1, we say that T n(R1) intersects
R2 properly if the set T n(R1) ∩ R2 is a u-subrectangle in R2 and the set
R1∩T−n(R2) is an s-subrectangle in R1. Proper intersection is characteristic
for atoms of Markov partitions.

We recall that homogeneous fibers are defined by using the so called
homogeneity strips in Ω, whose boundaries consist of countably many parallel
lines

S = ∪k≥k0{(r, ϕ) : |ϕ| = π/2− k−2}

(here k0 ≥ 1 be a large constant), see [BSC2, C4, C5, CM]. Technically, the
space Ω is divided along these lines into countably many strips and the map T
becomes discontinuous at points mapped onto S (and the map T is naturally

13



discontinuous at points mapped onto S0 = ∂Ω = {|ϕ| = π/2}). Now Sn =
∪n

k=0T
−k(S ∪ S0) is the set of points where the map T n is discontinuous.

The following fact proven in [BSC2, Section 3.2] shows that rectangles
have a direct product structure not only in a topological sense, but (approx-
imately) in a measure-theoretic sense:

Proposition 3.1. Let R be a rectangle such that Q(R) ∩ (Sn ∪ S−n) = ∅,
i.e. such that the maps T±n are continuous on Q(R). Then there exists a
probability measure νR on R such that

(a) it is almost uniform with respect to the measure ν restricted to R:

(3.3)
∣∣∣dνR

dν
− ν(R)

∣∣∣ ≤ cθn

for some constants c > 0 and θ ∈ (0, 1).

(b) νR is a product measure, i.e. for any u-subrectangle R1 ⊂ R and s-
subrectangle R2 ⊂ R we have νR(R1 ∩R2) = νR(R1) νR(R2).

In what follows we have many exponential bounds similar to (3.3), and
we will denote by ci > 0 and θi ∈ (0, 1) various constants whose values are
not important (they depend on the billiard table D alone).

For any curve W ⊂ Ω we denote by `W the (non-normalized) Lebesgue
measure on W and by JW T n(x) the Jacobian (the ‘expansion factor’) of the
map T n restricted to W at the point x ∈ W . The following bound is proved
in [CD, Lemma A.6] for any unstable curve W ⊂ Ω and n > 0

(3.4)

∫
W

|JW T n(x)|1/3 d`W ≤ c1θ
−n
1 .

Lemma 3.2. The ε-neighborhood of the set Sn ∪ S−n has measure

ν
(
Uε(Sn ∪ S−n)

)
≤ c2θ

−n
2 ε1/4.

Proof. It is enough to prove this for the ε-neighborhood of Sn. For any curve
S ⊂ Sn there exists a unique k ∈ [0, n] such that T k(S) is either a singularity
curve for T or a homogeneity line. Fix a k ∈ [0, n] and denote by S(k) ⊂ Sn

the union of all the corresponding curves. Let {W̃ u} be a smooth foliation of
Ω by unstable curves; it induces a smooth foliation of ε-neighborhood Uε(S(k))
by unstable curves W u

α of length O(ε) terminating on (but not crossing) S(k).

14



Note that the map T k expands each W u
α almost uniformly (due to the dis-

tortion bounds), and we denote JW u
α
T k = maxx∈W u

α
JW u

α
T k(x). Integrating

the estimate (3.4) over the chosen foliation {W̃ u} of Ω gives

(3.5) ν
(
∪W u

α : JW u
α
T k ≥ B

)
≤ const · θ−k

1 B−1/3

for any B > 0. We set B = ε−3/4θ
−3k/4
1 , then the right hand side of (3.5)

is O(ε1/4θ
−3k/4
1 ). The curves W u

α where JW u
α
T k < B are mapped by T k into

the (εB)-neighborhood of the union of the singularity curves for T and the

homogeneity lines. That neighborhood has measure O(εB) = O(ε1/4θ
−3k/4
1 ),

see [CM, Section 5.5]; now summing up over k = 0, 1, . . . , n proves the lemma

with θ2 = θ
3/4
1 .

Corollary 3.3. Let θ3 = θ8
2; then ν

(
Uθn

3
(Sn ∪ S−n)

)
≤ c2θ

n
2 .

4 Special collections of solid rectangles

Here we construct a finite collection of solid rectangles in Ω that will be a
basis for subsequent Markov approximations to the billiard map (and flow).

Proposition 4.1. For any large n ≥ 1 there exists a finite collection of solid
rectangles Υn = {Q1, . . . , QJ} such that

(a) we have int Qj ∩ int Qj′ = ∅ for any j 6= j′;

(b) diam(Qj) ≤ θn
3 for every j = 1, . . . , J and J ≤ θ−n

4 ;

(c) the image of each u-side (s-side) of every rectangle Qj under T−1 (resp.,
under T ) lies either on a u-side (resp., an s-side) of another rectangle
Qj′, or outside their union Un = ∪jQj.

(d) Un ∩ (Sn ∪ S−n) = ∅ and ν(Ω \ Un) ≤ c2θ
n
2 ;

Proof. In fact, there are plenty of such collections and their construction is
quite flexible. For any large m ≥ 1, and small ε < ε0(m), the so-called pre-
Markov partition ξ of Ω was constructed in [BSC1, Section 3] and [BSC2,
Section 4.2] with the following properties:
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(M1) Atoms of ξ are closed curvilinear polygons, each bounded by some
stable fibers, some unstable fibers (both may be non-homogeneous), as
well as some pieces of singularity curves of Sm ∪ S−m; accordingly we
divide the union of all their boundaries ∂ξ = ∪A∈ξ∂A into three parts:
∂ξ = ∂sξ ∪ ∂uξ ∪ ∂singξ; in fact ∂singξ = Sm ∪ S−m; and atoms that are
not adjacent to Sm ∪ S−m are solid rectangles;

(M2) we have T (∂sξ) ⊂ ∂sξ and T−1(∂uξ) ⊂ ∂uξ;

(M3) The diameters of the atoms do not exceed ε;

(M4) The number of atoms of this partition does not exceed εb for some
constant b > 0.

It remains to take a pre-Markov partition ξ with some fixed m ≥ 1 (inde-
pendent of n) and ε = θn

3 and remove the atoms of ξ whose closure intersects
the set Sn ∪ S−n. Observe that Un = ∪jQj covers Ω \ Uθn

3
(Sn ∪ S−n), so we

can use Corollary 3.3 to complete the proof of (d).

Remark 4.2. We can assume that θ4 < θ2 and eliminate all Qj ∈ Υn such
that ν(Qj) < θ2n

4 . Their total measure is ≤ θn
4 , due to clause (b), hence they

will make an insignificant addition to the measure bound in clause (d). For
the remaining rectangles, each u-side and s-side is longer than const · θ2n

4 .

As we said, there are plenty of collections Υn and their construction is
quite flexible. Now we specify one that ‘agrees’ with the flow Φt so that
the images of ‘typical’ stable fibers of the H-structures Hτ (Section 2) at
time t = gn (here g > 0 is a constant) are comparable (in size) to the solid
rectangles Qj that their orbits are crossing at that time. More precisely,
for any |τ | < rH there exists a subset of stable fibers Wn,τ = {Ws

γ} in the
H-structure Hτ such that

(4.1) µ
(
∪Ws

γ : Ws
γ /∈ Wn,τ

)
≤ c5θ

n
5

and for every fiber Ws
γ ∈ Wn we have

(4.2) c|Qj|s ≤ |πΩ

(
Φgn(Ws

γ)
)
| ≤ c−1|Qj|s

whenever Qj ∩ πΩ

(
Φgn(Ws

γ)
)
6= ∅. Here |Qj|s is the maximal length of stable

fibers in Qj and c > 0 is a small constant.
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We first observe that stable fibers Ws
γ ∈ Hτ contract under the flow

at variable speed, so that when the slowest ones are shrunk by the flow to
the size of the solid rectangles Qj’s which they cross, the faster ones may
be already much smaller, in fact their size may be an exponentially small
fraction of the size of Qj’s that they cross. In order to ensure (4.2) we will
take an arbitrary collection Υn satisfying Proposition 4.1 and partition some
Qj’s (which are crossed by faster stable fibers) into smaller subrectangles.

For smooth Anosov flows [C3] the collection Υn = {Q1, . . . , QJ} was a
Markov partition of Ω and its refinement along the above lines was con-
structed in [C3, Section 15] based on symbolic dynamics. Here we ‘translate’
the ‘symbolic’ argument of [C3] into geometric terms. We only sketch the
procedure suppressing some technical details.

First, since Hτ = Φτ (H0), it will be enough to deal with H0 only. If we
project all fibers Ws

γ ∈ H0 onto Ω, we get a collection of stable fibers for the
map T , call them {W s

γ}. They have an approximately constant length, say
|W s

γ | ≈ L′H . The orbits of points x ∈ Ws
γ during the time interval (0, t), i.e.

{Φsx}t
s=0, cross the base Ω a certain number of times, mx,t, which satisfies

t/τmax ≤ mx,t ≤ t/τmin. We fix g so that λ
g/τmax

T = θ2
4. Then the projection of

the image Φgn(Ws
γ) onto the base Ω has length ≤ 2CT L′Hθ2n

4 . We can assume
that L′H is small enough so that all those projections will be shorter than the
s-side of the smallest solid rectangle Qj ∈ Υn, according to Remark 4.2.

Now denote m = [gn/τmin]+1 and d = gn/m. Consider the time moments
ti = id for i = 0, . . . ,m. Observe that d < τmin, so that every trajectory
crosses Ω at most once during each time interval [ti, ti+1]. We will construct

a sequence of collections Υ
(i)
n of solid rectangles, starting with Υ

(0)
n = Υn,

inductively, so that the last one, Υ
(m)
n , will be the one for which (4.1)–(4.2)

will hold. Each collection Υ
(i)
n will be a refinement of the previous one Υ

(i−1)
n .

Suppose Υ
(i)
n is already constructed so that the fibers ΦtiWs

γ satisfy the
lower bound in (4.2). Moreover, assume that the length of the projection of
each fiber ΦtiWs

γ onto Ω is at least 1
2
|Qj|s whenever it crosses Qj. (For i = 0

this is obviously true, as our fibers in H0 have length O(1) and the rectangles
Qj ∈ Υn are shorter than θn

3 .) Now move all the fibers ΦtiWs
γ further under

the map Φd (this will produce the fibers Φti+1Ws
γ).

Let Wi = ΦtiWs
γ be one such fiber and Wi+1 = Φti+1Ws

γ its image. Let

the projection Wi = πΩ(Wi) cross a solid rectangle Q ∈ Υ
(i)
n . If there is no

collisions during the time interval [ti, ti+1] on the trajectory of Ws
γ , then the

projection Wi+1 = πΩ(Wi+1) will coincide with Wi, and we will not refine Q
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(at this step). If there is a collision, then Wi+1 may be (much) smaller than
Wi (as stable fibers do contract!), and it will cross another solid rectangle

Q′ ∈ Υ
(i)
n . Due to Proposition 4.1 (c), T (Q) ∩ Q′ is a u-subrectangle in Q′.

Now if Wi+1 is smaller than half of the s-side of Q′, we divide Q′ into two or
three u-subrectangles along the u-sides of T (Q) ∩ Q′. Then Wi+1 will be at
least half the s-size of the new, smaller solid rectangle T (Q)∩Q′. We do this

refinement for every fiber ΦtiWs
γ and thus obtain a collection Υ

(i+1)
n .

Observe that solid rectangles Q ∈ Υ
(i+1)
n have s-sides lying on the s-sides

of Q ∈ Υ
(i)
n (hence, on the s-sides of Υ

(0)
n , by induction), but their u-sides may

be inside some elements of Υ
(i)
n ; however those u-sides are the images of some

of the u-sides of Q ∈ Υ
(i)
n under T . Therefore the collection Υ

(i+1)
n will satisfy

the ‘Markov condition’ (c) of Proposition 4.1 if so does Υ
(i)
n . Obviously, our

refinement will ensure the lower bound in (4.2).
The upper bound in (4.2) will be ensured automatically, as we explain

next. First recall that by our choice of g at time tm the image of every stable
fiber will be shorter than the smallest s-side of the original solid rectangles
Qj ∈ Υn = Υ

(0)
n . Now if the upper bound in (4.2) fails, then a fiber W =

ΦtmWs
γ would have a projection W = πΩ(W) onto Ω that would cross a

rectangle Q ∈ Υ
(m)
n whose s-side is much smaller than |W |. But such a

rectangle would have been created at some time ti ≤ tm during our refinement
procedure. Thus some stable fiber Wi = ΦtiWs

γ′ would have a projection
Wi = πΩ(Wi) that would cross Q and at the same time been shorter than
half the s-side of Q. In that case |Wi| � |W |, hence |Wi| � |W|. On the
other hand, if we pull both fibers back under the map Φ−ti , then the smaller
fiber Wi returns to H0, i.e. it recovers its size to about the constant value
L′H . But the pre-images of both fibers move next to each other (because
their projections W and Wi are linked by some unstable fibers in Q). Hence
both fibers are expanded under Φ−ti by about the same factor due to the
distortion bounds. Therefore |Φ−tiW| � L′H . But this is impossible because
tm ≥ ti and Φ−tmW ∈ H0, hence |Φ−tmW| ≈ L′H .

Next we verify that the constructed collection Υ
(m)
n of solid rectangles has

all the properties claimed in Proposition 4.1. The clauses (a), (c), (d) and
the bound on the diameter in the clause (b) obviously hold. To ensure an

exponential upper bound on the number J (m) of rectangles Υ
(m)
n we use the

large deviation lemma proved in [CD, Proposition A.5]:

Lemma 4.3 (Large deviations). There is a constant A = A(D) > 1 such
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that ν
(
x ∈ Ω: |JW s(x)T

m(x)| < A−m
)
≤ c6θ

m
6 for all m ≥ 1

Let m = gn/τmin. We define Wn,0 to be the collection of stable fibers
Ws

γ ∈ H0 whose projections onto Ω contract by less than A−m during the
first m iterations of T (i.e. |JW sTm| > A−m on such fibers). Then (4.1) will
hold due to the above lemma. On the other hand, the images of our fibers
Φgn(Ws

γ) will have length ≥ const ·A−gn/τmin , hence the s-sides of the refined

solid rectangles Q ∈ Υ
(m)
n will be longer than const · A−gn/τmin . Therefore

(4.3) ν(Ri) ≥ c7θ
n
7 and J (m) ≤ c−1

7 θ−n
7

with θ7 = θ2
4A

−g/τmin . Note that the u-sides and s-sides of Q ∈ Υ
(m)
n are

necessarily longer than const·θn
7 .

There are a few ‘final touches’ we should make. First, observe that for
any fiber W = Ws

γ ∈ Wn,0 its image Φti(W) has length ≥ const · A−ti/τmin ,
hence it will exceed θn

3 for all ti ≤ c′n, where c′ = τmin| ln θ3|/ ln A > 0 is a
constant. Thus the actual refinement of Υn starts at time ti ≥ c′n, i.e. for
i ≥ c′n/d. It may happen that some stable fibers Φti(Ws

γ) cross Ω (as their
points may experience a collision at time ti), which would complicate our
refinement procedure. But the size of such fibers is exponentially small for
every i ≥ c′n/d, hence their union lies in an exponentially small neighborhood
of Ω. Therefore the measure of their union is exponentially small, and we
can simply remove all of them from Hn,0 to avoid possible complications.

Second, the projection of some stable fiber Φti(Ws
γ) onto Ω may inter-

sect solid rectangles Q ∈ Υ
(i)
n only partially, as a significant portion of that

projection may land in Ω \ ∪Q. But we can simply require that portion be
exponentially small (relative to the length of the whole projection). Indeed,
the union of fibers violating this requirement will have an exponentially small
measure, so they can be just removed from Hn,0.

Third, it is essential that the projections of the fibers Φtm(Ws
γ) onto Ω

are not cut by u-sides of the solid rectangles Q ∈ Υ
(m)
n in their middle parts

corresponding to the images of the ‘bars’ in the H-structures. Recall that
the middle part makes a small fraction of each stable fiber (as LH � RH ,
cf. Section 2), so there is a plenty of room for the u-sides of Q’s to cut our
fibers. On the other hand, the construction of Υn is quite flexible, as was
remarked in the proof of Proposition 4.1. In fact the boundaries ∂uξ and
∂sξ of the pre-Markov partition ξ were constructed in [BSC1, Section 3] by
first positioning some initial unstable and stable curves fairly arbitrarily in
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Ω and then adjusting them iteratively to ensure the Markov property. This
freedom can be used to place the curves in ξu so that they avoid undesirable
intersections with the projections of our fibers in their middle parts. This
calls for certain modifications in the constructions of [BSC1, Section 3] that
are rather technical, so we leave them out.

From now on we discard the original collection Υ
(0)
n and denote by Υn =

{Q1, . . . , QJ} the refined collection Υ
(m)
n . We will assume that Υn satisfies

Proposition 4.1 (where the value of θ4 must be reset according to (4.3)).

5 Markov approximations

Here we recall and modify the construction of Markov approximations for the
billiard map T : Ω → Ω developed in [BSC2, C1]. For every pair of integers
N > n > 0 we will construct a finite partition Rn,N = {R0, R1, . . . , RI} of
Ω. Its atoms R1, . . . , RI will be small (Cantor) rectangles, and the remaining
atom R0 will be a ‘large’ open dense subset of Ω, but its measure will be
small.

Let Υn = {Q1, . . . , QJ} be the collection of solid rectangles constructed
in the previous section. For every Qi consider the (Cantor) rectangle

(5.1) Ri = R(Qi) ∩
(
∩N

k=−NT k(∪jQj)
)
.

Proposition 5.1. If ν
(
T k(Ri)∩Rj

)
6= 0 for some 1 ≤ i, j ≤ I and 1 ≤ k ≤

N , then T k(Ri) intersects Rj properly. Moreover,

(5.2) ν
(
Ω \ ∪iRi

)
≤ c8Nθn

8 .

Proof. The properness of the intersections is verified by a direct inspection,
which is fairly standard [BSC2, Section 4]. Then, ν

(
∪J

j=1Qj \ ∪J
j=1R(Qj)

)
≤

const · θan
3 due to Proposition 4.1 (c) and (1.2). Now (5.2) follows from

Corollary 3.3 and Proposition 4.1 (d).

In our further calculations, N does not exceed n3, so that Nθn
i , N2θn

i ,
etc., are always small numbers.

Given θ ∈ (0, 1), we say that a rectangle Ri in (5.1) is θ-dense if

ν(Ri)/ν(Q(Ri)) ≥ 1− θn.

Lemma 5.2. For some θ9 > 0 the union of θ9-dense rectangles Ri has mea-
sure ≥ 1− c9Nθn

9 .
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Proof. Let θ9 = θ
1/2
3 . If Ri does is not θ9-dense, then ν

(
Qi \ Ri

)
≥ θn

9 ν(Qi).
Summing up over all such rectangles and using (5.2) proves the lemma.

We will only keep θ9-dense rectangles. Then, according to (3.2), every
such rectangle will satisfy

(5.3) ρ(Ri) ≥ 1− const · θn
9 ,

i.e. our rectangles have ‘high density’ on their stable and unstable fibers.
Furthermore, we will only keep rectangles whose measure is ≥ θ2n

4 ; the
union of the abandoned rectangles will have measure ≤ θn

4 according to
Proposition 4.1 (b). Let R1, . . . , RI denote the remaining rectangles and
Rn,N = {R0, R1, . . . , RI} the (mod 0) partition of Ω with R0 = Ω \ ∪I

i=1Ri.
We emphasize that

(5.4) µ(R0) ≤ c10Nθn
10 and µ(Ri) ≥ θ2n

4 ∀i ≥ 1.

Proposition 5.3. The following ‘short-memory’ approximation holds1:

ν(T i1Rj1 ∩ T i2Rj2 ∩ · · · ∩ T il−1Rjl−1
/T ilRjl

∩ . . . ∩ T ikRjk
)

= ν(T i1Rj1 ∩ · · · ∩ T il−1Rjl−1
/T ilRjl

) · (1 + ∆)(5.5)

where the ‘remainder term’ ∆ satisfies |∆| ≤ c9θ
n
9 for all rectangles Rj1 , . . . , Rjk

∈
Rn,N and all 1 ≤ i1 < i2 < · · · ik ≤ N (note that R0 is not a rectangle, so it
is not allowed here).

Proof. This follows from the properness of intersection (Proposition 5.1) and
the approximation of ν by a product measure in every rectangle (Proposi-
tion 3.1); see a detailed proof in [BSC2, Section 4].

In [C1, C3], a Markov approximation for the map T : Ω → Ω based on any
partition of M into subsets {R0, R1, . . . , RI} was defined to be a probabilistic
stationary Markov chain with states {0, 1, . . . , I}, transition probabilities

(5.6) πij = ν(Rj/TRi) = ν(Rj ∩ TRi)/ν(Ri)

and the stationary distribution

(5.7) pi = ν(Ri).

1Here and further on ν(A/B) means the conditional measure, = ν(A ∩ B)/ν(B), and
we always set it to zero whenever ν(B) = 0.
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This is, perhaps, one of the simplest realizations of the popular physical
concept of ‘coarse-graining’ of phase space, see, e.g., discussions in [NMT,
CELS].

The following quantity was introduced in [C1, C3] to characterize the
discrepancy between the above Markov approximation and the actual N
iterations of T :

χN : = sup
L≤N

∑
i0,i−1,...,i−L

|ν(Ri0/TRi−1 ∩ · · · ∩ TLRi−L
)− ν(Ri0/TRi−1)|

× ν(TRi−1 ∩ · · · ∩ TLRi−L
).(5.8)

The properties of our Markov approximation Rn,N = {R0, R1, . . . , RI}
ensure that

χN ≤ c9θ
n
9 + c8Nθn

8 ≤ c10Nθn
10.

It was proved in [C1, Section 5] that∑
i0,i−1,...,i−N

|ν(Ri0 ∩ TRi−1 ∩ · · · ∩ TNRi−N
)− pi−N

πi−N i−N+1
· · ·πi−1i0 |

≤ (N − 1)χN ≤ c10N
2θn

10.(5.9)

The meaning of this is that the ν-measure is close to the Markov measure on
‘cylindrical sets’ of length N .

Another quantity characterizing a partition {R0, . . . , RI} of Ω, see [C3,
Section 3], is D =

∑I
i=0 ν(Ri) diam(Ri). In our case

(5.10) D ≤ θn
3 + diam Ω · c8Nθn

8 ≤ c11Nθn
11.

Next we recall necessary constructions of [C3] related to the flow Φt : M→
M, of which we always think as a suspension flow with the base automor-
phism T : Ω → Ω and the ceiling function τ(x).

Let Rn,N be the above partition of Ω. For any x ∈ M let R(x) denote
the atom R ∈ Rn,N containing x. Now

τ̄(x) = [ν(R(x))]−1 ·
∫

R(x)

τ(y) dν(y)

is the return time function τ(x) conditioned on the partition Rn,N .

Lemma 5.4. We have |τ(x)− τ̄(x)| ≤ θ
n/2
3 for all x ∈ Ω \R0.

22



Proof. Observe that τ(x) is Hölder continuous with Hölder exponent = 1/2
on every connected component of Ω \ S1, then use Proposition 4.1 (b).

Let δ > 0 be a small number, a ‘quantum of time’. Put τ̂(x) =
(
[τ̄(x)/δ]+

2
)
δ. The function τ̂(x) on Ω approximates τ(x), but it is constant on every

atom of Rn,N and its values are integral multiples of δ. Denote by Φ̂t the
suspension flow with the base automorphism T : Ω → Ω and under the ceiling
function τ̂(x). Let

M̂ = {(x, s) : x ∈ Ω, 0 ≤ s < τ̂(x)}

denote the phase space of this flow. It preserves the measure dµ̂ = cµ̂ dν×ds,

which is proportional to µ on M∩M̂, and 1 ≤ cµ/cµ̂ ≤ 1 +O(δ). The flow

Φ̂t was called a discrete version of Φt in [C3], we will call it a box flow here.
The map F̂ = Φ̂δ acts on M̂ and preserves the measure µ̂. Let Rn,N,δ

denote the partition of M̂ into atoms Rj × [sδ, (s + 1)δ), where Rj ∈ Rn,N

and s = 0, 1, . . . , τ̂(x)/δ−1 for x ∈ Rj. We denote the atoms of this partition

by Xi, 1 ≤ i ≤ Î = În,N,δ, numbered in an arbitrary order.
For every atom Xi = Rj × [sδ, (s + 1)δ) ∈ Rn,N,δ we put R(Xi) = Rj

(the atom’s base) and s(Xi) = s (the atom’s level). Over every ‘base’ atom
Rj ∈ Rn,N there is a column of atoms Xi with R(Xi) = Rj and s(Xi) =
0, 1, . . . , τ̂(x)/δ − 1 for x ∈ Ri. The first atom in every column is called its
bottom, and the last one its top. The space M̂ consists of columns of atoms,
each of height δ built over the atoms of the partition Rn,N . The map F̂ shifts

(elevates) every atom Xi, except the top ones, one level up, so that F̂Xi is
another atom in the same column. Every top atom breaks, under F̂ , into
pieces which fall into some bottom atoms according to the action of the map
T on Ω.

The atoms Xi ∈ Rn,N,δ constructed over rectangles Rj have a 3D direct
product structure, we call them boxes. (Recall that Rj ∈ Rn,N is a rectangle
if j ≥ 1.) ‘Bad’ atoms R0 × [sδ, (s + 1)δ) constructed over the ‘leftover
set’ R0 are called ‘nonboxes’, they will not be of much use. The measure
µ̂ restricted to any box Xi is approximately a 3D product measure. Every
box Xi = Rj × [sδ, (s + 1)δ) is a Cantor-like set enclosed in a ‘solid box’
Q(Xi) = Qj × [sδ, (s + 1)δ), where Qj is the solid rectangle corresponding
to Rj according to (5.1). The solid boxes are closed domains bounded by
six smooth hypersurfaces (faces), which include: two u-faces and two s-faces
(which project down to the u-sides and s-sides of Qj, respectively), the top
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face Qj × {(s + 1)δ} and the bottom face Qj × {sδ}. Solid boxes Q(Xi)’s
have disjoint interiors and line up in columns that enclose the columns of
(Cantor) boxes Xi’s.

For any t > 0 the map F̂ [t/δ] on M̂ approximates the time t map Φt on
M. The two flows Φt and Φ̂t have (slightly) different ceiling functions but
the same base map T : Ω → Ω. Therefore, for any point y = (x, s) ∈M∩M̂
its images Φty and Φ̂ty follow the same orbit, but with a time delay. We call
this effect asynchronism. Precisely, there is a ∆t(y) such that Φt+∆t(y) = Φ̂ty
(in the case Φ̂ty /∈ M the flow Φt can be obviously extended to the point
Φ̂ty). The value ∆t(y) is, generally, small, unless the orbit crosses the ‘bad’
set R0 ∈ Rn,N . More precisely, Lemma 5.4 implies

Lemma 5.5. For any t > 0, either the trajectory {Φsy} crosses the ‘bad’ set
R0 (i.e. enters a ‘bad’ atom of Rn,N,δ) for some 0 < s < t, or we have

(5.11) |∆t(y)| ≤ c12(θ
n
12 + δ) |t|.

Next, for any t1, t2 > 0 such that t1 + t2 ≤ t we will define a Markov chain
approximating the map Φ̂t1+t2 . Its states {1, . . . , Î} will correspond to the
atoms Xi ⊂ M̂ and its stationary vector will be

(5.12) P̂ = ‖p̂i‖, p̂i = µ̂(Xi).

For r = 1, 2 consider a Markov chain with transition probabilities

(5.13) π̂
(r)
ij = µ̂(Xj/F̂

[tr/δ]Xi).

Both stochastic matrices Π̂(r) = ‖π̂(r)
ij ‖ with r = 1, 2 preserve the probability

vector (5.12). It follows from (5.4) that

(5.14) p̂min = min
i
{p̂i} ≥ cµ̂δc4θ

2n
4

and the total measure of ‘nonboxes’ is bounded by

(5.15) µ̂
(
∪R(Xi)=R0Xi

)
≤ 2 τmax c10Nθn

10.

Also, for any integer η such that 2 < η < δ−1 let Π(η) = ‖π(η)
ij ‖ be a

stochastic matrix defined by

(5.16) π
(η)
ij =

{
1/(2η + 1) if R(Xi) = R(Xj) and |s(Xi)− s(Xj)| ≤ η
0 otherwise
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for all i 6= j, and π
(η)
ii = 1−

∑
j 6=i π

(η)
ij for all i. Roughly speaking, under the

action of Π(η) the mass of every atom Xi ∈ Rn,N,δ is ‘smothered’ uniformly
into (2η + 1) neighboring atoms around Xi in the same column. We need
this random perturbation to compensate for the asynchronism between the
flows Φt and Φ̂t described in Lemma 5.5.

Since the distribution (5.12) is uniform within every column of atoms of
Rn,N,δ, it is also invariant under Π(η).

Now, the Markov chain defined by the stochastic matrix Π̂ = Π̂(1)Π(η)Π̂(2)

is the one that will approximate the map Φ̂t1+t2 . It preserves the probability
vector (5.12), and its transition probabilities are

(5.17) π̂ij =
∑
i1,i2

π̂
(1)
ii1
· π(η)

i1i2
· π̂(2)

i2j .

6 Final estimates

Let K1 = [t1/δ] and K2 = [t2/δ]. For any i, j we put

γ̂i,j =
∑

k

π̂ikπ̂jk

p̂k

≥
∑

k

∑
l1l2l3l4

(c) µ̂(T̂K1Xi ∩Xl1)µ̂(Xl3 ∩ T̂−K2Xk)µ̂(T̂K1Xj ∩Xl2)µ̂(Xl4 ∩ T̂−K2Xk)

(2η + 1)2µ̂(Xk)µ̂(Xi)µ̂(Xl3)µ̂(Xj)µ̂(Xl4)

(6.1)

where the summation in
∑(c) is taken over the quadruples (l1, l2, l3, l4) sat-

isfying the following ‘coupling’ condition: the atoms Xl1 and Xl3 must be in
the same column separated by no more than η−1 other atoms, and the same
must hold for the atoms Xl2 and Xl4 .

We will only need a lower bound on γ̂i,j, and we will reduce its value by
excluding ‘bad’ atoms (‘nonboxes’) from the consideration as follows. First,
we set γ̂i,j = 0 if either Xi or Xj is not a box (i.e. if one of them is con-
structed over R0). Second, we assume that the summation

∑
k is taken over

boxes Xk only. Third, we restrict the summation
∑c

l1l2l3l4
to quadruples

{Xl1 , Xl2 , Xl3 , Xl4} of boxes only. Forth, we reduce the sets T̂K1Xi ∩ Xl by
excluding all the points x ∈ T̂K1Xi∩Xl for which T̂−rx belongs to a ‘nonbox’
for any r = 1, . . . , K1 (we do the same for Xj). Similarly, we reduce the sets
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Xl ∩ T̂−K2Xk by excluding all the points x ∈ Xl ∩ T̂−K2Xk for which T̂ rx
belongs to a ‘nonbox’ for any r = 1, . . . , K2.

We will only use (6.1) when K1 � N/δ and K2 � N/δ. Now, after
all the above reductions, we can describe the intersections T̂K1Xi ∩ Xl as
follows. First of all, given a box X = R× [sδ, (s + 1)δ) and a u-subrectangle
R′ ⊂ R, we call the set X ′ = R′× [sδ, (s+1)δ) a u-subbox of X. Similarly we
define s-subboxes. Now due to Proposition 5.1 every intersection T̂K1Xi∩Xl

that has a positive measure is a u-subbox in Xl. Similarly, every intersection
T̂−K2Xk ∩Xl that has a positive measure is an s-subbox in Xl.

Next, for any γ > 0 let

(6.2) Q̂(γ) =
∑

(i,j): γ̂i,j<γ

µ̂(Xi)µ̂(Xj)

We note that all the above reductions of γ̂i,j only increased the value of Q̂(γ).
We now fix a t > 1. Throughout, αi > 0 and κ > 0 are constants

depending on the billiard table D alone. The following proposition is proved
in [C3, Propositions 5.4 and 7.1]:

Proposition 6.1. Let F , G be two generalized Hölder continuous functions
on M. For any t1, t2 > 1 such that t1 + t2 < t, any δ, η, γ > 0, and any
partition Rn,N such that N > κt, we have

|CF,G(t)| ≤ const · varα(F ) varα(G) tα1γ−1

×
[
(ηδ)α2 + Dα3

n,N + χN + p̂min + Q̂(γ) + p̂−2
min(1− γ/80)

t
t1+t2

]
Now the results of the previous sections gives

Corollary 6.2. Under the same conditions,

|CF,G(t)| ≤ const · varα(F ) varα(G) Nα4γ−1

×
[
(ηδ)α5 + θn

11 + δθ2n
4 + Q̂(γ) + δ−2θ−4n

4 (1− γ/80)
t

κ(t1+t2)

]
More specifically, the following theorem proved in [C3, Theorem 7.2]

based on Proposition 6.1 gives exact sufficient conditions for a stretched
exponential bound on correlations.
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Theorem 6.3. Assume that there are constants γ, β1, β2 > 0, and 0 < θ13 <
θ14 < 1 depending on the billiard table D alone, such that for all large n with
the choice of N = n3, δ = θn

13, η = [θ−n
14 ], t1 = β1n, t2 = β2n we have

(6.3) Q̂(γ) ≤ c15θ
n
15.

Then there is a constant a = a(D, α) > 0 such that for any generalized Hölder
continuous functions F and G

(6.4) |CF,G(t)| ≤ const · varα(F ) varα(G) e−a
√

t

for all t > 0.

Theorem 6.3 follows from Corollary 6.2 if we set n = z
√

t with a suffi-
ciently small z > 0, see [C3, Section 7].

It remains to verify the conditions of Theorem 6.3. Our arguments follow
the scheme developed in [C3, Section 16] for Anosov flows, but in addition
we have to deal with irregularities caused by the billiard dynamics. The key
element in our scheme will be the estimation of (6.1) from below.

Let Xi = Rj×[sδ, (s+1)δ) be a box in M̂. Recall that each solid rectangle
Qj ∈ Υn has sides shorter than θn

3 , see Proposition 4.1 (b). We pick θ13 > θ3

so that δ = θn
13 � θn

3 ≥ diam Qj. Then each solid box Q(Xi) will look like a
‘julienne’: a relatively toll prism with a narrow base. Thus there will be an
unstable fiber Wu

i ⊂ Q(Xi) stretching from one s-face of Q(Xi) to the other.
We fix such a fiber Wu

i in every box.
Now let t > 0 and K = [t/δ]. As the map T̂K approximates Φt (see

Section 5), the image T̂KXi of the box Xi will, roughly speaking, stretch
along the smooth components Φt(Wu

i ). Let Wu
t,i(H

k
τ ) denote the union of the

smooth components of Φt(Wu
i ) satisfying the conditions (W1) and (W2) of

Section 2 for some k = 1, 2 and |τ | < rH (note though that the index i has
now a different meaning than in (W1)–(W2)).

First we need to guarantee the existence and abundance of the compo-
nents in Wu

i,t(H
k
τ ). Recall that the curve Wi has length ≥ const ·θn

7 . Now we
set β1 = 2aH | ln θ7|. Then we can apply Corollary 2.6 to any pair of boxes
Xi, Xj and respective unstable fibers Wu

i ⊂ Q(Xi), Wu
j ⊂ Q(Xj) and the

time moment t = t1 = β1n. Thus, for every pair of boxes Xi, Xj there is an
s ∈ [0, sH ] such that

(a) the components of Φt1(Wu
i ) stretching along some unstable fibers W u

α ∈
H1
−s will make a subset in Φt(Wu

i ) of relative measure ≥ dH ;
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(b) the components of Φt1(Wu
j ) stretching along some unstable fibers W u

β ∈
H2
−s will make a subset in Φt(Wu

j ) of relative measure ≥ dH .

Now let K1 = [t1/δ]. For every component W ′ ⊂ Φt1(Wu
i ) its preimage

Φ−t1(W ′) is a subcurve of Wu
i ⊂ Q(Xi) which delimits an s-subbox X ′ ⊂ Xi.

Let X ′′ ⊂ X ′ consist of points x ∈ X ′ whose trajectories {Φtx} do not cross
the bad set R0 at any time t ∈ (0, t1). Then the set T̂K1(X ′′) consists of
u-subboxes in some boxes Xl. These subboxes lie in the columns of solid
boxes constructed over solid rectangles Q ∈ Υn that are crossed by the curve
πΩ(W ′) ⊂ Ω.

More precisely, for every solid rectangle Q ∈ Υn that is crossed by the
curve πΩ(W ′) the set T̂K1(X ′′) intersects at most one solid box Q(Xl) in the
column over Q. And if the intersection Xl ∩ T̂K1(X ′′) has positive measure,
then it is a u-subbox in Xl. Due to the asynchronism (Section 5), each
u-subbox Xl ∩ T̂K1(X ′′) may be shifted from the curve W ′ up or down the
respective column; more precisely it is located the distance ≤ ∆t1 = c12

(
θn
12+

δ
)
|t1| from the curve W ′, due to (5.11). We can choose θ13 > θ12, then we

simply have ∆t1 = O(δ|t1|).
Thus there is a chain of u-subboxes {Xl ∩ T̂K1(X ′′)} lining up along the

curve W ′. The set ∪X′′πΩ

(
T̂K1(X ′′)

)
is a (long and narrow) rectangle in Ω

stretching along the curve πΩ(W ′). We will only use the chains stretching
along the components W ′ fitting the description (a) above, i.e. along W ′ ⊂
Wu

t1,i(H
1
τ ). As there may be many such components, there are just as many

chains. Note, however, that some chains may be rather ‘holey’, arbitrarily
small (in measure), or even empty. To ensure the abundance of ‘sufficiently
dense’ chains we will utilize the ‘high density’ properties of rectangles R ∈
Rn,N , see (5.3).

Summarizing, the set T̂ (Xi) contains chains of u-subboxes stretching
along some unstable fibers W u

α ∈ H1
−s. Similarly, the set T̂ (Xj) contains

chains of u-subboxes stretching along some unstable fibers W u
β ∈ H2

−s. Due
to Corollary 2.6, there are stable fibers Ws

αβ linking the former chains with
the latter chains, and the distance from Ws

αβ to the corresponding chains is
O(∆t1). Furthermore, due to property (H5) of the H-structures there are
plenty of stable fibers Ws

γ ∈ H−s around the linking fiber Ws
αβ.

Now we set β2 = g and t2 = β2n, where g was defined in the previous
section. Then for ‘almost’ every fiber Ws

γ (in the sense of (4.1)) its image
Φt2Ws

γ ends up in a solid box Q(Xk) and its length is comparable to the
length of the maximal stable fiber in that box. Let K2 = [t2/δ]. Then the
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set T̂−K2Xk will contain a chain of s-subboxes stretching along the curve Ws
γ

and staggering from it (up and down the corresponding columns of boxes)
by less than ∆t2 = c12(θ

n
12 + δ)|t2| = O(δ|t2|), again due to (5.11) and the

assumption θ13 > θ12. Note also that the projection of that chain down to Ω
is a (long and narrow) rectangle stretching along the curve πΩ(Ws

γ).
We choose θ14 > θ13 and set η = [θ−n

14 ]. Then, on the one hand, ηδ <
(θ13/θ14)

n is exponentially small and, on the other hand, ηδ � max{∆t1 , ∆t2}.
The rest of the argument closely follows [C3, Section 16]. Let X̃ζ1

i , ζ1 =
1, . . . , Zi, denote all the chains of u-subboxes in T̂K1Xi described above, i.e.
stretching along some curves Wu

α ∈ H1
−s. Similarly, let X̃ζ2

j , ζ2 = 1, . . . , Zj,

be all the chains of u-subboxes in T̂K1Xj stretching along some curves Wu
β ∈

H2
−s. For any pair ζ1, ζ2 consider the connecting curve Ws

αβ and all nearby

stable fibers Ws
γ ; then for any k denote by X̃1

k the chain of s-subboxes in

T̂−K2Xk stretching along some W s
γ (due to the results of the previous section,

there can be at most one such chain for any k).
Consider any pair of chains X̃ζ1

i , X̃ζ2
j and any chain X̃1

k described above.

The projections πΩ(X̃ζ1
i ) and πΩ(X̃1

k) may intersect each other inside at most
one solid rectangle Q ∈ Υn. Hence, there is at most one column of solid boxes
in M̂ in which both chains have ‘representatives’, i.e. there is at most one
u-subbox Xl1 ∩ X̃ζ1

i ⊂ Xl1 and at most one s-subbox Xl3 ∩ X̃1
k ⊂ Xl3 so

that the boxes Xl1 and Xl3 belong to the same column (over Q). We put
Γζ1

i,k = 1 if such boxes Xl1 and Xl3 exist and |s(Xl1) − s(Xl3)| < η and

Γζ1
i,k = 0 otherwise2. Thus, every pair of chains X̃ζ1

i and X̃1
k has at most

one representative in (6.1); in fact it does have one if and only if Γζ1
i,k = 1,

according to the “coupling” condition on l1, l3 in the setup of equation (6.1).
Similar conclusions, of course, hold for every pair of chains X̃ζ2

j and X̃1
k .

The following estimate easily results from the approximation of the mea-
sure µ̂ by a product measure within boxes, cf. [C3, Lemma 16.1]:

µ̂(T̂K1Xi ∩Xl1) · µ̂(T̂−K2Xk ∩Xl3) ≥ const · δ−1µ̂(X̃ζ1
i )µ̂(X̃1

k)µ̂(Xl3)

A similar estimate holds for any pair of chains X̃ζ2
j and X̃1

k . This allows us

2The difference |s(Xl1) − s(Xl3)| − 1 is the number of boxes between Xl1 and Xl3 in
the corresponding column over Q.

29



to ‘decouple’ the indices i, j, k from l1, l2, l3, l4 in (6.1):

γ̂i,j ≥ ĉ1

∑
k

∑
ζ1,ζ2

Γζ1
i,kΓ

ζ2
j,k

µ̂(X̃ζ1
i )µ̂(X̃ζ2

j )µ̂(X̃1
k)

[(2η + 1)δ]2µ̂(Xi)µ̂(Xj)

≥ ĉ1

∑
ζ1,ζ2

(∑
k

Γζ1
i,kΓ

ζ2
j,k

µ̂(X̃1
k)

[(2η + 1)δ]2

)
µ̂(X̃ζ1

i )µ̂(X̃ζ2
j )

µ̂(Xi)µ̂(Xj)
(6.5)

where ĉ1 > 0 is a constant (cf. [C3, Equation (16.2)]; also note that if the
chain X̃1

k exists, then µ̂(X̃1
k) ≥ const · µ̂(Xk) due to (4.2)).

Next, we fix a sufficiently small constant ĉ2 > 0 and say that a pair of
chains X̃ζ1

i , X̃ζ2
j makes a ‘good couple’ if

(6.6)
∑

k

Γζ1
i,kΓ

ζ2
j,k µ̂(X̃1

k) ≥ ĉ2[(2η + 1)δ]2.

Recall that Γζ1
i,k = Γζ2

j,k = 1 whenever the ‘stable’ chain X̃1
k is ηδ-close to both

‘unstable’ chains X̃ζ1
i and X̃ζ2

j . Those ‘unstable’ chains stretch along some
fibers Wu

α ∈ H1
−s and Wu

β ∈ H2
−s, respectively, and there is a ‘connecting’

stable fiber Ws
αβ. Due to Lemma 2.2 every stable fiber Ws

γ passing through
the ηδ-neighborhood of the point Wu

α ∩ Ws
αβ will pass through the Cηδ-

neighborhood of the point Wu
β ∩Ws

αβ, where C > 0 is a constant. And the
property (H5) of the H-structures guarantees the abundance of such stable
fibers, thus their union has volume ≥ const · (ηδ)2. For this reason one
might expect that the union of ‘stable’ chains X̃1

k that are δη-close to both
‘unstable’ chains X̃ζ1

i and X̃ζ2
j has volume ≥ const · (ηδ)2 as well, which

would obviously imply (6.6). We will argue below that this is indeed true for
‘typical’ (if not all) pairs of chains.

For any ‘good couple’ of chains X̃ζ1
i , X̃ζ2

j the interior sum in (6.5) is
bounded below by ĉ2. We say that a pair of boxes Xi, Xj makes a ‘good

couple’ if at least 50% (in terms of measure) of their chains X̃ζ1
i and X̃ζ2

j

make good couples. Now by Corollary 2.6 and the ‘high density’ property
(5.3) it follows that∑

ζ1

µ̂(X̃ζ1
i ) ≥ 1

2
dH µ̂(Xi) and

∑
ζ2

µ̂(X̃ζ1
j ) ≥ 1

2
dH µ̂(Xj).

Thus, for every ‘good couple’ of boxes Xi, Xj we have∑
ζ1,ζ2 : (6.6) holds

µ̂(X̃ζ1
i )µ̂(X̃ζ2

j ) ≥ 1
8
d2

H µ̂(Xi)µ̂(Xj),
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and so γ̂i,j will be bounded below by γ : = ĉ1ĉ2d
2
H/8 > 0.

It remains to verify that pairs of boxes that do not make ‘good couples’ are
‘rare’, in the sense that they satisfy (6.3). For Anosov systems [C3, Section
16] all pairs of boxes make good couples. But the billiard dynamics is far less
regular and boxes may fail to make ‘good couples’ for several reasons. First,
some fibers Ws

γ may not belong to the set Wn,−s, cf. (4.1), then there may

not be enough ‘stable’ chains X̃1
k around to ensure(6.6). Second, recall that

our chains X̃ζ1
i , X̃ζ2

j , and X̃1
k are Cantor-like ‘holey’ structures. If the ‘holes’

are too wide, then πΩ(X̃1
k) may not intersect either πΩ(X̃ζ1

i ) or πΩ(X̃ζ2
j ), in

which case either Γζ1
i,k = 0 or Γζ2

j,k = 0 (or both).
To assess losses caused by ‘holes’ in the chains and ‘bad’ fibers Ws

γ we

can use the overall exponential bound on ‘bad’ atoms (‘nonboxes’) in M̂, cf.
(5.15), the bound on the relative measure of the union of ‘holes’ in every box,
cf. (5.3), and the bound on the measure of the union of ‘bad’ stable fibers
Ws

γ /∈ Wn,−s, cf. (4.1). Loosely speaking, all these bad phenomena occur with
exponentially small probability. Thus for ‘typical’ pairs of boxes Xi, Xj the
losses are exponentially small and we get our lower bound γ̂i,j ≥ γ; the total
measure of ‘nontypical’ pairs Xi, Xj satisfies an overall exponential bound
(6.3) with some θ15 > 0. The verification amounts to a straightforward (but
tedious) estimation, which we leave out.

Thus all the conditions of Theorem 6.3 are met, hence Theorem 1.1 is
proved.
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Appendix

Here we prove Proposition 2.4. Our argument is based on the mixing property
of the flow Φt; it closely follows that of [BSC2, Theorems 3.12 and 3.13], see a
more detailed presentation in [CM, Chapters 5 and 7], so we will only sketch
it here.

First, there is a d0 > 0 and are a finite number of boxes of positive
measure, X1, . . . , XK ⊂M such that any fiberWu of length≥ d0 fully crosses
the solid box Q(Xj) (i.e. crosses both s-faces of it) for some j = 1, . . . , K;
in fact we can guarantee that Wu crosses Q(Xj) somewhere in its middle
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half (with respect to the µ measure). The boxes Xj are build over certain
rectangles Rj constructed in [BSC2], see also [CM, Lemma 7.87], which we
can assume to have high density, say

(6.7) ρs(Rj) > 0.99

for every j. We also assume that the height of every solid box Q(Xj) is less
than sH/200.

Now consider the set K1 = πΩ(V1) ⊂ Ω. Fix a subset K̃1 ⊂ K1 such that
ν(K̃1) > 0 and there is a δ0 > 0 such that for any stable fiber W s of the
billiard map T with length < δ0 and the s-SRB measure νs on it we have
νs(W s ∩K1) > 0.99 whenever W s ∩ K̃1 6= ∅ (the existence of K̃1 is proved
in [BSC2, page 68]). Then fix a subset Ṽ1 ⊂ V1 such that πΩ(Ṽ1) = K̃1 and
on any surface Φ[sα−sH ,sα](Wu

α ∩B1), see (H4), the set Ṽ1 intersects only the
bottom 1% of it, i.e. the subsurface Φ[sα−sH ,sα−0.99sH ](Wu

α ∩B1).
The mixing property of Φt ensures that there are tH > 0 and d̃H > 0 such

that for all t > tH we have µ(ΦtXj ∩ Ṽ1) > d̃H for every j = 1, . . . , K. An
obvious lifting of the arguments in the proof of [BSC2, Theorem 3.13] from
Ω to M shows that there are components Wu

t,i of ΦtWu such that

(i) dist
(
W u

t,i, Φ
[−sH/100,sH/100]Ṽ1

)
≤ CΦλt

Φ;

(ii) the curve W u
t,i intersects the ball B1 and sticks out of it by at least LH

in both directions;

(iii) the νu
t -measure of the union of those components is greater than some

dH > 0.

In fact the property (ii) follows from (6.7) and our construction of Ṽ1.
Now, Proposition 2.4 readily follows from (H4).
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