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Abstract

Consider a particle moving freely on the torus and colliding elastically with some
fixed convex bodies. This model is called a periodic Lorentz gas, or a Sinai billiard.
It is a Hamiltonian system with a smooth invariant measure, whose ergodic and
statistical properties have been well investigated. Now let the particle be subjected
to a small external force. This new system is not likely to have a smooth invariant
measure. Then a Sinai-Ruelle-Bowen (SRB) measure describes the evolution of
typical phase trajectories. We find general sufficient conditions on the external force
under which the SRB measure for the collision map exists, is unique, and enjoys
good ergodic and statistical properties, including Bernoulliness and an exponential
decay of correlations.

1 Introduction

Let B1, . . . ,Bs be open convex domains on the unit 2-dimensional torus T| 2. Assume that
B̄i ∩ B̄j = ∅ for i 6= j, and for each i the boundary ∂Bi is a C3 smooth closed curve with
nonvanishing curvature.

Consider a particle of unit mass moving in Q := T| 2 \ ∪iBi according to equations

q̇ = p, ṗ = F (1.1)

where q = (x, y) is the position vector, p = (u, v) is the momentum (or velocity) vector,
and F(x, y, u, v) = (F1, F2) is a stationary force (the force is independent of time). Upon

∗Partially supported by NSF grant DMS-9732728.

1



reaching the boundary ∂Q = ∪i∂Bi, the particle reflects elastically, according to the
usual rule

p+ = p− − 2 (n(q) · p−)n(q) (1.2)

Here q ∈ ∂Q is the point of reflection, n(q) is the unit normal vector to ∂Q pointing
inside Q , and p−, p+ are the incoming and outgoing velocity vectors, respectively.

The case F = 0 corresponds to the ordinary billiard dynamics on the table Q. It
preserves the kinetic energy K = 1

2
||p||2, so that one can fix it, usually by setting ||p|| = 1.

Then the phase space of the system is a compact three-dimensional manifold M0 :=
Q × S1, with identification of incoming and outgoing velocity vectors, i.e. p− and p+

in (1.2), at every point of reflection. The dynamics Φt
0 on M0 preserves the Liouville

measure, which is simply a uniform measure on M0.
In the study of billiards, one usually considers the following two-dimensional cross-

section of M0:
M0 := {(q,p) ∈M0 : q ∈ ∂Q, (p · n(q)) ≥ 0} (1.3)

which consists of all outgoing velocity vectors at reflection points. Then the first return
map T0 : M0 → M0 is well defined, it is called the collision map or billiard map.
The cross-section M0 can be parametrized by (r, ϕ), where r is the arclength parameter
along ∂Q and ϕ ∈ [−π/2, π/2] is the angle between p and n(q). In these coordinates,
M0 = ∂Q× [−π/2, π/2]. The map T0 preserves a finite smooth measure on M0, induced
by the Liouville measure on M0. It is given by

dν0 = const · cos ϕ dr dϕ

Since each obstacle Bi is convex, it acts as a scatterer, so that parallel bundles of
trajectories diverge upon reflection, see Fig. 1. Billiard with this property are said to
be dispersing, or Sinai billiards. The map T0 and the flow Φt

0 for dispersing billiards
are proved to be hyperbolic (i.e., they have one positive and one negative Lyapunov ex-
ponents), ergodic, mixing, K-mixing and Bernoulli [Si, GO]. The map T0 enjoys strong
statistical properties: exponential decay of correlations and satisfies a central limit the-
orem and weak invariance principle [BSC2, Y1, Ch2].
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Figure 1. Scattering effect and the coordinates r, ϕ.
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Let us now assume that the configuration of scatterers has finite horizon meaning
that the the free motion of the billiard particle in Q is uniformly bounded (by a constant
L > 0). In other words, any straight line of length L on the torus intersects one of the
Bi. Under this condition, in addition to all the cited properties, the flow Φt

0 satisfies a
central limit theorem and weak invariance principle [BSC2], hence the billiard particle
satisfies a diffusion equation [BSC2]. It is very likely that the flow Φt

0 enjoys exponential
decay of correlations as well, but this is not proven yet. The assumption of finite horizon
seems to be necessary for the above properties, because in billiards without horizon the
moving particle exhibits superdiffusive (ballistic) behavior [Bl], and the correlations seem
to decay very slowly, as const·t−1, see, e.g., [FM1, FM2].

Very little is known in the general case F 6= 0, though. Clearly, a large force can
change the dynamics dramatically, so that the properties of the dynamics will be de-
termined by the character of F in (1.1) more than by the scattering effect of collisions
with obstacles. Hence, the dynamics can be of quite generic nature. It is presently un-
derstood, due to the KAM theory, that generic mechanical (even Hamiltonian) systems
are not completely hyperbolic or ergodic – typically, chaotic regions in the phase space
coexist with elliptic islands of stability. So, we have to restrict ourselves to small forces
that will not overcome the scattering effect of collisions with obstacles. Thus we will
keep the dynamics close enough to the original billiard. Then we can hope that many
properties of the system with force will be “inherited” from the original billiard model. It
is now clear that the assumption on finite horizon will be necessary – without it the effect
of even a small force F may accumulate to a dangerous level during long runs between
collisions.

The system (1.1)-(1.2) with a force F 6= 0 may be hyperbolic but is likely to admit no
smooth invariant measure. Then the evolution of typical phase trajectories is governed
by the so called Sinai-Ruelle-Bowen (SRB) measures. Those measures are characterized
by smooth conditional distributions on unstable manifolds. The SRB measures are the
only physically observable measures, they are called nonequilibrium steady states in the
language of statistical mechanics. We refer the reader to [GC, Ru, Y2] for more discussion
on SRB measures and their role in hyperbolic dynamics and physics.

There is a remarkable example of the system (1.1)-(1.2) well studied in the literature.
Let F be a small constant electric force, possibly combined with a small magnetic force,
with a Gaussian thermostat added, see (2.8) below. An SRB measure was constructed and
its strong ergodic and statistical properties were mathematically proved [CELS1, CELS2]
for this particular model. Certain transport laws of physics were then rigorously derived,
including Ohm’s law, Einstein relation, Green-Kubo formula, etc. Similar models are
now getting more and more popular in physics.

The purpose of this paper is to find general classes of forces F for which the system
(1.1)-(1.2) has an SRB measure with good ergodic and statistical properties. In fact,
we try to consider the forces as general as possible, assuming only what seems to be
necessary.

First, we will assume that the force F is small, as we said above. The only other major
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assumption we need is an additional integral of motion. If none exists, then the phase
space of the system is a four-dimensional noncompact manifold Q× IR2. Then we would
face two almost hopeless problems. First, we can only ensure that two nonzero Lyapunov
exponents exist – they are inherited from the original billiard, but the other two may be
zero or arbitrary small. This makes the system, essentially, only partially hyperbolic with
little chance for any good ergodic or statistical properties. To make things worse, the
noncompactness of the phase space makes the existence of physically interesting invariant
measures very unlikely. In fact, without a proper temperature control (thermostatting),
the system will usually heat up (||p|| → ∞) or cool down (||p|| → 0), which effectively
rules out interesting invariant measures.

Hence, we will assume that the dynamics preserves a smooth function E(q,p), an
integral of motion, and its level surface is a compact 3-D manifold. We now turn to exact
assumptions on the force F in our model.

2 The model and main results

Here we state our assumptions on the force F.

Assumption A (additional integral). A smooth function E(q,p) is preserved by
the dynamics Φt defined by (1.1)-(1.2). Its level surface, M := {E(q,p) = const} is a
compact 3-D manifold. Two extra assumptions are made for convenience:
(A1) ||p|| 6= 0 on M,
(A2) for each q ∈ Q and p ∈ S1 the ray {(q, sp), s > 0} intersects the manifold M in
exactly one point.

Under the assumtions (A1)-(A2), M can be parametrized by (x, y, θ), where (x, y) =
q ∈ Q and 0 ≤ θ < 2π is a cyclic coordinate, the angle between p and the positive
x-axis. The dynamics (1.1)-(1.2) restricted to M is a flow that we denote by Φt. In the
coordinates (x, y, θ) the equations of motion (1.1) can be rewritten as

ẋ = p cos θ, ẏ = p sin θ, θ̇ = ph (2.1)

where
p = ||p|| > 0 and h = (−F1 sin θ + F2 cos θ)/p2

It is also useful to note that
ṗ = F1 cos θ + F2 sin θ (2.2)

Both h = h(x, y, θ) and p = p(x, y, θ) are assumed to be C2 smooth functions on M.
Due to our assumption (A1), we have

0 < pmin ≤ p ≤ pmax < ∞ (2.3)

Note that at time of reflection, the angle θ changes discontinuously, say from θ− to θ+.
The law (1.2) then imposes the restriction

p(x, y, θ−) = p(x, y, θ+) (2.4)
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on the function p at every point (x, y) ∈ ∂Q.
For a function f on M, let fx, fy, fθ denote the partial derivatives of f . Denote by

||f ||C2 the maximum of f and its first and second partial derivatives over M. Now put

B0 = max{p−1
min, ||p||C2 , ||h||C2} (2.5)

Assumption B (smallness of the force). We assume that the force F and its first
derivatives are small enough. This means that

δ0 = max{|h|, |hx|, |hy|, |hθ|}

is sufficiently small. More precisely, we require that for any given B∗ > 0 there should be
a small δ∗ = δ∗(Q, B∗) such that all our results will hold whenever B0 < B∗ and δ0 < δ∗.

Remark. The geometric curvature of the trajectories of the particle on the torus is
θ̇/p = h. By Assumption B, it is small, and so the trajectories are nearly straight lines.
This has an important implication: no trajectory can collide with one body Bi more than
once during a short interval of time. Hence, the distance between collisions is uniformly
bounded below by a positive constant Lmin > 0. The time between collisions is uniformly
bounded below as well, by tmin = Lmin/pmax.

Lastly, we state our assumption on finite horizon:

Assumption C (finite horizon). There is an L > 0 so that every straight line of
length L on the torus T| 2 crosses at least one obstacle Bi.

Remark. Under Assumptions B and C, every trajectory of length Lmax for the system
(1.1)-(1.2), for some Lmax > L, must hit a scatterer Bi. So, the collision-free path of the
particle is uniformly bounded by Lmax. The time between collisions is uniformly bounded
as well, by tmax = Lmax/pmin.

Consider the two-dimensional cross-section of the manifold M:

M := {(q,p) ∈M : q ∈ ∂Q, (p · n(q)) ≥ 0} (2.6)

which, as M0 in (1.3), consists of all outgoing velocity vectors at reflection points. Then
the first return map T : M → M is then well defined, we also call it collision map.

The cross-section M can be parametrized by (r, ϕ), where r is the arclength arameter
along ∂Q and ϕ ∈ [−π/2, π/2] is the angle between p and n(q). In these coordinates,
M = ∂Q × [−π/2, π/2], the same as M0 in (1.3). We choose the orientation of the
coordinates r and ϕ as shown on Fig. 1 (where r and ϕ increase in the direction of
arrows). Also, denote by K(r) > 0 the curvature of the curve ∂Q at the point with
coordinate r.

There are two particularly interesting types of forces satisfying our assumptions A
and B:
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Type 1 forces (potential forces). Consider an isotropic force F = F(q) (independent
of p) such that F = −∇U , where U = U(q) is a (small) potential function. Note that
U(x, y) must be a smooth function on the torus, so it is necessarily a periodic function
in x and y. These forces preserve the total energy T = 1

2
||p||2 + U(q). In this case we

can set T = 1/2, so that ||p||2 = 1− 2U(q) ≈ 1, assuming U(q) be small.

Remark. Type 1 forces preserve the Lebesgue measure dx dy dθ on the manifold M,
since the divergence of the vector field (2.1) vanishes. This follows from the equation
F = −∇U by direct calculations. Therefore, the collision map T : M → M also preserves
a smooth measure ν.

Sinai billiards under type 1 forces have been studied in numerious papers, and, in
most cases, ergodicity and Bernoulli property were established.

Type 2 forces (isokinetic forces). Consider forces satisfying (F · p) = 0. They preserve
the kinetic energy, i.e. K = 1

2
||p||2 =const. In this case we can set ||p|| = 1, as in

billiards. Note that the equations in (2.1) hold with p = 1 and |h| = ||F|| (the sign of h
is determined by the direction of F).

Example of type 2 forces: thermostatting. Let F be an arbitrary force. One can
modify the equations (1.1) so that the kinetic energy will be preserved:

q̇ = p, ṗ = F− αp where α = (F · p)/(p · p) (2.7)

It is easy to verify that ||p|| = const. The added term αp is called a Gaussian thermostat,
it satisfies the Gaussian principle of least constraint. Also, α is called the Gaussian friction
coefficient.

Example: electric and magnetic fields. A well studied example of a force of type 2
is the following, see [CELS1]

F(q,p) = E + [B× p]− αp (2.8)

Here E is a small constant electric field, B is a small constant magnetic field (a vector
in IR3 perpendicular to the billiard table Q), and αp is the Gaussian thermostat α =
(E · p)/(p · p).

If E = 0 (thus α = 0), then the system preserves the Lebesgue measure dx dy dθ
on M, just as does the pure billiard dynamics Φt

0. If E 6= 0, then the system has
no absolutely continuous invariant measure, but has a unique SRB measure with good
ergodic and statistical properties. We refer the reader to [CELS1] for a detailed study
of the system (2.8). Recently, M. Wojtkowski found explicit conditions on the field E
under which the the system is hyperbolic [W2, W3].

Now we state the main results of this paper.

Theorem 2.1 Under Assumptions A, B, and C, the map T : M → M is a uniformly
hyperbolic map with singularities. It admits a unique SRB measure ν, which is positive
on open sets, K-mixing and Bernoulli.
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The next theorem concerns the statistical properties of the map T : M → M . Let
Hη be the class of Hölder continuous functions on M with exponent η > 0:

Hη = {f : M → IR | ∃C > 0 : |f(X)− f(Y )| ≤ C [dist(X, Y )]η, ∀X, Y ∈ M}

We say that (T, ν) has exponential decay of correlations for Hölder continuous functions
if for all η > 0 there is λ = λ(η) ∈ (0, 1) such that for all f, g ∈ Hη and some C =
C(f, g) > 0 we have ∣∣∣∣∫

M
(f ◦ T n)g dν −

∫
M

f dν
∫

M
g dν

∣∣∣∣ ≤ Cλ|n| (2.9)

for all n ∈ ZZ. We say that (T, ν) satisfies the central limit theorem for Hölder continuous
functions if for all η > 0, f ∈ Hη with

∫
f dν = 0, there is σf ≥ 0 such that

1√
n

n−1∑
i=0

f ◦ T i distr−→ N(0, σ2
f ) (2.10)

which means the convergence in distribution to the normal law N(0, σ2
f ). Furthermore,

σf = 0 iff f is cohomologous to zero, i.e. f = g ◦ T − g for some g ∈ L2(ν)

Theorem 2.2 The measure ν enjoys exponential decay of correlations and satisfies the
central limit theorem. The decay of correlations is uniform in the force F, i.e. the
constants λ and C in (2.9) are independent of F.

We only remark that Theorem 2.1 easily implies that the flow Φt : M→M is fully
hyperbolic and has a unique SRB measure µ that is ergodic and positive on open sets.
In a forthcoming paper, we will prove that the flow Φt is actually mixing and Bernoulli
and satisfies the central limit theorem.

3 Hyperbolicity of Φt and T

Our first goal is to prove that the flow Φt on M is hyperbolic, i.e. it has one positive and
one negative Lyapunov exponents. The hyperbolicity is usually obtained by constructing
a family of invariant cones in the tangent space [W1]. For Sinai billiards, invariant cones
have a clear geometrical interpretation. Unstable cones correspond to divergent bundles
of trajectories, and stable cones - to convergent bundles of trajectories. Any divergent
bundle of trajectories remains divergent upon reflections off convex obstacles, as in Fig. 1,
this easily implies the invariance of the unstable cones. Similarly, any convergent bundle
of trajectories remains convergent in the past (as they flow backwards).

We will prove that in our dynamics a sufficiently divergent bundle of trajectories
remains divergent in the future. Obviously, we need to consider runs between collisions
carefully and make sure that the divergence is not lost there. We use some new techniques
to do that.
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Let P = (x, y, θ) ∈ M be an arbitrary point and P = (dx, dy, dθ) ∈ TPM a tangent
vector at P . Pick a smooth curve Ps = (xs, ys, θs) ⊂M tangent to the vector dP at the
point P , i.e. assume that P0 = P and P ′

0 = dP . In the calculations below, we denote
differentiation with respect to the auxiliary parameter s by primes and that with respect
to time t by dots. In particular, Ṗ = (ẋ, ẏ, θ̇) = (p cos θ, p sin θ, ph) is the velocity vector
of the flow Φt. It is not to be confused with the velocity vector (ẋ, ẏ) = (p cos θ, p sin θ)
of the moving particle on the torus, the latter will be referred to as the particle velocity.

Now consider Pst = (xst, yst, θst) := ΦtPs. The points Pst make a two-dimensional
surface S in M. It is standard that

DΦt(dP ) = P ′
0t =

d

ds
Pst|s=0

In subsequent formulas, all the calculations will be done at the point P0t, where s = 0,
and for brevity we will often drop the subscript 0t. Note that the vectors P ′ = (x′, y′, θ′)
and

Ṗ = (ẋ, ẏ, θ̇) = (p cos θ, p sin θ, ph) (3.1)

are both tangent vectors to S at the point P (= P0t).
We introduce two quantities

v = x′ cos θ + y′ sin θ and w = −x′ sin θ + y′ cos θ (3.2)

It is easy to see that v is the component of the vector (x′, y′) parallel to the particle
velocity (ẋ, ẏ), and w is the perpendicular component of (x′, y′). Solving (3.2) for x′, y′

gives
x′ = v cos θ − w sin θ and y′ = v sin θ + w cos θ (3.3)

Now let
α = v/w and κ = (θ′ − vh)/w (3.4)

So, α is the cotangent of the angle between the vector (x′, y′) and the particle velocity
(ẋ, ẏ). To describe κ geometrically, consider the one parameter family of trajectories
{(xst, yst)} on the torus, where s is the parameter of the family and t is the internal
parameter along each trajectory. Then κ is the curvature of the orthogonal cross-section
of this family. Furthermore, κ > 0 corresponds to divergent families, κ < 0 to convergent
families, and κ = 0 to parallel families. Also, note that |w| is the width of that family in
the direction perpendicular to the particle velocity, per unit increment of the parameter
s.

Now, consider two vectors

U = (cos θ, sin θ, h) and R = (− sin θ, cos θ, κ)

Both are tangent vectors to the surface S, as it follows from the equations

Ṗ = pU and P ′ = vU + wR
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The vector U is obtained by taking a unit vector (cos θ, sin θ) in the direction of the
particle velocity (ẋ, ẏ) and lifting it to a tangent vector to the surface S. Similarly, the
vector R is obtained by taking a unit vector (− sin θ, cos θ) in the perpendicular direction
and lifting it to a tangent vector to the surface S.

Denote by pU and pR the ‘scaled’ directional derivatives of the function p along the
vectors U,R, respectively, defined by

pU = px cos θ + py sin θ + pθh, pR = −px sin θ + py cos θ + pθκ

Similarly,

hU = hx cos θ + hy sin θ + hθh, hR = −hx sin θ + hy cos θ + hθκ

It is then straightforward that

p′ = pUv + pRw and h′ = hUv + hRw (3.5)

upon direct differentiation and substitution of (3.3) and using

θ′ = κw + hv (3.6)

It is also easy to see that

ṗ = pUp and ḣ = hUp

Lemma 3.1 The evolution of the quantities κ,w, α is given by the equations

κ̇/p = −κ2 − h2 + hR (3.7)

ẇ = pκw (3.8)

and
α̇ = −pκα + pUα + pR + ph (3.9)

Proof. First, note that dx′/dt = (ẋ)′ = p′ cos θ − p sin θ · θ′ and similarly dy′/dt =
p′ sin θ + p cos θ · θ′. Also, dθ′/dt = (θ̇)′ = p′h + ph′. Hence

v̇ = p′ + phw and ẇ = pθ′ − phv = pκw

Then direct differentiation of the equations (3.4) and substitution of (3.5) completes the
proof. 2.

Let τ be the length parameter along the trajectory (x0t, y0t) on the torus, i.e. dτ/dt =
p. Then the equations (3.7)-(3.9) can be rewritten as

dκ/dτ = −κ2 − h2 + hR (3.10)
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dw/dτ = κw (3.11)

and
dα/dτ = −κα + h + pUα/p + pR/p (3.12)

Now consider a reflection at some ∂Bi ⊂ ∂Q experienced by the family Pst. For every
s, the trajectory Pst reflects in ∂Bi at some moment of time t = ts. The outgoing velocity
vectors of these trajectories (taken immediately after the reflection) make a curve γ in
M , we call it the trace of the family Pst (on M). Let γ satisfy an equation ϕ = ϕ(r) in
the coordinates r, ϕ introduced after (2.6). Note that the curve γ is also parametrized
by s, because each point corresponds to a trajectory of the family Pst.

The quantities θ, α, κ, w, v, p, h may change discontinuously at the reflection. Denote
by θ−, α−, κ−, etc., their values before the reflection and by θ+, α+, κ+, etc., their values
after the reflection. Actually, we have p+ = p− by (2.4).

Lemma 3.2 The derivative t′ = dts/ds satisfies

t′ = ∓(w± tan ϕ± v±)/p± (3.13)

The derivative dr/ds on γ satisfies

dr/ds = ∓w±/ cos ϕ (3.14)

The derivative of the function ϕ = ϕ(r) satisfies

dϕ/dr = ∓K(r) + κ± cos ϕ∓ h± sin ϕ (3.15)

Recall that K(r) > 0 is the curvature of the boundary ∂Bi ⊂ ∂Q at the point r ∈ ∂Q
on the torus T| 2.

Proof. Let the boundary ∂Bi satisfy an equation G(x, y) = 0, where the function G
is chosen so that its gradient vector (Gx, Gy) is a normal vector to ∂Bi pointing inside Q
(outside Bi). Then ts satisfies the equation G(xsts , ysts) = 0. Differentiating with respect
to s before and after the reflection gives, respectively,

[(x′)± + (ẋ)±t′]Gx + [(y′)± + (ẏ)±t′]Gy = 0 (3.16)

A simple geometric analysis shows that, in the orientation of ϕ specified after (2.6), we
have

Gy/Gx = tan(θ+ + ϕ) = tan(θ− − ϕ) (3.17)

Solving (3.16) for t′ then gives

t′ = −(x′)± + (y′)± tan(θ± ± ϕ)

(ẋ)± + (ẏ)± tan(θ± ± ϕ)

Substitution of (3.1) and (3.3) yields (3.13).
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Next, we have |dr/ds| =
√

(x′ + ẋt′)2 + (y′ + ẏt′)2, where x′, ẋ, y′, ẏ are all taken either

before the reflection or after it. Using (3.1), (3.3) and (3.13) and taking into account our
orientation of the coordinate r (to determine the sign of dr/ds) yields (3.14).

Another simple geometric inspection shows that K(r) = −d(tan−1(Gx/Gy))/dr in
our orientation of the coordinate r. Therefore, using (3.17) gives

dϕ/dr = −K(r)− dθ+/dr = K(r) + dθ−/dr

Lastly,
dθ±

dr
=

dθ±

ds

/dr

ds
= ∓

[
(θ′)± + (θ̇)±t′

]/
[w±/ cos ϕ]

Now substituting (3.1), (3.6), and (3.13) proves (3.15). Lemma is proved. 2

Lemma 3.3 At each reflection, we have v+ = v−, i.e. v remains unchanged. Also,
w+ = −w− and hence α+ = −α−. The variable κ changes by the rule

κ+ = κ− + ∆κ (3.18)

where

∆κ =
2K(r) + (h+ + h−) sin ϕ

cos ϕ
(3.19)

Generally, there is no relation between h+ and h−.

All this directly follows from the previous lemma. 2

Note that by setting h ≡ 0 in (3.19) we recover the well known equation ∆κ =
2K(r)/ cos ϕ for billiards derived by Sinai, see e.g. [Si, BSC1].

Observe that ∆κ does not depend on the family of trajectories Pst (i.e., on α, κ, w). It
only depends on the point (r, ϕ) ∈ M . Hence it is a (smooth) function on the cross-section
M , we call it Θ(r, ϕ), i.e.

Θ(r, ϕ) =
2K(r) + (h+ + h−) sin ϕ

cos ϕ

Note that this function has a positive lower bound,

Θ(r, ϕ) ≥ Θmin = 2 min
r

K(r)− 2δ0 > 0

but it is not bounded above (as, indeed, cos ϕ may be arbitrary close to zero during
almost ‘grazing’ reflections).

We now consider a family of trajectories that are divergent before some reflection, i.e.
assume κ− > 0. Then κ+ > Θmin by (3.18), so the curvature of the family is big enough
after the reflection. Denote by L the length of the trajectory on the torus between the
current and the next reflection points, and parametrize this trajectory segment by the
length parameter τ , 0 ≤ τ ≤ L. Recall that the free path between consecutive reflections
is uniformly bounded, hence Lmin ≤ L ≤ Lmax.
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Lemma 3.4 Let κ− > 0. Then

1

(κ+)−1 + τ
− δ1 ≤ κτ ≤

1

(κ+)−1 + τ
+ δ1 (3.20)

for all 0 < τ < L. Here δ1 is a small constant that depends only on δ0 in Assumption B
and on Θmin.

Proof. The equation (3.10) and Assumption B imply

−κ2 − δ0κ− 2δ0 ≤ dκ/dτ ≤ −κ2 + δ0κ + 2δ0

assuming that κ > 0. Hence,

−(κ + δ′)2 ≤ dκ/dτ ≤ −(κ− δ′)2 + (δ′′)2 (3.21)

where δ′ = (2δ0)
1/2 and δ′′ = (4δ0)

1/2. The smallness of δ′, δ′′ and the initial bound
κ0 = κ+ ≥ Θmin > 0 allows direct integration of (3.21) resulting in

1

(κ+ + δ′)−1 + τ
− δ′ ≤ κτ ≤ δ′′

Ae2δ′′τ + 1

Ae2δ′′τ − 1
+ δ′

where

A =
κ+ − δ′ + δ′′

κ+ − δ′ − δ′′

(this, in particular, justifies the assumption κ > 0). Since δ′, δ′′ are small, one can now
easily obtain (3.20) with δ1 = δ′ + 2δ′′. 2

Convention (on δ’s). Throughout the paper, we denote by δi various small constants
that depend on the domain Q and δ0 in Assumption B so that all δi → 0 as δ0 → 0.
Hence, all those constants are effectively assumed to be small enough.

Denote

κmin :=
1

Θ−1
min + Lmax

− δ1 and κ−max :=
1

Lmin

+ δ1

Corollary 3.5 If a family of trajectories is divergent before a reflection at time t0, i.e.,
κt0−0 > 0, then for all t > t0 we have κt > κmin > 0, i.e. the curvature of the family stays
bounded away from zero. In addition, at each reflection that occurs after the time t0 we
have κ− ≤ κ−max, i.e. the curvature of the family falling upon ∂Q is uniformly bounded
above.

We call a family of trajectories Pst strongly divergent on a time interval (t1, t2) if
κt ≥ κmin for all t1 < t < t2 (and then, of course, for all t > t1). We emphasize the
following:

12



“Invariance principle”. Any strongly divergent family of trajectories remains strongly
divergent in the future under the flow Φt. We note that later on some additional restric-
tions on the class of strongly convergent families will be assumed (see, e.g., the convention
on α’s below), but this invariance principle will hold.

Remark. We do not assume that the derivatives px, py, pθ are small, they are just
bounded as the function p is smooth on a compact manifold M. It is important, though,
that the function pU = ṗ/p = d(ln p)/dt has uniformly bounded integrals along any orbit
segment of the flow: ∣∣∣∣∫ t2

t1
pU dt

∣∣∣∣ ≤ const = ln(pmax/pmin) < ∞

for any t1 < t2.

Lemma 3.6 There are constants αmax and ᾱmax such that for any strongly divergent
family of trajectories on the interval (t0,∞) we have |αt| ≤ αmax eventually, for all t > t1
(where t1 depends on αt0). Moreover, if |αt0 | < αmax, then |αt| ≤ ᾱmax for all t > t0.

Proof. At every reflections, α simply changes sign, i.e. |α+| = |α−|. Due to (3.12),
we have

dα/dτ = −κ(α− pθ/p) + (pU/p)α + (−px sin θ + py cos θ)/p + h (3.22)

Note that the terms pθ/p, pU/p, and (−px sin θ + py cos θ)/p + h are uniformly bounded.
Since κ ≥ κmin > 0, the first term in (3.22) drives α back whenever it gets too large. The
influence of the second term, (pU/p)α, is uniformly bounded by the previous remark. 2

Convention (on α’s). In all that follows, we will only consider strongly divergent families
that satisfy |αt| ≤ αmax for all relevant t. We also assume that the “invariance principle”
holds, as we may in view of Lemma 3.6.

Lemma 3.7 For any strongly divergent family of trajectories on an interval (t0,∞), its
width |w| grows exponentially in time:

|wt| = |wt0| exp
(∫ t

t0
puκu du

)
≥ |wt0 | ec(t−t0)

where c = pminκmin > 0.

We also need the invariance and exponential growth for sufficiently convergent families
of trajectories as they flow backwards in time. The following trick will do the job.

Time reversal principle. There is a convenient way to study backward dynamics Φt

as t → −∞. Consider the involution map I : (x, y, θ) 7→ (x, y, θ + π) on M. The flow

Φt
− := I ◦ Φ−t ◦ I

13



is governed by the equations

ẋ = p− cos θ, ẏ = p− sin θ, θ̇ = p−h− (3.23)

where p−(x, y, θ) = p(x, y, θ + π) and h−(x, y, θ) = −h(x, y, θ + π). So, equations (3.23)
are similar to (2.1). The new flow Φt

− satisfies Assumption A, quite obviously, and
Assumption B, because the function h− and its partial derivatives are the negatives of
those of h. Thus, all the properties of the flow Φt also hold for Φt

−.
It is clear that convergent families of trajectory and their backward evolution corre-

spond to divergent families of the flow Φt
− and their forward evolution. Hence, all the

properties we proved and assumptions we made for divergent families have their coun-
terparts for convergent families. We will say that a family is strongly convergent on an
interval (tt, t2) if κt ≤ −κmax,− where κmax,− > 0 is the constant defined just as κmax,
but for the flow Φ−. Our convention on α’s and the “invariance principle” (under the
backward dynamics) apply to strongly convergent families, and they grow (in terms of
the width w) exponentially in time as t → −∞.

Remark. In a particular case where

p(x, y, θ) = p(x, y, θ + π) and h(x, y, θ) = −h(x, y, θ + π)

the flows Φt and Φt
− coincide. Then we say that the flow Φt is time reversible. Time

reversibility is quite common in many models of direct physical origin. For example,
potential forces (type 1) are always time reversible. The model (2.8) is time reversible,
though, only if B 6= 0. Generally, time reversibility does not follow from Assumptions A
and B.

We now arrive at the first major theorem.

Theorem 3.8 (Hyperbolicity) The flow {Φt} on M is hyperbolic with respect to any
invariant measure, i.e. it has one positive and one negative Lyapunov exponent almost
everywhere. The unstable tangent vector dP u = (dxu, dyu, dθu) at a point P ∈ M corre-
sponds to a family of trajectories that is strongly divergent at all times (−∞ < t < ∞).
The stable tangent vector dP s = (dxs, dys, dθs) corresponds to a strongly convergent fam-
ily of trajectories at all times. The angle between the particle velocity (ẋ, ẏ) and the vector
(dxu, dyu) is uniformly bounded away from zero, and the same holds for the angle between
(ẋ, ẏ) and (dxs, dys).

Having established hyperbolicity for the flow Φt, we can project unstable and stable
vectors on the cross section M , and hence the following

Corollary 3.9 The first return map T : M → M induced by the flow Φt is hyperbolic,
too, with respect to any invariant measure.
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In the rest of this section, we prove that T is, essentially, a uniformly hyperbolic map.
Let X = (r, ϕ) ∈ M and V = (dr, dϕ) ∈ TXM . We call V an unstable vector if it is

a tangent vector to the trace ϕ = ϕ(r) of a strongly unstable family Pst. Similarly, V is
a stable vector if it is tangent to the trace of a strongly stable family.

Lemma 3.10 (Uniform hyperbolicity - 1) There is a constant B1 > 1 such that for
every nonzero unstable vector V = (dr, dϕ) we have B−1

1 ≤ dϕ/dr ≤ B1. Similarly, for
any stable vector V 6= 0 we have −B1 ≤ dϕ/dr ≤ −B−1

1 . As a result, the angles between
stable and unstable vectors are bounded away from zero.

Proof. The lemma follows from (3.15), the bound 0 < κ− ≤ κ−max in Corollary 3.5,
and a similar bound −κ−max ≤ κ+ < 0 for strongly convergent families. 2

Convention (on B’s), We denote by Bi > 0 constants that only depend on the domain
Q and the bounds on the function p(x, y, θ) and its derivatives. Such constants are called
global constants.

Remark. All our claims about unstable vectors here have their obvious counterparts
for stable vectors, as in the above lemma. For brevity, we will only state the claims for
unstable vectors.

Lemma 3.11 (Uniform hyperbolicity - 2) Let V and Ṽ be two unstable vectors at
a point X ∈ M and T n continuous at X. Then the angle between the unstable vectors
DT n(V ) and DT n(Ṽ ) at the point T nX is less than Cλn, where C > 0 and λ ∈ (0, 1)
are global constants.

In other words, the cones made by unstable vectors shrink uniformly and exponentially
fast under DT n as n →∞.

Proof. Let V and Ṽ be tangent vectors to the traces ϕ = ϕ(r) and ϕ = ϕ̃(r) of
two strongly unstable families Pst and P̃st. According to (3.15), |dϕ/dr − dϕ̃/dr| ≤
|κ− − κ̃−| cos ϕ, hence it is enough to prove that |κ−n − κ̃−n | ≤ Cλn, where κ−n and κ̃−n are
taken at the point T nX before the reflection. Note that ∆ := κ − κ̃ satisfies d∆/dτ =
−(κ+ κ̃−hθ)∆ according to (3.10), and does not change at reflections due to Lemma 3.3.
Hence, |∆τ | ≤ |∆0|e−aτ where a = 2κmin − δ0 > 0. 2

Now denote by V1 = (dr1, dϕ1) = DT (V ) the image of vector V under DT . It is a
tangent vector at X1 = TX. If V is an unstable vector, then so is V1. Let V and V1 be
tangent vectors to the traces left on M by a strongly divergent family Pst at the points
X and X1, respectively. Denote by L the length of the trajectory segment on the torus
between the points X and X1, and parametrize that segment by the length parameter
τ , 0 ≤ τ ≤ L. Denote by w+, κ+, etc. the quantities introduced in Sect. 3 taken for
the family Pst immediately after the reflection at the point X, and by w−

1 , κ−1 , etc. the
corresponding quantities before the reflection at the point X1.
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Lemma 3.12 For any unstable vector V

e−δ2 [1 + κ+L] ≤ |w−
1 |

|w+|
≤ eδ2 [1 + κ+L] (3.24)

with some small δ2 > 0.

Proof. Combining (3.11) and (3.20) and integrating with respect to τ from 0 to L
yields (3.24) with δ2 := δ1Lmax. 2

Note that integrating from 0 to any τ < L in the above proof gives

e−δ2 [1 + κ+τ ] ≤ |wτ |
|w+|

≤ eδ2 [1 + κ+τ ] (3.25)

In the theory of dispersing billiards, a convenient norm of stable and unstable vectors
is often used, it is called the p-norm: |V |p = cos ϕ|dr|, and respectively |V1|p = cos ϕ1|dr1|.
This is not really a norm in TXM , since |W |p = 0 for some W 6= 0, but at least |V |p > 0
for every stable and unstable vector V 6= 0 due to Lemma 3.10. Now (3.24) can be
rewritten as

e−δ2 [1 + κ+L] ≤ |V1|p
|V |p

≤ eδ2 [1 + κ+L] (3.26)

because |V1|p/|V |p = |w−
1 |/|w+|, as it follows by applying (3.14) to V and V1.

Note that in the pure billiard dynamics δ2 = 0, and we recover a standard formula
|V1|p/|V |p = 1 + κ+L, see [Si].

The inequality (3.26) shows that the p-norm of unstable vectors grows monotonically
and exponentially in time (= the number of collisions), i.e. for all n ≥ 1

|DT n(V )|p/|V |p ≥ Λn (3.27)

where Λ > 1 is a global constant, say

Λ = 1 + κminLmin/2 (3.28)

The p-metric plays the role of the so called adapted metric of Axiom A systems. It also
follows from (3.19) and (3.26) that the expansion of V under DT is mainly determined
by cos ϕ:

B−1
2

cos ϕ
≤ |V1|p
|V |p

≤ B2

cos ϕ
(3.29)

for some constant B2 > 0.

We will primarily work with the Euclidean metric |V | =
√

(dr)2 + (dϕ)2. It is clear
that for stable and unstable vectors V 6= 0, which satisfy Lemma 3.10, we have

1 ≤ |V | cos ϕ

|V |p
≤ B3 (3.30)
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for some constant B3 > 0. Then (3.29) and (3.30) imply

B−1
4

cos ϕ1

≤ |DT (V )|
|V |

≤ B4

cos ϕ1

(3.31)

for some constant B4 > 0.

Lemma 3.13 (Uniform hyperbolicity - 3) For any unstable vector V where DT n is
defined

|DT n(V )|/|V | ≥ B5Λ
n (3.32)

for global constants Λ > 1 and B5 > 0.

Proof. Indeed, due to (3.27), (3.29) and (3.30)

|DT n(V )| ≥ |DT n(V )|p ≥ Λn−1|DT (V )|p ≥ Λn−1B−1
2 |V |p
cos ϕ

≥ Λn−1B−1
2 B−1

3 |V |

4 The properties of the billiard map T : M → M

Here we study stable and unstable curves, and singularity curves, for the billiard map
T on the cross-section M . Certain technical properties of those curves are necessary for
the construction and further study of SRB measures. In the theory of dynamical sys-
tems, these properties are called curvature bounds, distortion bounds, absolute continuity,
alignment etc. The proofs of these properties are, unfortunately, quite involved. To make
things worse, the proofs are not always available even in the pure billiard case – some of
these facts are just known as folklore, whose proofs have never been published. For the
sake of completeness, we provide here full proofs of all these facts.

Definition. A smooth curve γ ⊂ M given by ϕ = ϕ(r) is called an unstable curve (or a
stable curve) if it is the trace of a strongly divergent (resp., strongly convergent) family
of trajectories.

Our “invariance principle” for strongly divergent families implies that the class of
unstable curves is invariant under T n, n ≥ 1, and the class of stable curves is invariant
under T−n, n ≥ 1. We will refer to this as the “invariance principle” for unstable curves.

Lemma 4.1 (Curvature bounds) There are constants Bmax and B̄max such that for
any C2 smooth unstable curve γ its images T nγ satisfy |d2ϕ/dr2| ≤ Bmax eventually, for
all n ≥ nγ. Moreover, if γ itself satisfies |d2ϕ/dr2| ≤ Bmax, then all its images T nγ,
n ≥ 1, satisfy |d2ϕ/dr2| ≤ B̄max.

We note that a similar property for pure billiard dynamics is known [Y1, Ch2], but
hardly a complete proof was ever published. Our proof certainly covers the pure billiard
case.
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Proof. Let ϕ = ϕ(r) be an unstable curve, the trace of a strongly divergent family
Pst. Differentiating (3.15) gives

d2ϕ

dr2
=

dK(r)

dr
+

dκ−

dr
cos ϕ− κ− sin ϕ

dϕ

dr
+

dh−

dr
sin ϕ + h− cos ϕ

dϕ

dr

Since ∂Q is C3 smooth, the term dK/dr is bounded. The term κ− is bounded by
Corollary 3.5, and dϕ/dr is bounded by Lemma 3.10. Now, using (3.5) and (3.13) gives
dh−/ds = h−Rw− + h−Uw− tan ϕ. Hence, due to (3.14), dh−/dr = (dh−/ds)/(dr/ds) =
h−R cos ϕ + h−U sin ϕ, so |dh−/dr| ≤ (4 + κ−max)δ0.

It then remains to estimate the term dκ−/dr. First, according to (3.14)

dκ−

dr
=

dκ−

ds

/dr

ds
= [(κ′)− + (κ̇)−t′] · cos ϕ

w−

Substituting (3.7) and (3.13) gives

dκ−/dr = (κ′/w)− cos ϕ− [(κ−)2 + (h−)2 − h−R] · (sin ϕ− α− cos ϕ)

Here all the terms are bounded except, possibly, the term (κ′/w)−. So, it is enough to
prove that the quantity Ξ := κ′/w is bounded by a global constant before every reflection.
Direct differentiation and using (3.7) yields

dκ′/dt = dκ̇/ds = −2pκκ′ − pθwκ3 −D1wκ2 + phθκ
′

where D1 is an expression involving first and second order derivatives of the functions
p and h. All those derivatives are bounded, since these functions are C2 smooth on a
compact manifold M, hence |D1| is bounded by a global constant. Now, by using (3.8),

dΞ/dt = (dκ′/dt)/w − κ′ẇ/w2

= −3pκΞ + phθΞ− pθκ
3 −D1κ

2 (4.1)

Now consider a reflection experienced by the family Pst and denote by Ξ− and Ξ+ the
values of Ξ before and after the reflection. Differentiating (3.18)-(3.19) gives

dκ+

dr
=

dκ−

dr
+

2K(r) sin ϕ

cos2 ϕ
· dϕ

dr
+

2K ′

cos ϕ
+

H1

cos2 ϕ
− h+

θ κ+ sin ϕ (4.2)

Here we denote K ′ = dK/dr, which is bounded on ∂Q, and H1 is a small quantity, see
below.

Convention (on D’s and H’s), We will denote by Di variable quantities whose absolute
values are bounded above by global constants, i.e. |Di| ≤ Bi for some global constant
Bi. We will also denote by Hi variable quantities whose absolute values are bounded by
some small constants depending on δ0 in Assumption B, i.e. |Hi| ≤ δ∗i where δ∗i → 0 as
δ0 → 0, i.e. δ∗i satisfy our convention on δ’s.
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Note that dκ+/dr = (dκ+/ds)/(dr/ds) = [(κ′)++(κ̇)+t′]/(−w+/ cos ϕ) and, similarly,
dκ−/dr = [(κ′)−+(κ̇)−t′]/(w−/ cos ϕ), where we used (3.14). Substituting these into (4.2)
and using (3.7), (3.15), (3.18), and (3.13) yields

Ξ+ = −Ξ− + ∆Ξ (4.3)

where

∆Ξ = −6K2(r) sin ϕ

cos3 ϕ
+

D2

cos2 ϕ
+

H2

cos3 ϕ
(4.4)

Here D2 is an expression involving K ′, κ−, α± and other bounded quantities.
Eqs. (4.1) and (4.3)-(4.4) completely describe the evolution of the quantity Ξ in time.

Since (4.1) is a linear differential equation, we can decompose Ξ = Ξ1 + Ξ2 so that

dΞ1/dt = −3pκΞ1 + phθΞ1 and dΞ2/dt = −3pκΞ2 + phθΞ2 − pθκ
3 −D1κ

2 (4.5)

and at every reflection

Ξ+
1 = −Ξ−1 and Ξ+

2 = −Ξ−2 + ∆Ξ (4.6)

Initially, at a time t0 + 0 when the family Pst just leaves the curve γ (its trace on M),
we set Ξ1(t0 + 0) = Ξ(t0 + 0) and Ξ2(t0 + 0) = 0.

Now, since |Ξ1| does not change during reflections, the first equation (4.5) implies
that

|Ξ1(t)| ≤ |Ξ1(t0)| · e−a(t−t0) for t > t0 (4.7)

where a = 3pminκmin − δ0 > 0. Hence, the component Ξ1 converges to zero exponentially
fast.

Claim. There is a global constant B6 > 0 such that |Ξ2(t−0)| ≤ B6 for every moment
of reflection t > t0.

We prove the claim inductively. Suppose |Ξ2(t1 − 0)| ≤ B6 before a reflection at
some time t1 > t0. During the interval from t1 to the next reflection, t2, we decompose
Ξ2 = Ξ21 + Ξ22 as in (4.5), so that

dΞ21/dt = −3pκΞ21 + phθΞ21 and dΞ22/dt = −3pκΞ22 + phθΞ22− pθκ
3−D1κ

2 (4.8)

and initially set Ξ21(t1 + 0) = −Ξ2(t1 − 0) and Ξ22(t1 + 0) = ∆Ξ, where ∆Ξ is given by
(4.4) and taken at the reflection at t1.

Similarly to (4.7), we now have

|Ξ21(t2 − 0)| ≤ |Ξ2(t1 − 0)| · e−a(t2−t1) (4.9)

The equation (4.4) shows that Ξ22(t1 +0) = ∆Ξ is of order O(1/ cos3 ϕ) = O(κ3(t1 +0)).
It is then convenient to “link” Ξ22 with κ3 and consider the ratio g(t) := Ξ22(t)/κ

3(t).
First, by (3.19) and (4.4)

g(t1 + 0) = Ξ22(t1 + 0)/κ3(t1 + 0) ≤ B′

19



with some global constant B′. Then, (4.8) and (3.7) imply

dg/dt = −pθ + H3g + D3/κ

Hence, |g| stays bounded by a global constant between the two reflections, i.e. |g(t)| ≤ B′′

for all t1 < t < t2. Therefore, |Ξ22(t2 − 0)| ≤ B′′(κ−max)
3 and

|Ξ2(t2 − 0)| ≤ B6e
−atmin + B′′(κ−max)

3

Hence, an appropriate choice of B6 ensures that |Ξ2(t2 − 0)| ≤ B6. The claim is proved.
Lemma 4.1 now easily follows. 2

Convention. In all that follows we will only consider unstable curves that satisfy
|d2ϕ/dr2| ≤ Bmax. Hence, all our unstable curves will have uniformly bounded geo-
metric curvature. The same goes, of course, to stable curves. We also assume that the
“invariance principle” for unstable curves holds, as we may in view of Lemma 4.1.

This convention is equivalent to the requirement that for any strongly divergent family,
immediately before any reflection,

Ξ− = (κ′)−/w− ≤ B7 (4.10)

for some global constant B7.
Also note that the proof of the claim in the proof of Lemma 4.1 implies that, under

the above convention, all strongly divergent families satisfy

|Ξ|/κ3 = |κ′|/(κ3|w|) ≤ B8 (4.11)

for some global constant B8. This will be used later.
We now turn to distortion bounds, but first, a remark is in order. Let γ be an

unstable curve on which T n is continuous for some n ≥ 1. We know that T n expands
γ exponentially fast in n, due to (3.32). We now need to compare the expansion rates
at different points of γ and ensure that those rates vary slowly over γ (this property
is referred to as ‘bounded distortions’). However, at almost grazing reflections, when
cos ϕ ≈ 0, the expansion of unstable curves is highly nonuniform, and so distortions are
unbounded. To fix the situation, we consider the so called homogeneous unstable curves.

We partition M into countably many rectangular domains Ik, for k = 0 and |k| ≥ k0,
where k0 > 1 is a large constant to be specified later. For every k ≥ k0 we put

Ik = {(r, ϕ) : π/2− k−2 < ϕ < π/2− (k + 1)−2}

and
I−k = {(r, ϕ) : −π/2 + (k + 1)−2 < ϕ < −π/2 + k−2}

and lastly
I0 = {(r, ϕ) : −π/2 + k−2

0 < ϕ < π/2− k−2
0 }
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The domains Ik are called homogeneity strips, they are also used in the study of pure
billiard systems [BSC2, Y1, Ch2].

We say that an unstable curve γ ⊂ M is homogeneous if it is entirely contained in
one homogeneity strip Ik. Note that if γ is a homogeneous unstable curve, then for every
point X = (r, ϕ) ∈ γ we have

cos ϕ ≥ B−1
9 |γ|2/3 (4.12)

where B9 > 0 is a global constant. Here and on |γ| denotes the length of γ in the
Euclidean metric (dl)2 = (dr)2 + (dϕ)2.

Let γ be an unstable curve, X ∈ γ and T n continuous at X. Denote by Jγ,n(X) the
expansion factor of the curve γ under T n at the point X, i.e. Jγ,n(X) := |DT nV |/|V | for
any tangent vector V to γ at X.

Lemma 4.2 (Distortion bounds) Let γ be an unstable curve on which T n is contin-
uous. Assume that γi := T iγ is a homogeneous unstable curve for each 0 ≤ i ≤ n. Then
for all X,Y ∈ γ

| ln Jγ,n(X)− ln Jγ,n(Y )| ≤ B10|γn|b

for some global constants B10 > 0 and b > 0 (in fact, b = 1/3).

We note that the corresponding property for pure billiard dynamics is known [Ch2],
but only a proof of a somewhat weaker statement was published [BSC2]. Our proof
covers the pure billiard case, too.

Proof. Note that Jγ,n(X) =
∏n−1

i=0 Jγi,1(T
iX). Hence, it is enough to prove the lemma

for n = 1, because |γi| grows exponentially in i due to (3.32). So we put n = 1.
Let Pst be a strongly divergent family whose trace on M is the curve γ. We will

use the notation adopted before Lemma 3.12. Consider Jγ,1(X) as a function of X1 =
(r1, ϕ1) = TX ∈ γ1, and parametrize γ1 by r1. It is enough to prove that∣∣∣∣∣d ln Jγ,1

dr1

∣∣∣∣∣ ≤ B

|γ1|2/3
(4.13)

for some global constant B > 0. Then Lemma 4.2 (with n = 1) would follow by integra-
tion over γ1. The bound (4.13), in turn, follows from∣∣∣∣∣d ln Jγ,1

dr1

∣∣∣∣∣ ≤ B cos ϕ1

cos ϕ
+

B

cos ϕ1

(4.14)

with a global constant B > 0, by applying (4.12) to both γ and γ1, and because |γ| ≥
B−1

4 |γ1| cos ϕ1, which follows from (3.31).

We now prove (4.14). We have |V | = |dr|
√

1 + (dϕ/dr)2 = |ds| |w+|(cos ϕ)−1
√

1 + (dϕ/dr)2,

and similarly for |V1|, hence

Jγ,1(X) =
|V1|
|V |

=
|w−

1 |
|w+|

· cos ϕ

cos ϕ1

·

√
1 + (dϕ1/dr1)2√
1 + (dϕ/dr)2

= J ′ · J ′′ · J ′′′
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where J ′, J ′′, J ′′′ simply denote the first, second and third factors in this expression. We
bound them separately. First,∣∣∣∣∣d ln J ′′′

dr1

∣∣∣∣∣ ≤ |dϕ1/dr1| · |d2ϕ1/dr2
1|

1 + (dϕ1/dr1)2
+
|dϕ/dr| · |d2ϕ/dr2|

1 + (dϕ/dr)2
·
∣∣∣∣∣ dr

dr1

∣∣∣∣∣
Note that |dr/dr1| ≤ B′

4 cos ϕ1 for some global constant B′
4 > 0 due to (3.31). Hence,

|d ln J ′′′/dr1| is uniformly bounded due to Lemmas 3.10 and 4.1.
Next, ∣∣∣∣∣d ln J ′′

dr1

∣∣∣∣∣ ≤
∣∣∣∣∣dϕ1/dr1

cos ϕ1

∣∣∣∣∣ +

∣∣∣∣∣dϕ/dr

cos ϕ

∣∣∣∣∣ ·
∣∣∣∣∣ dr

dr1

∣∣∣∣∣ ≤ B1

cos ϕ1

+
B1B

′
4 cos ϕ1

cos ϕ

as required by (4.14).
It remains to consider ln J ′(X) =

∫ t1
t0

κp dt, cf. (3.8), where t0 and t1 denote the mo-
ments of reflection at X and X1, respectively. First, d ln J ′/dr1 = (d ln J ′/ds)/(dr1/ds),
and

d ln J ′/ds = −κ+p+dt0/ds + κ−1 p−1 dt1/ds +
∫ t1

t0
(κp′ + κ′p) dt

= κ+(w+ tan ϕ + v+) + κ−1 (w−
1 tan ϕ1 − v−1 ) +

∫ t1

t0
(κp′ + κ′p) dt

Note that |w+/w−
1 | ≤ 2(κ+Lmin)

−1 by (3.24) and for all w = w(t), t0 < t < t1, we also
have by (3.25)

|w/w−
1 | ≤ |w/w+| · |w+/w−

1 | ≤ 4L−1
min[(κ

+)−1 + τ ] (4.15)

Combining the above formulas and (3.14) yields

|d ln J ′/dr1| ≤ 2 L−1
min| tan ϕ + α+| cos ϕ1 + κ−max(| sin ϕ1|+ |α−1 | cos ϕ1)

+ cos ϕ1

∫ t1

t0
|κp′ + κ′p|/|w−

1 | dt

The first two terms are clearly properly bounded, as required by (4.14). The integral
term can be estimated by (3.5) and (4.11), so it does not exceed

cos ϕ1

∫ t1

t0
κ |pUα + pR| · |w/w−

1 |+ B8κ
3p |w/w−

1 | dt

Using (4.15) and an obvious |pUα + pR| ≤ const·(1 + κ) shows that the last expression
does not exceed

cos ϕ1

∫ t1

t0
B′κ3p|w/w−

1 | dt ≤ cos ϕ1

∫ t1

t0
B′′[(κ+)−1 + τ ]−2p dt

where B′ and B′′ are some global constants. A direct integration shows that the last
expression is bounded by

cos ϕ1

∫ L

0
B′′[(κ+)−1 + τ ]−2 dτ ≤ const · cos ϕ1κ

+
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Since κ+ ≤ const·(1 + 1/ cos ϕ), the last expression is properly bounded as required by
(4.14). This completes the proof of (4.14). Lemma 4.2 is proved. 2

Before we turn to the absolute continuity, one useful observation should be made.

Volume compression. The volume dV = dx dy dθ in the phase space M is not
necessarily invariant under Φt. Its rate of change is given by the divergence of the flow
Φt:

d

dt
(ln dVt) = px cos θ + py sin θ + pθh + phθ = pU + phθ (4.16)

Under our assumptions, phθ is small. The function pU has uniformly bounded integrals
along orbits, see Remark before Lemma 3.6. Therefore, for all X ∈M and t > 0

B−1
11 e−δ4t < |dΦt(X)| < B11e

δ4t (4.17)

for some small constant δ4 > 0 and a global constant B11. Also, let Pst be a strongly
convergent or divergent family on a time interval (t1, t2) that does not experience singu-
larities (grazing reflections) for t1 < t < t2. Then for any X, Y ∈ Pst1 we have

B−1
12 < |dΦt2−t1(X)|/|DΦt2−t1(Y )| < B12 (4.18)

with a global constant B12. Indeed, the trajectories ΦtX and ΦtY exponentially converge
to each other due to the uniform hyperbolicity of Φt, and the smoothness of the functions
in (4.16) then proves (4.18).

Similar inequalities hold for the map T and the element dν0 of the smooth invariant
measure ν0 of the billiard map T0. Recall that dν0 = const · cos ϕ dr dϕ. The elements
dV and dν0 are related by

dV = dx dy dθ = p cos ϕ dr dϕ dt = const · p dν0 dt (4.19)

in the immediate vicinity of the cross-section M . Note that the corresponding relation
for pure billiard systems (with p = 1) holds everywhere in the phase space M0, cf. [Si].

Denote by |DT n|0 the jacobian of T n with respect to the measure ν0. Now (4.17) and
(4.19) imply

B−1
11 e−δ4n < |DT n|0 < B11e

δ4n (4.20)

Also, let γ ⊂ M be a stable or unstable curve on which T n is continuous, and T nγ also
stable (resp., unstable) curve. Then for any X, Y ∈ γ (4.18) and (4.19) imply

B−1
12 < |DT n(X)|0/|DT n(Y )|0 < B12 (4.21)

We use the same notation δ4, B11, B12 here, even though the values of these constants in
(4.17)-(4.18) and (4.20)-(4.21) may be different.

Lemma 4.3 (Absolute continuity) Let ξ be a stable curve, X, Y ∈ ξ, and γ1, γ2 two
unstable curves crossing ξ at X and Y , respectively. Assume that T n is continuous on ξ
and T iξ is a homogeneous stable curve for each 0 ≤ i ≤ n. Then

| ln Jγ1,n(X)− ln Jγ2,n(Y )| ≤ B13 (4.22)

where B13 is a global constant.
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Proof. For any Z ∈ ξ, let Jξ,n(Z) be the contraction factor of ξ under T n at the point
Z, i.e. Jξ,n(Z) = |DT n(V )|/|V | for any tangent vector V to ξ at Z. By Lemma 4.2
(applied to ξ) we have

| ln Jξ,n(X)− ln Jξ,n(Y )| ≤ B9|ξ|b ≤ B′ (4.23)

for a global constant B′.
Let |DT n(Z)|e denote the jacobian of T n at Z ∈ M with respect to the Lebesgue

measure dr dϕ on M , i.e. |DT n(Z)|e = |DT n(Z)|0 cos ϕ(Z)/ cos ϕ(T nZ). Since both ξ
and T nξ are homogeneous curves, (4.21) implies

B−1 < |DT n(X)|e/|DT n(Y )|e < B (4.24)

for a global constant B. Now (4.23) and (4.24), along with Lemma 3.10, prove (4.22). 2

Next, we describe the singularities of the map T . Let S0 = ∂Q × {ϕ = ±π/2} be
the natural boundary of M . Put Sn = T nS0 for all n ∈ ZZ, and Sm,n = ∪n

i=mSi for
−∞ ≤ m ≤ n ≤ ∞. On the sets S−n,−1 and S1,n the maps T n and T−n, respectively, are
discontinuous.

We will also need the set

D0 = ∪k≥k0{ϕ = ±(π/2− k−2)}

the union of countably many parallel lines in M separating the homogeneity strips. Put
Dn = T nD0 for all n ∈ ZZ, and Dm,n = ∪n

i=mDi for −∞ ≤ m ≤ n ≤ ∞.

Lemma 4.4 (Alignment) For each n ≥ 1 the set Sn is a finite union of C2 unstable
curves. The set S−n is finite union of stable curves. Similarly, the set Dn is a countable
union of unstable curves and D−n is a countable union of stable curves. The curvature
of all these curves in M is bounded by a global constant.

Proof. One only need to prove this for n = 1, due to the invariance of unstable
(stable) curves under T (resp., T−1). Since the curves of D0 converge to S0, then their
images (components of D1) converge to S1, so it is enough to prove the lemma for D1.
Consider a curve γ in D0 given by ϕ = ϕ0 = ±(π/2− k−2) with some |k| ≥ k0. It is the
trace of a family Pst that can be naturally parametrized by s = r, and we set t = 0 on
that curve. Note that x′, y′ is a unit tangent vector to ∂Q. It is then easy to compute
v+ = sin ϕ0, w+ = − cos ϕ0, (θ′)+ = −K(r), and κ+ = (K(r)+h+ sin ϕ0)/ cos ϕ0. Hence,
κ+ ≥ Θmin and so the family Pst is strongly divergent for t > 0.

We now prove the boundedness of curvature. The above natural parametrization r = s
does not satisfy our convention on α’s when k is large. But for any point X = (r, ϕ) ∈ γ
we can reparametrize the outgoing family Pst, t > 0, with a new parameter s so that
v+ = 0 and w = 1 at X. In this parametrization, as one can compute directly,

(κ′)+ = −dK(r)/dr + sin ϕ0dh+/dr

cos2 ϕ0

+
p sin ϕ0[(κ

+)2 + (h+)2 − h+
R]2

cos3 ϕ0
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Now we see that (κ′)+ = O(cos−3 ϕ0) = O((κ+)3), so we are in the position of the proof
of the claim in the proof of Lemma 4.1. Just like then, we get a uniform bound κ′ ≤ B6

before the next reflection occurs. This proves that the curvature of the curve Tγ is
bounded by a global constant. 2

Corollary 4.5 Unstable curves are uniformly transversal to the boundary ∂M = S0 and
to the components of the singularity set S−n, n ≥ 1 (and to those of D−n, n ≥ 1). Stable
curves are uniformly transversal to the boundary ∂M = S0 and to the components of the
singularity set Sn, n ≥ 1 (and to those of Dn, n ≥ 1).

The following continuation property is standard [BSC2, Ch2]:

Remark (Continuation property). Each endpoint, X, of every smooth curve γ ⊂
S−n,0, n ≥ 1, lies either on S0 = ∂M or on another smooth curve γ′ ⊂ S−n,0 that itself
does not terminate at X. Hence, each curve γ ∈ S−n,0 can be continued monotonically
up to S0 = ∂M by other curves in S−n,0.

5 Growth of unstable curves

Here we discuss iterations of unstable curves under the action of T . We prove a version
of the so called “growth lemma”, a key element in the modern studies of ergodic and
statistical properties of hyperbolic dynamical systems.

Let γ ⊂ M be an unstable curve of small length ε and m ≥ 1. The map Tm is
defined on γ \ S−m,0. By the “invariance principle” for unstable curves, the set γm :=
Tm(γ \S−m,0) is a union of some unstable curves. Denote by Km(γ) the number of those
curves (connected components of γm). By Lemma 3.13 (uniform hyperbolicity) the total
length of γm is ≥ B5Λ

mε. However, the effect of growth of γm with m may be effectively
eliminated if B5Λ

m � Km(γ). In that case applying Tm to γ may produce nothing
but a bunch of curves that are even shorter that γ. If that happens for all m, the very
existence of SRB measures would be doubtful, if not hopeless. Fortunately, Km(γ) only
grows linearly with m, provided ε is small enough. We prove this below.

First, note that Km(γ)−1 is the number of points of intersection γ∩S−m,−1. A point
X ∈ M where k ≥ 2 smooth curves of the set S−m,0 meet is called a multiple singularity
point, and k is its multiplicity. Denote by Km the maximal multiplicity of all X ∈ M for
a given m.

Lemma 5.1 For each m ≥ 1 there is an εm > 0 such that for any unstable curve γ ⊂ M
of length ε < εm we have Km(γ) ≤ Km.

The lemma easily follows from the properties of unstable curves and the singularity
set S−m,0 proved in the previous section.

Lemma 5.2 (Multiplicity bound) There is a global constant C0 > 0 such that Km ≤
C0m for all m ≥ 1.
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We note that a linear bound on Km was first observed by Bunimovich for pure billiard
dynamics, see [BSC2]. It is now understood that it is the continuity of the flow Φt that
implies the linear bound on Km. We give a proof of this fact different from the original
one in [BSC2].

Proof. If Km curves of S−m,0 meet at X, then a neighborhood U(X) of X is divided
by those curves into some Lm parts (sectors), and clearly Km ≤ Lm. We now will show
that Lm ≤ C0m for some C0 > 0.

On each of the Lm parts of U(X) the map Tm is continuous and can be extended
by continuity to the point X. Thus, TmX can be defined in Lm different ways. To see
exactly how that happens, first note that the real time trajectory ΦtX is well and uniquely
defined for all t > 0. This trajectory may be tangent to ∂Q at one or more points. We
call such points tangent (grazing) reflections. Now, the Lm > 1 different versions of Tm

at X are possible precisely when the trajectory ΦtX has tangential reflections: each of
those reflections can be counted as either a “hit” (making an iteration of T ) or a “miss”
(skipping it in the construction of T ).

Note that the real time elapsed until the mth iteration of T (in any of its versions) is
less than mτmax. Hence, there can be no more that C1m reflections (both tangential and
regular ones) involved in the construction of Tm at X, where C1 = τmax/τmin is a global
constant. Let m̃ ≤ C1m be the number of tangential reflections among the first C1m
reflections on the trajectory ΦtX. It seems that, with a choice of hit or miss at every
tangential reflection, we would have up to 2m̃ versions of Tm at X. That would be too
many for us. Fortunately, relatively few sequences of hits and misses materialize, as we
show next.

Note that there can be no more than C1 tangential reflections in a row. Consider a
string of p consecutive tangential reflections on the trajectory ΦtX, t > 0, with 1 ≤ p ≤
C1. Let Y ′ = Φt′X ∈ M be the last regular reflection point on the trajectory ΦtX before
the above string. If there are previous tangential reflections on ΦtX, 0 < t < t′, then the
neighborhood U(Y ′) ⊂ M is already divided into some L′ parts (sectors) according to the
hit/miss sequences arisen in those reflections. The boundaries of those L′ sectors of U(Y ′)
are curves in S1,n′ for some n′ > 0, so they are increasing curves in the r, ϕ coordinates
(by Lemma 4.4). Now, there are at most 2p possible hit/miss sequences on the string
of p tangential reflections that we have right after the point Y ′. Accordingly, U(Y ′) is
divided into ≤ 2p parts (sectors) along some curves in S−p,−1, which are decreasing curves
(by Lemma 4.4). So, we have two partitions of U(Y ′): one into L′ sectors by increasing
curves, and the other into ≤ 2p sectors by decreasing curves. These two partitions
combined divide U(Y ′) into no more than L′ + 2p parts, as it is clear from Fig. 2. So,
each string of p consecutive tangential reflections adds ≤ 2p (i.e., ≤ 2C1) parts to the
partition of U(X) by S−m,−1. Hence, Lm ≤ 2C1C1m. 2
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Figure 2. The partition of the neighborhood U(Y ′).

Lemmas 5.1-5.2 effectively guarantee the growth of sufficiently short unstable curves
under Tm. Precisely, if m is large enough, and the unstable curve γ is short enough, then
the expansion factor B5Λ

m of γ under Tm is larger than the “cutting factor” Km(γ) ≤
C0m.

We can now proceed exactly as in [Ch2]. A scheme developed there for the pure
billiard dynamics perfectly works for us here, it can be repeated almost word by word.
We refer the reader to [Ch2] and only describe certain major steps in the scheme necessary
for our further analysis.

We start by cutting M along the boundaries of the homogeneity strips Ik thus making
M = ∪kIk a disconnected countable union of strips Ik. This makes the map T discon-
tinuous on the set Γ = S−1 ∪ D−1. Note that after cutting M into these strips, any
connected unstable curve γ ⊂ M will be automatically homogeneous.

Then we fix a higher iteration T1 = Tm of the map T , with m picked so that C0m <
B5Λ

m − 1. The map T1 uniformly expands unstable vectors: |DT1(V )| ≥ Λ1|V | with
Λ1 := B5Λ

m > 1 for all unstable vectors V by Lemma 3.13. The map T1 has singularity
set Γ1 = Γ ∪ T−1Γ ∪ · · · ∪ T−m+1Γ = S−m,−1 ∪ D−m,−1. Note also that Λ1 > Km + 1
by Lemma 5.2, so that T1 expands sufficiently short unstable curves faster than the
singularity set S−m,−1 breaks them into pieces.

For any smooth curve γ ⊂ M we denote by ργ the metric on γ induced by the
Euclidean metric on M and by mγ the Lebesgue measure on γ generated by ργ. Note
that mγ(γ) = |γ| is the length of the curve γ.

An important remark is now in order. Let γ be a homogeneous unstable curve, n ≥ 1,
and ξ ⊂ T n

1 γ any connected (and hence homogeneous and unstable) curve. Consider the

measure m
(n)
ξ := T n

1,∗mγ|ξ, i.e. the image of the Lebesgue measure mγ under T n
1 = Tmn

conditioned on ξ. It is a probability measure on ξ absolutely continuous with respect to
the Lebesgue measure mξ, and its density f

(n)
ξ = dm

(n)
ξ /dmξ satisfies

f
(n)
ξ (X)

f
(n)
ξ (Y )

=
Jγ,mn(T−mnY )

Jγ,mn(T−mnX)
for all X, Y ∈ ξ (5.1)

Lemma 4.2 (distortion bounds) implies that

| ln f
(n)
ξ (X)− ln f

(n)
ξ (Y )| ≤ B10|ξ|1/3 (5.2)
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Key Remark. By making |ξ| smaller, we can make the the density f
(n)
ξ almost constant

on ξ, uniformly in ξ, γ and n. In what follows we only work with unstable curves of
small length, less than some ρ0 > 0. We will assume that ρ0 is small enough, hence all
the measures m

(n)
ξ on curves ξ ⊂ T n

1 γ will be almost uniform.

For n ≥ 1 denote by Γ
(n)
1 = Γ1 ∪ T−1

1 Γ1 ∪ · · · ∪ T n−1
1 Γ1 the singularity set for T n

1 . For
any δ > 0 let Uδ denote the δ-neighborhood of the set Γ1 ∪ ∂M .

Let ρ0 > 0, n ≥ 0, and γ ⊂ M an unstable curve (which is automatically homoge-
neous). Let ξ ⊂ γ be a disjoint union of open subintervals of γ, and for every X ∈ ξ
denote by ξ(X) the subinterval of ξ containing the point X. We call ξ a (ρ0, n)-subset
(of γ) if for every X ∈ ξ the set T n

1 ξ(X) is a single homogeneous unstable curve of length

≤ ρ0 (in particular, ξ does not intersect the set Γ
(n)
1 ). Define a function rξ,n on ξ by

rξ,n(X) = ρT n
1 ξ(x)(T

n
1 X, ∂T n

1 ξ(X)) (5.3)

which is simply the distance from T n
1 X to the nearest endpoint of the curve T n

1 ξ(X)
(measured along this curve). In particular, note that rγ,0(X) = ργ(X, ∂γ). We will use
shorthand mγ(rξ,n < ε) for mγ(X ∈ ξ : rξ,n(X) < ε)

Proposition 5.3 (“Growth lemma”) There is a global constant α0 ∈ (0, 1) and pos-
itive global constants β0, β1, β2, κ, σ, ζ with the following property. For any sufficiently
small ρ0, δ > 0 and any homogeneous unstable curve γ ⊂ M of length ≤ ρ0, there is an
open (ρ0, 0)-subset ξ0

δ ⊂ γ∩Uδ and an open (ρ0, 1)-subset ξ1
δ ⊂ γ \Uδ (one of these subsets

may be empty) such that mγ(γ \ (ξ0
δ ∪ ξ1

δ )) = 0 and for all ε > 0 we have

mγ(rξ1
δ
,1 < ε) ≤ α0Λ1 ·mγ(rγ,0 < ε/Λ1) + εβ0ρ

−1
0 mγ(γ) (5.4)

mγ(rξ0
δ
,0 < ε) ≤ β1δ

−κ mγ(rγ,0 < ε) (5.5)

and
mγ(ξ

0
δ ) = mγ(γ ∩ Uδ) ≤ β2 mγ(rγ,0 < ζδσ) (5.6)

A general meaning of the above inequalities is the following: (5.4) ensures that the
curves in the set T1ξ

1
δ are, on the average, long enough; (5.6) asserts that the total measure

of the set ξ0
δ is small enough; and (5.5) guarantees that the connected components of ξ0

δ

are not too tiny (hence, they will grow under T n
1 fast enough).

The proof of this proposition repeats word by word the proof of an identical propo-
sition for the pure billiard case. That proof was given in [Ch2] (see the proof of the
estimates (2.6)–(2.8) in Section 7 there). It was based on certain facts about billiards
which were all listed in [Ch2]. Here we have proved the corresponding facts for our
model in Sections 3 and 4. We even tried to use similar notation for the convenience of
the reader. Thus here we can refer to [Ch2] for the proof of the above proposition.
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Corollary 5.4 For any sufficiently small ρ0 > 0 and any homogeneous unstable curve
γ ⊂ M of length ≤ ρ0 there is an open (ρ0, 1)-subset ξ1 ⊂ γ such that mγ(γ \ ξ1) = 0 and
for all ε > 0 we have

mγ(rξ1,1 < ε) ≤ α0Λ1 ·mγ(rγ,0 < ε/Λ1) + εβ0ρ
−1
0 mγ(γ) (5.7)

Also, for any n ≥ 2 there is an open (ρ0, n)-subset ξn ⊂ γ such that mγ(γ \ ξn) = 0 and
for all ε > 0 we have

mγ(rξn,n < ε) ≤ (α1Λ1)
n ·mγ(rγ,0 < ε/Λn

1 ) + εβ3ρ
−1
0 (1 + α1 + · · ·+ αn−1

1 )mγ(γ)

≤ αn
1ε + εβ3ρ

−1
0 (1− α1)

−1mγ(γ) (5.8)

Lastly, for all sufficiently small δ > 0 we have

mγ(γ ∩ T−n
1 Uδ) ≤ β4 mγ(rξn,n < ζδσ)

≤ β4α
n
1ζδσ + β4ζδσβ3ρ

−1
0 (1− α1)

−1mγ(γ) (5.9)

Here α1 ∈ (α0, 1) and β3 > β0, β4 > β2 are some global constants.

Proof. The bound (5.7) follows from (5.4) by taking the limit δ → 0. The bound (5.8)
follows from (5.7) by induction on n, this induction argument was explained in detail on
pp. 432–433 in [Ch1]. The first inequality in (5.9) is obtained by applying (5.6) to every
connected curve in T n

1 ξn, where ξn is the set involved in (5.8). The second inequality in
(5.9) then follows directly from the bound (5.8).

We note that the necessity to slightly increase the constants α0, β0, β2 (to α1, β3, β4

respectively) results from the slight nonuniformity of the measure m
(n)
ξ with respect to

the Lebesgue measure mξ on every connected component ξ of the set T n
1 ξn. In view of

our Key Remark, we can make ρ0 > 0 small enough, so that the increase of α0 will be
small, hence α1 will be still less than one, because the requirement α1 < 1 is crucial. 2

Now we fix a ρ0 > 0 satisfying Proposition 5.3. We also fix a small q ∈ (0, 1) and let
ρ1 = ρ0q(1 − α1)/4β3. For any homogeneous unstable curve γ ⊂ M of length ≤ ρ0 and
n ≥ 1 let ξn ⊂ γ be the set involved in (5.8). Denote

ξn(ρ1) = {X ∈ ξn : |T n
1 ξn(X)| ≥ ρ1}

In other words, T n
1 ξn(ρ1) will be the union of long enough (longer than ρ1) components

of T n
1 ξn. A direct calculation based on (5.8) yields:

Corollary 5.5 For all n ≥ n(γ) := ln mγ(γ)/ ln α1 + ln(q/ρ1)/ ln α1 we have

mγ(ξ
n(ρ1)) ≥ (1− q) mγ(γ)
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This means that in the set T n
1 γ, sufficiently long components (longer than ρ1) will be

prevalent after n(γ) iterations of T1. Note that ρ0, ρ1, q are global constants (independent
of the force F).

We complete this section with the construction of stable and unstable manifolds.
An unstable curve γ ⊂ M is called an unstable fiber (or unstable manifold) if for all

n ≥ 1 the map T−n is defined on γ and T−nγ is also an unstable curve. Likewise, γ is a
stable fiber if T nγ is a stable curve for all n ≥ 0.

Note that for an unstable fiber γ we have diam(T−nγ) → 0 as n →∞. Similarly, for
a stable fiber γ we have diam(T nγ) → 0 as n →∞.

The above notion corresponds to a standard definition of stable and unstable man-
ifolds for hyperbolic dynamical systems. It is not very helpful in the case of billiards,
because of the lack of proper distortion bounds. Such bounds are only available on ho-
mogeneous stable and unstable curves, as we have seen in Section 4. Hence, we adopt
the following:

Definition. An unstable curve γ ⊂ M is called an unstable homogeneous fiber, or h-
fiber, if for all n ≥ 0 the curve T−nγ is a homogeneous unstable curve. Similarly, γ ⊂ M
is a stable h-fiber if for all n ≥ 0 the curve T nγ is a homogeneous stable curve.

Clearly, stable and unstable h-fibers are automatically ordinary stable and unsta-
ble fibers. But generally, h-fibers are shorter than ordinary fibers. In other words, an
ordinary fiber can be a union (finite or countable) of h-fibers.

We now prove that h-fibers exist and are abundant in M . The hyperbolicity of the
flow Φt or the map T does not automatically provide the existence of h-fibers, though,
because both the flow and the map have singularities.

For ε > 0, denote by U−ε the ε-neighborhood of S0 ∪ S−1 ∪ D0, and by U+
ε the ε-

neighborhood of S0 ∪ S1 ∪ D0. Let

M±
ε = {X ∈ M : T±nX /∈ U±εΛ−n for all n ≥ 1}

(here and on Λ is the global constant defined by (3.28)). The following is standard
[Pe, Y1, Ch1]:

Fact. For every point X ∈ M−
ε , an unstable h-fiber γu(X) exists and stretches by at

least c0ε in both directions from X (where c0 > 0 is a global constant). Similarly, for
every point X ∈ M+

ε , a stable h-fiber γs(X) exists and stretches by at least c0ε in both
directions from X.

In the notation of the previous section, we have rγu(X),0(X) ≥ c0ε for every X ∈ M−
ε ,

and rγs(X),0(X) ≥ c0ε for every X ∈ M+
ε .

Proposition 5.6 For ν0-almost every point X ∈ M there are stable and unstable h-fibers
γu(X) and γs(X) through X. Moreover,

ν0(X : rγu(X),0(X) ≤ ε) ≤ Cε and ν0(X : rγs(X),0(X) ≤ ε) ≤ Cε

for some global constant C > 0. In particular, the union of h-fibers shorter than ε has
ν0-measure less than const · ε.
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Proof. Since the set S0∪S±1 is a finite union of smooth compact curves, the ν0 measure
of its ε-neighborhood is less than const·ε. A similar fact for the set D0 can be verified by
direct inspection. Then ν0(U−ε ) ≤ B′ε for some global constant B′. Due to (4.20), for all
n ≥ 1 we have ν0(T

nU−εΛ−n) ≤ B′B11ε(e
−δ4Λ)−n. Therefore, ν0(M

−
ε ) ≥ 1 − Bε for some

global constant B. A similar bound holds for M+
ε . Now the proposition follows from the

above fact. 2

We record a few standard facts about h-fibers, which follow from the properties proved
in Sections 3-4, in the same way as in the pure billiard case [BSC2]:
(1) if a sequence of h-fibers γu

n, n ≥ 1, converges to a curve γ in the C0 metric, then γ is
an h-fiber.
(2) For every point x ∈ M−

ε the h-fiber γu(X) is unique, i.e. h-fibers do not cross each
other or branch out. The same holds for every X ∈ M+

ε and γs(X).

6 A Sinai-Ruelle-Bowen measure for the map T

For any unstable h-fiber γ ⊂ M , a unique probability measure νγ, absolutely continuous
with respect to the Lebesgue measure mγ with density fγ = dνγ/dmγ, is defined by the
following condition:

fγ(X)

fγ(Y )
= lim

n→∞

JT−nγ,n(T−nY )

JT−nγ,n(T−nX)
for all X, Y ∈ γ (6.1)

(compare this to (5.1)). The existence of the the limit (6.1) is guaranteed by Lemma 4.2
(distorsion bounds). We call νγ the u-SRB measure on γ. Observe that u-SRB measures
are conditionally invariant under T , i.e. for any subsegment γ1 ⊂ Tγ, the measure T∗νγ|γ1

(the image of νγ under T conditioned on γ1) coincides with νγ1 .
Note that the density fγ is a pointwise limit of the densities f (n)

γ introduced in the
previous section, as n → ∞. The bound (5.2) implies a similar bound for fγ. So,
according to our Key Remark, all the u-SRB densities are almost constant on unstable
h-fibers of length ≤ ρ0.

Definition. A T -invariant ergodic probability measure ν on M is called a Sinai-Ruelle-
Bowen (SRB) measure if its conditional distributions on unstable h-fibers are absolutely
continuous. In that case the conditional measure ν|γ is the u-SRB measures νγ on every
unstable h-fiber.

The significance of SRB measures lies in the following facts. For any SRB measure
ν there is a set B ⊂ M of positive Lebesgue measure (called sometimes the basin of
attraction) such that for every X ∈ B and any continuous function f : M → IR

f(X) + f(TX) + · · ·+ f(T n−1X)

n
→

∫
M

f(X) dν
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as n → ∞. Thus, the measure ν describes the distribution of trajectories of points
X ∈ B, which are physically observable (detectable) since ν0(B) > 0. Hence, SRB
measures are physically observable.

The first goal of this section is to prove the existence and finiteness of SRB measures.
We first prove a similar claim for the map T1 = Tm introduced in the previous section.

In [Pe], Pesin found sufficient conditions for the existence of SRB measures for a
wide class of hyperbolic maps with singularities (he called them generalized hyperbolic
attractors), which included the class we study here. We restate Pesin’s existence theorem
in our notation. Denote by m the Lebesgue measure on M .

Theorem 6.1 (see [Pe]) The map T1 admits at least one and at most countably many
SRB measures, provided the following two conditions hold. First, there are constants
C1 > 0, q1 > 0 such that for all ε > 0, n ≥ 1

m(T−n
1 Uε) ≤ C1ε

q1 (6.2)

Second, there is an unstable h-fiber γ ⊂ M and constants C2 > 0, q2 > 0 such that for all
ε > 0, n ≥ 1

mγ(γ ∩ T−n
1 Uε) ≤ C2ε

q2 (6.3)

Each SRB measure is K-mixing and Bernoulli, up to a finite cycle.

Recall that Uε stands for the ε-neighborhood of the set Γ1 ∪ ∂M .
Later Sataev [Sa] showed that the number of SRB measures is finite under two ad-

ditional conditions: there are constants C3 > 0, q3 > 0 such that for every homogeneous
unstable curve γ ⊂ M there are nγ ≥ 1 and Cγ > 0 such that for all ε > 0

mγ(γ ∩ T−n
1 Uε) ≤ Cγε

q3 mγ(γ) for all n > 0 (6.4)

and
mγ(γ ∩ T−n

1 Uε) ≤ C3ε
q3 mγ(γ) for all n > nγ (6.5)

We now verify Pesin’s and Sataev’s conditions.

Proposition 6.2 The map T1 satisfies (6.2)-(6.5). Hence, T1 admits at least one and
at most finitely many SRB measures. Every SRB measure is K-mixing and Bernoulli,
up to a finite cycle.

Proof. We foliate M by smooth unstable curves whose collection we denote by Γ∗ =
{γ}. We require that the length of each γ ∈ Γ∗ be ρ0 (except for the corners of M and
narrow strips Ik, where the curves are necessarily shorter). Let m∗

γ be the conditional
measure on each γ ∈ Γ∗ induced by the Lebesgue measure m on M , and m∗ the factor
measure on Γ∗. If the foliation is smooth enough and ρ0 small enough, then every m∗

γ

will have almost uniform density with respect to the Lebesgue measure mγ. In fact, the
curves γ can be chosen as parallel line segments, then the measures m∗

γ will be exactly
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uniform. Now the condition (6.2) easily follows from the bound (5.9) by integration over
Γ∗ with respect to the factor measure m∗, which is a straightforward calculation. The
conditions (6.3) and (6.4) are direct consequences of (5.9). Lastly, the inequality (6.5)
follows from (5.9) whenever αn

1 < mγ(γ), i.e. n > ln mγ(γ)/ ln α1. 2

Proposition 6.3 The map T admits at least one and at most finitely many SRB mea-
sures. Every SRB measure is K-mixing and Bernoulli, up to a finite cycle.

Proof. Let ν be an SRB measure for the map T1 = Tm. Then the measure (ν +T∗ν +
· · ·+ Tm−1

∗ ν)/m will be an SRB measure for the map T , hence the existence part. Now,
let ν be an SRB measure for T . If it is ergodic for T1, then it is an SRB measure for T1.
Otherwise ν has at most m ergodic components (with respect to T1), each of which is an
SRB measure for T1. This proves Proposition 6.3. 2

The following proposition gives Theorem 2.2 modulo Theorem 2.1, whose proof is yet
to be completed.

Proposition 6.4 Each SRB measure ν of the map TF enjoys the exponential decay of
correlations (2.9) and satisfies the central limit theorem (2.10). The correlation bound
(2.9) is uniform in F.

Proof. This follows from a general theorem proved in [Ch2]. That theorem is stated for
generic hyperbolic maps satisfying certain assumptions. All the assumptions have been
already verified in Sections 3-5. The uniformity of the correlation bound follows from the
fact that all the constants in the crucial estimates in Sections 3-5 (most notably, in the
“growth lemma” 5.3) are global, i.e. independent of F. Thus we obtain Proposition 6.4.
2

The uniqueness of an SRB measure for T requires a more elaborate argument. We
recall that the space M in the coordinates (r, ϕ) does not depend on the force F in (1.1).
So we consider all the maps T = TF as defined on the same space M . For F = 0, we
get the billiard map T0. Recall that the space M is cut into countably many strips, Ik,
hence all stable and unstable curves will be automatically homogeneous.

The classes of stable and unstable curves depend on F, but only slightly, as it follows
from our definitions in Sections 3 and 4. For simplicity, we intersect these classes over
all relevant F’s. Hence, from now on, stable and unstable curves mean such curves for
all relevant maps T = TF. On the contrary, stable and unstable h-fibers depend on F
strongly (not only their directions, but even more their sizes), so we will denote them by
γs,u
F (X), respectively, for X ∈ M .

For any ρ > 0, consider the class Cu(ρ) of unstable curves γ ⊂ M of length ≥ ρ.
Denote by Cu(ρ) its closure in the Hausdorff metric. Recall that the Hausdorff metric
defines the distance between two compact subsets A, B ⊂ M by

dist(A, B) = max{max
X∈A

dist(X, B), max
Y ∈B

dist(Y, A)}
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(it is just the C0 metric if restricted to continuous curves in M). Recall that our unstable
curves are at least C2, their tangent vectors satisfy the uniform bound in Lemma 3.10 and
their curvature is uniformly bounded by Lemma 4.1. Therefore, all the curves in the class
Cu(ρ) are of length ≥ ρ, at least C1 (but not necessarily C2), and their tangent vectors
satisfy the same bound in Lemma 3.10. We will call curves γ ⊂ ∪ρ>0Cu(ρ) generalized
unstable curves. Similarly, generalized stable curves are defined, and we denote their
class respectively by ∪ρ>0Cs(ρ).

We call a rhombus R ⊂ M a domain bounded by two unstable curves and two stable
curves (called the sides of R). We say that a generalized unstable curve γ straddles R
if γ ⊂ R and the endpoints of γ lie on the (opposite) stable sides of R. We say that γ
properly crosses R if γ intersects the middle half of each stable side of R and the points
of intersection divide γ into three parts of which the smallest one is γ∩R. Similar notion
are defined for generalized stable curves. For a rhombus R, let R∗

F be the set of points
X ∈ R such that both γu

F(X) and γs
F(X) properly cross R.

Lemma 6.5 There is a rhombus R ⊂ M such that ν0(R
∗
0) > 0.

This easily follows from Proposition 5.6. 2

Note that we do not claim that ν0(R
∗
F) > 0 for all F, or even for any F 6= 0. This will

follow from our further results, see Corollary 6.10, etc.
We fix a rhombus R that satisfies the above lemma. Since it does not depend on the

force F, it is a “global” object, just like our constants Bi in the previous sections.
For any generalized unstable curve γ and n ≥ 1 let γF(n) denote the union of intervals

ξ ⊂ γ such that T n
Fξ is one generalized unstable curve that straddles R. Also, let γp

F(n)
denote the union of intervals ξ ⊂ γ such that T n

Fξ is one generalized unstable curve that
properly crosses R.

Lemma 6.6 There are global constants ñ = ñ(ρ1, R) ≥ 1 and β̃1 = β̃1(ρ1, R) > 0 such
that for every generalized unstable curve γ ⊂ M of length ≥ ρ1 and all n ≥ ñ

mγ(γ
p
0(n)) ≥ β̃1 mγ(γ)

In other words, for all n ≥ ñ the image T n
0 γ will contain a certain positive fraction

(characterized by β̃1) of curves that properly cross the rhombus R.
This lemma is proved in [BSC2] (see Theorem 3.13 there) under the additional as-

sumption that γ is an h-fiber. However, the past images T−k
0 γ, k > 0, are not involved

in that theorem or its proof, and, clearly, there is no difference between unstable h-fibers
and generalized unstable curves as far as their forward iterations are concerned. Thus,
Theorem 3.13 in [BSC2] extends to generalized unstable curves.
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Lemma 6.7 For any force F satisfying Assumptions A and B and every generalized
unstable curve γ ⊂ M of length ≥ ρ1 and all n ∈ [ñ, ñ + m]

mγ(γF(n)) ≥ β̃2 mγ(γ)

where β2 > 0 is a global constant, and m is again the fixed power of T , i.e. such that
T1 = Tm.

In other words, for every n = ñ, . . . , ñ + m the image T n
Fγ will contain a certain

positive fraction of curves that straddle the rhombus R.

Proof. Let γ be a generalized unstable curve and n ∈ [ñ, ñ + m]. Consider the curves
ξ ∈ T n

0 γ that properly cross R (such curves exist by Lemma 6.6). Let F be small enough,
so that the map TF is a small enough perturbation of T0, in particular the singularity
sets of these maps are close enough to each other. Let also γ′ ⊂ M be a generalized
unstable curve sufficiently close to γ in the Hausdorff metric. We claim that if F ≈ 0 and
γ′ ≈ γ, then to every curve ξ ∈ T n

0 γ that properly crosses R there corresponds a curve
ξ′ ∈ T n

Fγ′ that is close to ξ and has almost the same length. We emphasize that we first
fix γ and n, and then assume that F ≈ 0 and γ′ ≈ γ, for the given γ and n. Note that
ξ′ will be one curve (not broken by singularities), because of the continuation property
from the end of Section 4. One can easily see that, by that property, if any long enough
generalized unstable curve γ intersects the singularity set for T0, then any generalized
unstable curve γ′ close enough to γ (in the Hausdorff metric) intersects the singularity
set for TF with F ≈ 0, and vice versa. This justifies our claim. Now, since ξ′ is close
to ξ, and ξ properly crosses R, then ξ′ crosses both stable sides of R, and so the curve
ξ′ ∩R straddles R.

Thus, given γ and n, there is an open neighborhood V(γ, n) of the curve γ in the
class Cu(ρ1) equipped with the Hausdorff metric and a δ0(γ, n) > 0 such that any curve
γ′ ⊂ V(γ, n) satisfies

mγ′(γ
′
F(n)) ≥ β̃2 mγ′(γ

′) (6.6)

for some global constant β̃2 > 0 and all F’s that satisfy Assumptions A and B with
δ0 < δ0(γ, n). The finite intersection

V(γ) := ∩ñ+m
n=ñ V(γ, n)

is also an open neighborhood of the curve γ in the class Cu(ρ1). Any curve γ′ ⊂ V(γ) sat-
isfies the inequality (6.6) for all n ∈ [ñ, ñ+m] and with all F’s that satisfy Assumptions A
and B with

δ0 < δ0(γ) := min
ñ≤n≤ñ+m

δ0(γ, n)

Since the class Cu(ρ1) is obviously compact in the Hausdorff metric, there is a finite cover
of Cu(ρ1) by some V(γj), 1 ≤ j ≤ J . This proves the lemma for all forces satisfying
Assumptions A and B with

δ0 < δ∗ := min
1≤j≤J

δ0(γj)
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Remark. Note that in the proof of Lemma 6.7 we have put a new restriction δ0 < δ∗ on
δ0 that enters Assumption B. This restriction is probably much more severe than any of
the restrictions on δ0 we needed before. Therefore, the uniqueness of the SRB measure
probably holds for much smaller forces F than the hyperbolicity of TF and the existence
and finiteness of SRB measures do. We therefore expect that in physical models where F
changes from F = 0 continuously (such as by increasing the strength of an electrical field
[CELS1]), one first observes a unique non-smooth SRB measure, then a finite collection
of SRB measures, and then non-SRB stationary states. Such experiments were done,
for example, in [DM]. This discussion is related to the physically important issue of the
range of applicability of the linear response theory – see van Kampen’s objections [K]
and some counterarguments in [CELS1].

Lemma 6.7 and Corollary 5.5 easily imply the following two corollaries.

Corollary 6.8 There are global constants ñ1 ≥ 1 and β̃3 > 0 such that for any force F
satisfying Assumptions A and B with δ0 < δ∗ and every generalized unstable curve γ ⊂ M
of length ≥ ρ1 and all n ≥ ñ1

mγ(γF(n)) ≥ β̃3 mγ(γ)

The main difference from Lemma 6.7 is that now all n ≥ ñ1 are covered, rather than
n ∈ [ñ, ñ + m].

Corollary 6.9 There are global constants ñ2 ≥ 1 and β̃4 > 0 such that for any force F
satisfying Assumptions A and B with δ0 < δ∗ and every generalized unstable curve γ ⊂ M
of length |γ| = ε > 0 and all

n ≥ ñ(ε) := ln ε/ ln α1 + ñ2 (6.7)

we have
mγ(γF(n)) ≥ β̃4 mγ(γ) (6.8)

Let Ru
F be the set of points X ∈ R such that the unstable h-fiber γu(X)∩R straddles

R.

Corollary 6.10 There is a global constant β̃R > 0 such that for any TF with δ0 < δ∗
and any SRB measure ν of TF we have ν(Ru

F) > β̃R. Furthermore, let ν be not mixing,
so that by Proposition 6.3, TF permutes a finite number of subsets X1, . . . , Xk ⊂ M on
each of which T k

F is mixing. In this case we have ν(Ru
F ∩Xi) > 0 for every i = 1, . . . , k.
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Proposition 6.11 For any force F satisfying Assumptions A and B with δ0 < δ∗ the
SRB measure of the map TF is unique and mixing.

We first adopt a definition.

Definition. Let γs
F be a stable h-fiber. For ε > 0, let Γε(γ

s
F) denote the union of all

stable h-fibers in M that are ε-close to γs
F in the Hausdorff metric. We call γs

F a density
h-fiber if for every ε > 0 the set Γε(γ

s
F) has positive Lebesgue measure in M . Note that

in this case for any generalized unstable curve ξ ⊂ M that crosses γs
F, the set ξ ∩ Γε(γ

s
F)

has positive mξ measure, by the absolute continuity Lemma 4.3. Similarly, we introduce
unstable density h-fibers.

Lemma 6.12 For each map TF there are density h-fibers. In fact, their union has full
Lebesgue measure. If γs

F is a density h-fiber, then all the connected components of T−nγs
F

are density h-fibers, too, for every n ≥ 1.

Proof. The first two claims follows from Proposition 5.6. To prove the last one, we
se n = 1 and note that T−1

F is piecewise smooth and its singularities are unstable curves
with the continuation property. Then we use indunction on n. 2

Proof of Proposition 6.11. Let γs
F be a density h-fiber. By the above Lemma and

Corollary 6.9 (actually applied to stable curves), there exist density h-fibers in T−nγs
F

for some n ≥ 1 that straddle the rhombus R. This, along with Corollary 6.10, proves
Proposition 6.11. 2

Proposition 6.13 For any force F satisfying Assumptions A and B with δ0 < δ∗ the
SRB measure ν of the map TF is positive on open sets. Moreover, for every small round
disk D ⊂ M we have

ν(D) ≥ c1[ν0(D)]1+δ5

for some global constant c1 > 0 and small constant δ5 > 0 depending on δ0 (i.e., δ5 → 0
as δ0 → 0).

Proof. Since the disk D is connected, it belongs in one homogeneity strip Ik, and so the
quantity cos ϕ does not vary too much over D, i.e. the measure ν0 is almost proportional
to the Lebesgue measure m on D. We can find a rhombus RD ⊂ D whose opposite
sides are parallel straight lines and which is big enough so that, say, ν0(RD) ≥ ν0(D)/10.
Now, we foliate the rhombus RD by parallel stable segments γ that straddle RD and are
parallel to the stable sides of RD. Hence, all γ’s in our foliation have the same length,

ε. Note that ε ≥ c2

√
ν0(D) with a global constant c2 > 0. For any γ in our foliation

of RD and n ≥ 1 let γF(−n) denote the union of intervals ξ ⊂ γ such that T−n
F ξ is one

stable curve that straddles the rhombus R (fixed earlier). Corollary 6.9 (actually, its dual
statement for stable curves) implies that mγ(γF(−n)) > β̃4 mγ(γ) for all n ≥ ñ := ñ(ε).
Consider the set

RD(−n) := ∪γγF(−n)
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where the union is taken over all γ in our foliation of RD. Our previous estimates imply
that m(RD(−n)) ≥ β̃4 m(RD) and hence ν0(RD(−n)) ≥ β̃5 ν0(RD) for all n ≥ ñ, and
with the global constant β̃5 = β̃5/2.

Now the volume compression bounds (4.20) imply

ν0(T
−n
F RD(−n)) ≥ B−1

11 e−δ4nβ̃5 ν0(RD)

for all n ≥ ñ. We put n = ñ = ñ(ε) given by (6.7) and obtain

ν0(T
−ñ
F RD(−ñ)) ≥ c′εδ6ν0(RD) ≥ c′′ [ν0(RD)]1+δ6/2

with some positive global constants c′, c′′ and a small constant δ6 = δ4/ ln α1. We put
δ5 = δ6/2.

Next observe that the set T−ñ
F RD(−ñ) is a union of stable curves that straddle our

fixed rhombus R. Lemma 4.3 (absolute continuity) then implies that for any unstable
curve ξ that straddles R we have

mξ(ξ ∩ T−ñ
F RD(−ñ)) ≥ c′′′ [ν0(RD)]1+δ5mξ(ξ)

with a global constant c′′′ > 0. This bound combined with Corollary 6.10 yields

ν(T−ñ
F RD(−ñ)) ≥ c̃ [ν0(RD)]1+δ5

for some global constant c̃ > 0 and the SRB measure ν of the map TF. The TF-invariance
of ν completes the proof of Proposition 6.13. 2

Theorems 2.1 and 2.2 are now proved.
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