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Abstract

We study perturbations of Sinai billiards, where a small stationary
force acts on the moving particle between its collisions with scatterers.
In the previous work [7] we proved that the collision map preserved a
unique Sinai-Ruelle-Bowen (SRB) measure that was Bernoulli and had
exponential decay of correlations. Here we add several other statisti-
cal properties, including bounds on multiple correlations, the almost
sure invariance principle (ASIP), the law of iterated logarithms, and
a Kawasaki-type formula. We also show that the corresponding flow
is Bernoulli and satisfies a central limit theorem.

Keywords: Sinai billiards, SRB measure, central limit theorem, Bernoulli,
Kawasaki formula.

1 Introduction

This a continuation of our paper [7], and we use the symbols and notation
of the latter for compatibility.

Let B1, . . . ,Bs be open convex domains on the unit 2D torus T2. Assume
that B̄i ∩ B̄j = ∅ for i 6= j, and for each i the boundary ∂Bi is a C3 smooth
closed curve with nonvanishing curvature.

Let a particle of unit mass move in D = T2 \ ∪iBi according to equations

(1.1) q̇ = p, ṗ = F

where q = (x, y) is the position vector, p = (u, v) is the momentum (veloc-
ity) vector, and F(x, y, u, v) = (F1, F2) is a stationary force (independent of
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time). Upon reaching the boundary ∂D = ∪i∂Bi, the particle gets reflected
elastically, according to the classical rule

(1.2) p+ = p− − 2 (n(q) · p−)n(q);

here q ∈ ∂D is the point of reflection, n(q) is the inward unit normal vector to
∂D, and p−, p+ are the incoming and outgoing velocity vectors, respectively.

The case F = 0 corresponds to the ordinary billiard dynamics on the
table D. It preserves the kinetic energy, so that one can fix it by setting
‖p‖ = 1. Then the phase space of the system is a compact 3D manifold
Ω0 = D × S1. The billiard flow Φt

0 on Ω0 preserves the Liouville measure µ0

(which is uniform on Ω0).
In the study of billiards, one uses the collision space

(1.3) M0 = {(q,p) ∈ Ω0 : q ∈ ∂D, (p · n(q)) ≥ 0},

which consists of all outgoing velocity vectors at reflection points. The first
return map F0 : M0 →M0 is called the billiard map (or the collision map).
The space M0 can be parameterized by (r, ϕ), where r is the arclength
along ∂D and ϕ ∈ [−π/2, π/2] is the angle between p and n(q). In these
coordinates, M0 = ∂D× [−π/2, π/2]. The map F0 preserves a finite smooth
measure on M0 with density dν0 = const · cos ϕ dr dϕ. The flow Φt

0 is a
suspension flow over the base map F0 under the ceiling function τ0(X) =
min{t > 0: Φt

0X ∈M} (the next collision time).
Billiards on tables D = T2\∪iBi as described above are known as dispers-

ing billiards or Sinai billiards. The map F0 is ergodic, mixing [28], Bernoulli
[15], and has other strong statistical properties, such as exponential decay of
correlations [32, 6] and the central limit theorem [3]. The billiard flow Φt

0 is
also ergodic, mixing [28], and Bernoulli [15]. Under an additional assumption
of finite horizon (see below) the flow Φt

0 enjoys stretched exponential decay
of correlations [9] and satisfies the central limit theorem [3].

Various perturbations of Sinai billiards have been studied in [1, 18, 19, 20,
21, 29, 30], see also a survey [22]. Most notably, when F is a small constant
force with a Gaussian thermostat (see below), then one can rigorously prove
a one-particle version of classical Ohm’s law and the Einstein relation [4, 5].
More recently, perturbed Sinai billiards were used in the analysis of the
Galton board [12] and self-similar Lorentz channels [2, 11].

A general class of Sinai billiards with small external forces F 6= 0 was
studied in [7] under the following assumptions:
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Assumption A (additional integral). A smooth function E(q,p) is pre-
served by the dynamics (1.1)–(1.2). Its level surface, Ω = {E(q,p) = const}
is a compact 3-D manifold such that ‖p‖ 6= 0 on Ω and for each q ∈ D and
p ∈ S1 the ray {(q, sp), s > 0} intersects the manifold Ω in one point.

Under Assumption A, Ω can be parameterized by (x, y, θ), where (x, y) =
q ∈ D and 0 ≤ θ < 2π is a cyclic coordinate, the angle between p and the
positive x axis. The dynamics (1.1)–(1.2) restricted to Ω is a flow that we
denote by Φt. In the coordinates (x, y, θ) the equations of motion (1.1) can
be rewritten as

(1.4) ẋ = p cos θ, ẏ = p sin θ, θ̇ = ph,

where
p = ‖p‖ > 0 and h = (−F1 sin θ + F2 cos θ)/p2.

It is also useful to note that

(1.5) ṗ = F1 cos θ + F2 sin θ.

Both h = h(x, y, θ) and p = p(x, y, θ) are assumed to be C2 smooth functions
on Ω, and note that

(1.6) 0 < pmin ≤ p ≤ pmax < ∞.

There are two particularly interesting types of forces satisfying Assump-
tion A. One is a potential force F = −∇U , where U = U(q) is a potential
function; it preserves the total energy T = 1

2
‖p‖2 + U(q). The other type

is isokinetic forces satisfying (F · p) = 0, they preserve the kinetic energy
K = 1

2
‖p‖2, so one can set ‖p‖ = 1 as in billiards. For example, given any

force F, one can construct an isokinetic force by adding Gaussian thermostat:

(1.7) q̇ = p, ṗ = F− αp where α = (F · p)/(p · p).

For a function f on Ω, let fx, fy, fθ denote its partial derivatives and
‖f‖C2 the maximum of f and its first and second partial derivatives over Ω.
Put

(1.8) B0 = max{p−1
min, ‖p‖C2 , ‖h‖C2}.

Assumption B (smallness of the force). We assume that the force F
and its first derivatives are small, i.e.

max{|h|, |hx|, |hy|, |hθ|} ≤ δ0
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More precisely, we require that for any given B∗ > 0 there should be a small
δ∗ = δ∗(D, B∗) such that all our results will hold whenever B0 < B∗ and
δ0 < δ∗.

We note that the smallness of δ∗ is required in [7] at several crucial steps,
some of those requirements are more severe than others. Physical implica-
tions of those requirements are discussed in Remark on p. 232 in [7].

Assumption C (finite horizon). There is an L > 0 so that every straight
line of length L on the torus T2 crosses at least one obstacle Bi.

Now we introduce the collision space of the system (1.1)–(1.2):

(1.9) M = {(q,p) ∈ Ω: q ∈ ∂D, (p · n(q)) ≥ 0}

and the corresponding collision map F : M → M. The space M can be
parameterized by (r, ϕ) as before, in these coordinates M is identical to M0

in (1.3).

Theorem 1.1 ([7]). Under Assumptions A, B, and C, the map F : M→M
is a smooth hyperbolic map with singularities that has uniform expansion and
contraction rates. It admits a unique SRB measure ν, which is positive on
open sets, K-mixing and Bernoulli. It enjoys exponential decay of correlations
(with bounds uniform in the force F) and satisfies the central limit theorem.

We remark that in unperturbed Sinai billiards the hyperbolicity results
from a rather obvious geometric fact that divergent families of trajectories
remain divergent (under the action of the flow) and grow exponentially in
size at time goes on. In our perturbed billiards, the same property holds
for the so-called strongly divergent families of flow lines (whose orthogonal
cross-section has curvature bounded below by a positive constant), see precise
definition in [7, p. 208]. Similarly, strongly convergent families are defined
(those remain convergent and expand in the time-reversal flow).

2 Advanced statistical properties of F
Here we derive further statistical properties of the collision map F by em-
ploying the coupling method recently introduced by L.-S. Young [33] and
modified by D. Dolgopyat [10, Appendix A]. It is based on iterations of
probability measures supported on unstable curves.
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First we recall a few definitions and facts following [7]. An unstable (or
stable) curve γ ⊂ M is a trace of a strongly divergent (resp., convergent)
family of flow lines [7, p. 213]. We may assume [7, p. 215] that the curvature
of unstable and stable curves is uniformly bounded. To ensure distortion
control we cut M into countably many homogeneity strips [7, p. 216] that
accumulate near ∂M, thus F becomes discontinuous on the preimages of
the boundaries of those strips. A curve is homogeneous if it lies in a single
homogeneity strip (i.e. in one connected component of M).

For any X ∈ γ denote by JγFn(X) the Jacobian of the map Fn restricted
to γ at X. If F i(γ) is a homogeneous unstable curve for all 0 ≤ i ≤ n, then
we have the following distortion bound, see [7, Lemma 4.2]:

(2.1) | lnJγFn(X)− lnJγFn(Y )| ≤ C|Fn(γ)|1/3, X, Y ∈ γ

where |γ| denotes the length of γ, and by C we will denote various positive
constants independent of the force F. Accordingly, if γu is a homogeneous
unstable manifold (called h-fiber in [7]) and ργu is the u-SRB density on γu,
i.e. the unique probability density satisfying

(2.2)
ργu(X)

ργu(Y )
= lim

n→∞

JγuF−n(X)

JγuF−n(Y )
, X, Y ∈ γu,

then (2.1) implies
∣∣ d
dX

ln ργu(X)
∣∣ ≤ C|γu|−2/3; see, e.g. [8, Section 5.6]1.

If γ1, γ2 are unstable curves and ξ a stable h-fiber crossing each γi in a
point Xi, then the Jacobian of the holonomy map h : γ1 → γ2 at X1 satisfies

(2.3) e−C(β+δ1/3) ≤ Jh(X1) ≤ e−C(β+δ1/3)

where δ = |ξ(X1, X2)| is the length of the segment of ξ between X1 and
X2, and β is the angle between the tangent vectors to γ1 and γ2 at X1 and
X2, respectively. A little cruder estimate was proved in [7, Lemma 4.3],
but a close examination of the proof shows that it in fact implies (2.3).
Alternatively, one can prove (2.3) directly, as in [8, Theorem 5.42].

Given X, Y ∈ M, denote by s+(X, Y ) ≥ 0 the future separation time
(the first time when the images Fn(X) and Fn(Y ) for n ≥ 0 lie in dif-
ferent connected components of the collision space M), and similarly let

1The book [8] is devoted to classical (unperturbed) billiards with smooth invariant
measures, but many technical facts proven there hold in our case as well.
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s−(X, Y ) ≥ 0 denote the past separation time (this definition takes into ac-
count that M is cut along the boundaries of the homogeneity strips, cf. [7,
p. 223]). Observe that if X and Y lie on one unstable curve γ ⊂ M, then
|γ(X, Y )| ≤ CΛ−s+(X,Y ), where Λ > 1 is the hyperbolicity constant for F ,
cf. [8, Eq. (5.32)]. Now (2.3) implies (see, e.g. [8, Proposition 5.48]) that for
any X,Y ∈ γ1

(2.4) | lnJh(X)− lnJh(Y )| ≤ Cϑs+(X,Y ),

where ϑ = Λ−1/6 < 1. Following Young [32, p. 597], we call the property
(2.4) the ‘dynamically defined Hölder continuity’ of Jh.

Next we define a class of probability measures supported on unstable
curves, following [10, 8]. A standard pair ` = (γ, ν) is a homogeneous unsta-
ble curve γ ⊂M with a probability measure P` on it, whose density ρ (with
respect to the Lebesgue measure on γ) satisfies

(2.5) | ln ρ(X)− ln ρ(Y )| ≤ Cr ϑs+(X,Y ).

Here Cr > 0 is a sufficiently large constant (independent of F). For any
standard pair ` = (γ, ρ) and n ≥ 1 the image Fn(γ) is a finite or countable
union of homogeneous unstable curves (h-components) on which the density
of the measure Fn(P`) satisfies (2.5); hence the image of a standard pair
under Fn is a family of standard pairs (with a factor measure).

More generally, a standard family is an arbitrary (countable or uncount-
able) collection G = {`α} = {(γα, ρα)}, α ∈ A, of standard pairs with a
probability factor measure λG on the index set A. Such a family induces a
probability measure PG on the union ∪αγα (and thus on M) defined by

PG(B) =

∫
Pα(B ∩ γα) dλG(α) ∀B ⊂M.

Any standard family G is mapped by Fn into another standard family Gn =
Fn(G), and PGn = Fn(PG).

For every α ∈ A, any point X ∈ γα divides the curve γα into two pieces,
and we denote by rG(X) the length of the shorter one. Now the quantity
ZG = supε>0 ε−1PG(rG < ε) reflects the ‘average’ size of curves γα in G; we
only consider standard families with ZG < ∞. The growth lemma [7, Propo-
sition 5.3] implies that ZGn ≤ C(θnZG + 1) for all n ≥ 0 and some constant
θ ∈ (0, 1), see a proof in [8, Proposition 7.17]; this estimate effectively asserts
that standard families grow under Fn exponentially fast.
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A standard pair (γ, ρ) is proper if |γ| ≥ δp, where δp > 0 is a small but
fixed constant. A standard family G is proper if ZG ≤ Cp, where Cp is a
large but fixed constant (chosen so that a family consisting of a single proper
standard pair is proper, as a family). The image of a proper standard family
under Fn is proper for every n ≥ 1.

A smooth foliation of M by (long enough) unstable curves gives us a
proper standard family G such that PG = ν0, the billiard invariant measure,
see [8, p. 172]. Also, there is a special standard family E consisting of (maxi-
mal) unstable h-fibers γu for the map F with the SRB densities ργu on them
and the factor measure generated by ν; in that case PE = ν, the family E is
proper (due to [7, Proposition 5.6]) and obviously F -invariant.

Next we present the key tool of the Young-Dolgopyat approach – the cou-
pling lemma (for a detailed account see [8, Appendix A] and [8, Section 7.5]).
Given a standard pair ` = (γ, ρ), we consider a ‘rectangle’ γ̂ = γ × [0, 1] and
equip it with a probability measure P̂` with density

(2.6) ρ̂(X, t) = ρ(X) dX dt;

the map Fn can be naturally defined on γ̂. Given a standard family G =
(γα, ρα) with a factor measure λG, we denote by Ĝ = (γ̂α, ρ̂α) the family of
the corresponding rectangles and equip it with the same factor measure λG;
we denote by P̂G the induced measure on the union ∪αγ̂α.

Lemma 2.1 (Coupling Lemma). Let G = (γα, ρα), α ∈ A, and F = (γβ, ρβ),
β ∈ B, be two proper standard families. Then there exist a bijection (called
coupling map) Θ: ∪α γ̂α → ∪βγ̂β that preserves measure; i.e. Θ(P̂G) = P̂E ,
and a (coupling time) function Υ : ∪αγ̂α → N such that

A. Let (X, t) ∈ γ̂α, α ∈ A, and Θ(X, t) = (Y, s) ∈ γ̂β, β ∈ B. Denote
m = Υ(X, t) ∈ N. Then the points Fm(X) and Fm(Y ) lie on the same stable
h-fiber in M.

B. There is a uniform exponential tail bound on the function Υ:

(2.7) P̂G1

(
Υ > n

)
≤ CΥϑn

Υ,

for some constants CΥ > 0 and ϑΥ < 1 (independent of F, in the sense of
Assumption B).

A detailed (and lengthy) proof is given in [8, Chapter 7] for unperturbed
Sinai billiards. It applies to our case with one little modification. While for
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unperturbed billiards the construction of the so called ‘magnet’ rectangle,
see [8, Proposition 7.83], is relatively simple as it deals with one (billiard)
map, in our case it requires a more elaborate argument, as we deal with a
class of maps and need uniformity in F. In fact, an analogue of the ‘magnet
rectangle’ (called rhombus) is constructed in [7, Lemma 6.5] and its necessary
properties are proved in [7, Corollary 6.8].

The coupling lemma has many remarkable implications, some of them
we state next. Motivated by (2.4), we say that a function f : M → R is
dynamically Hölder continuous if there are ϑf ∈ (0, 1) and Kf > 0 such that
for any X and Y lying on one unstable curve

(2.8) |f(X)− f(Y )| ≤ Kfϑ
s+(X,Y )
f

and for any X and Y lying on one stable curve

(2.9) |f(X)− f(Y )| ≤ Kfϑ
s−(X,Y )
f .

We denote the space of such functions by H. It contains every piecewise
Hölder continuous function whose discontinuities coincide with those of F±m

for some m > 0. For example, the return time function τ(X) = min{t >
0: Φt(X) ∈M} belongs in H.

Proposition 2.2 (Equidistribution). Let G be a proper standard family. For
any dynamically Hölder continuous function f ∈ H and n ≥ 0

(2.10)

∣∣∣∣∫
M

f ◦ Fn dPG −
∫
M

f dν

∣∣∣∣ ≤ Bfθ
n
f

where Bf = 2CΥ

(
Kf + ‖f‖∞

)
and θf =

[
max{ϑΥ, ϑf}

]1/2
< 1.

In other words, iterations of measures on standard pairs converge to the
SRB measure exponentially fast. For the proof, see [8, Theorem 7.31].

To estimate multiple correlations, let f0, f1, . . . , fr ∈ H and g0, g1, . . . , gk ∈
H be such that f ’s have identical parameters ϑf = ϑfi

, Kf = Kfi
, and

‖f‖∞ = ‖fi‖∞ for all 0 ≤ i ≤ r, and g’s have identical parameters ϑg = ϑgi
,

Kg = Kgi
, and ‖g‖∞ = ‖gi‖∞ for all 0 ≤ i ≤ k. Consider two products

f̃ = f0 · (f1 ◦ F i−1) · (f2 ◦ F i−2) · · · (fr ◦ F i−r)

for some 0 > i−1 > · · · > i−r and

g̃ = g0 · (g1 ◦ F i1) · (g2 ◦ F i2) · · · (gk ◦ F ik)

for some 0 < i1 < · · · < ik. We use a short-hand notation ν(f) =
∫
M f dν.
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Theorem 2.3 (Exponential bound on multiple correlations). For all n > 0

(2.11)
∣∣ν(

f̃ · (g̃ ◦ Fn)
)
− ν(f̃)ν(g̃)

∣∣ ≤ Bf̃ ,g̃ θn
f,g

where
θf,g =

[
max

{
ϑΥ, ϑf , ϑg, α1

}]1/4
< 1,

α1 < 1 is a constant from [7, Corollary 5.4], and

Bf̃ ,g̃ = C‖f‖r
∞‖g‖k

∞

[
Kf‖g‖∞
1− ϑf

+
Kg‖f‖∞
1− ϑg

+ ‖f‖∞‖g‖∞
]
.

For the proof, see [8, Theorem 7.41]. We remark that the theorem re-
mains valid if fi’s only satisfy (2.8) and gi’s only satisfy (2.9). Not only the
exponential bound (2.11) is novel and important itself, but the exact formu-
las for θf,g and Bf̃ ,g̃ are essential in the proof of the central limit theorem
and the almost sure invariance principle (ASIP), see [8, Sections 7.8–7.9]:

Theorem 2.4 (Almost Sure Invariance Principle). Let f ∈ H such that

(2.12) ν(f) = 0, σ2
f =

∞∑
n=−∞

ν
(
f · (f ◦ Fn)

)
6= 0

Denote Sn = f + f ◦ F + · · · + f ◦ Fn−1 and define a continuous function
WN(s; X) of s ∈ [0, 1] by

WN

( n

N
; X

)
=

Sn(X)

σf

√
N

at rational points s = n/N and by linear interpolation in between. Then
there is a standard Wiener process (a Brownian motion) B(s; X) on M with
respect to the measure ν so that for some λ > 0

(2.13) |WN(s; X)− B(s; X)| = O(N−λ)

for ν-almost all X ∈M.

Corollary 2.5 (Law of Iterated Logarithm). For ν-a.e. point X ∈M

lim sup
n→∞

Sn/
√

2nσ2
f log log n = 1.
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For proofs, see [8, Sections 7.9]. We emphasize that all our constants are
independent of F and the convergence is always uniform in F.

We should note that our bound on the error term in (2.13) is not optimal;
better bounds, e.g. O(N−1/4+ε), can be obtained by using methods of recent
works [14, 26]. A more general (vector) version of the ASIP can be derived
based on the results of the manuscript [25] (not yet published).

Since τ(X) is dynamically Hölder continuous, it satisfies the central limit
theorem, i.e. (tn − nν(τ))/

√
n converges to a normal distribution N (0, σ2

τ );
here tn = τ + τ ◦F + · · ·+ τ ◦Fn−1 is the time of the nth collision. Actually,
στ > 0 (this follows from the mixing property of the flow proved in the next
section, as explained in [8, Remark 7.63]). Also, let nX(T ) denote the number
of collisions on the trajectory Φt(X), 0 < t < T . Then T/nX(T ) → ν(τ) for
a.e. X ∈ M and (nX(T ) − T/ν(τ))/

√
T converges to a normal distribution

N (0, σ2) with σ2 = σ2
τ/[ν(τ)]3; for a proof, see [8, Sections 7.10].

Next we derive a formula specific to the case F 6= 0 (motivated by
Kawasaki formulas in nonlinear response theory [31]). For any f ∈ H

ν(f) = lim
n→∞

ν0(f ◦ Fk)

= ν0(f) + lim
n→∞

n∑
k=1

ν0

[
(f ◦ Fk)− (f ◦ Fk−1)

]
= ν0(f) + lim

n→∞

n∑
k=1

ν0

[
(f ◦ Fk)(1− g)

]
,(2.14)

where g = dF−1ν0/dν0 is the Jacobian of the map F with respect to the
billiard invariant measure ν0. A direct calculation gives

g(X) =
p(X)

p(F(X))
exp

[∫ τ(X)

0

div Γ(X) dt

]
where Γ = 〈p cos θ, p sin θ, ph〉 is the vector field in Ω generating the flow Φt,
cf. (1.4). Since

div Γ = px cos θ + py sin θ + pθh + phθ = d ln p
dt

+ phθ,

we have g(X) = exp
[∫ τ(X)

0
phθ dt

]
. Observe that g = 1 + O(δ0), where δ0

is a small constant in Assumption B. Also note that ν0(g) = 1 and g(X)
is a piecewise smooth function whose discontinuities coincide with those of
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the map F . Furthermore, ln g is dynamically Hölder continuous with ϑln g =
Λ−1/2 and Kln g = C‖p‖C2‖h‖C2 being independent of F.

We now use the special standard family E consisting of maximal unstable
h-fibers γu ⊂M with SRB densities ργu . The probability measure dν̃ = g dν0

on M induces a conditional density ρ̃γu on each γu, which is proportional to
gργu , hence its logarithm is dynamically Hölder continuous:

| ln ρ̃γu(X)− ln ρ̃γu(Y )| ≤ (Cr + Kln g) ϑs+(X,Y ).

for X, Y ∈ γu. Of course, the density ρ̃γu may not satisfy (2.5), but its
images under Fm will smooth out (due to distortion bounds [8, p. 203]) and
then satisfy (2.5) for all m ≥ m0, where m0 = m0(‖p‖C2 , ‖h‖C2).

Thus, Fm0(ν̃) will coincide with PG for some proper standard family G.
Now Proposition 2.2 implies that both ν0(f ◦ Fk) and ν0

(
g · (f ◦ Fk)

)
=

ν̃(f ◦ Fk) converge to ν(f) exponentially fast (and uniformly in F), thus
the sum in (2.14) is bounded by a geometric series. This yields the desired
Kawasaki formula:

(2.15) ν(f) = ν0(f) +
∞∑

k=1

ν0

[
(f ◦ Fk)(1− g)

]
,

where the series converges exponentially fast and uniformly in F.

3 Bernoulli property of the flow Φt

In this section we study the flow Φt : Ω → Ω. It is shown in [7] that Φt is
a hyperbolic flow with uniform expansion and contraction rates. Its weakly
unstable (and stable) manifolds are 2D surfaces in Ω that are made by fam-
ilies of strongly divergent (resp., convergent) flow lines. Strongly unstable
and stable manifolds of the flow Φt are cross-sections (but not necessarily
orthogonal!) of the corresponding families of flow lines.

Clearly, Φt is a suspension flow over the base map F : M→M under a
ceiling function τ . Strictly speaking, in a suspension flow the velocity must
be equal to one, which can be achieved by changing the metric within Ω, but
this change does not affect the existence or ergodicity of the SRB measure.
Thus Theorem 1.1 easily implies the following:

Corollary 3.1. The flow Φt : Ω → Ω admits a unique SRB measure µ, which
is positive on open sets and ergodic.
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However, the mixing of the flow Φt requires a more elaborate argument.
Loosely speaking, a hyperbolic flow is not mixing if its stable and unstable
foliations are (locally) jointly integrable, i.e. for any phase point X ⊂ Ω all
short chains consisting of alternating stable and unstable manifolds starting
at X lie in a submanifold of codimension one transversal to the flow. For the
billiard flow Φ0, the lack of joint integrability was observed by Sinai [28], it
is related to the opposite convexity of stable and unstable manifolds in Ω,
see a detailed argument in [8, Section 6.11].

In our case, stable and unstable manifolds of the flow may not have oppo-
site convexity, so we use a roundabout way to establish their nonintegrability.

First we sharpen certain facts established in [7] for the map F . For any
curve γ ⊂ M let mγ denote the Lebesgue measure on γ. For any point
X ∈ M we denote by γu(X) and γs(X) the stable and unstable h-fibers
through X. The point X divides the curve γα(X), α = u, s, into two pieces,
and we denote by rα(X) the length of the shorter one.

Lemma 3.2. For every homogeneous unstable curve γ ⊂M and mγ-almost
every point X ∈ γ the stable h-fiber γs(X) exists, i.e. rs(X) > 0. Moreover

(3.1) mγ(r
s(X) < ε) ≤ Cε

for all ε > 0. The dual statement holds for stable curves.

The existence of γs(X) follows from two results of [7]: Eq. (6.4) and the
Fact stated on p. 227. The estimate (3.1) is a local version of [7, Proposi-
tion 5.6], and for its proof see [8, Theorem 5.66].

Lemma 3.3. For every stable curve γ we have ν(∪X∈γγ
u(X)) > 0. For

every unstable curve γ we have ν(∪X∈γγ
s(X)) > 0.

Proof. The first statement follows from the proof of [7, Lemma 6.12]. Note
that the second statement is not dual to the first one, since the SRB measure
ν is not preserved under the reversal of time. The second statement follows
from Lemma 3.2, the absolute continuity ([7, Lemma 4.3]), and the first
statement here.

Corollary 3.4 (Sinai’s fundamental theorem). Let X ∈ M and Fn be con-
tinuous at X for all n > 0. Then for any ε > 0 and A > 0 there exists an
open neighborhood U ⊂M of X such that for any unstable curve γ ⊂ U

mγ

(
Y ∈ γ : rs(Y ) > A|γ|

)
≥ (1− ε) |γ|.
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Similarly, if Fn is continuous at X for all n < 0, then for any stable curve
γ ⊂ U

mγ

(
Y ∈ γ : ru(Y ) > A|γ|

)
≥ (1− ε) mγ|γ|.

Observe that if A � 1 is large, then a vast majority of points Y ∈ γ lie
on stable (unstable) h-fibers which are much longer than the curve γ itself.
This corollary follows from Lemma 3.2, see [8, Section 5.13].

We recall [7, p. 233] that given a stable h-fiber γs and ε > 0 we denote
by Γε(γ

s) the union of all stable h-fibers in M that are ε-close to γs in
the Hausdorff metric. We call γs a density h-fiber if for every ε > 0 the
set Γε(γ

s) has positive Lebesgue measure in M. (This is an analogue of
Lebesgue density points of subsets of Rn.) The union of density h-fibers has
full Lebesgue measure [7, Lemma 6.12].

Now we call γs a ν-density h-fiber if for every ε > 0 the set Γε(γ
s) has

positive ν-measure. Similarly, we define unstable ν-density h-fibers.

Lemma 3.5. Every density h-fiber is also a ν-density h-fiber.

Proof. For stable h-fibers, this follows from Lemmas 3.3 and the absolute
continuity. The claim for unstable h-fibers can be proved by a construction
similar to the proof of [7, Proposition 6.13]. Precisely, let γu be a density
h-fiber and ε > 0. Let γ be a stable curve crossing γu. By reducing γ, if
necessary, we can ensure that mγ(γ ∩ Γε(γ

u)) > (1− ε′)mγ(γ), where ε′ > 0
is arbitrary small. Now we pull the entire structure back under F−n until
we get mγ(γ(−n)) ≥ β̃2 mγ(γ) (here and below we use the notation of [7,
Section 6]). The set F−nγ(−n) consists of stable curves that straddle the
fixed rhombus R. Then it is not hard to deduce that the set Fn(Ru

F)∩Γε(γ
u)

has a positive ν measure.

We will only consider density h-fibers without saying that explicitly.
Consider a continuous curve in M that is a finite union of segments of

stable and unstable h-fibers (of course, stable and unstable h-fibers must
alternate). Such curves are called Hopf chains or zigzag lines or us-paths
(‘us’ stays for ‘unstable-stable’). We require that at every “junction point”
where two segments of h-fibers meet, those can be continued beyond the
junction point. If a chain is not simple, i.e. has self-intersections, it can be
shortened by the removal of extra loops, hence we will only consider simple
chain. A chain is called a loop (or n-loop) if it is a simple closed curve in M
(consisting of n segments of h-fibers). Chains and loops are instrumental in
many proofs of ergodicity that go back to Hopf [16, 17].
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Lemma 3.6 (“Zigzag lemma”). For every open connected set V ⊂ M and
two curves γ1, γ2 ⊂ V let distV (γ1, γ2) denote the minimal length of smooth
curves lying in V and connecting γ1 with γ2. Then there is a zigzag line that
starts on γ1 and ends on γ2, lies entirely in V , and whose total length is
≤ C · distV (γ1, γ2).

This follows from Sinai’s fundamental theorem (Corollary 3.4), one just
constructs a zigzag line starting at γ1, moving in a general direction along a
curve γ ⊂ V connecting γ1 with γ2, whose length is nearly minimal, and even-
tually crossing γ2; a detailed construction of such zigzag lines is described in
[8, Section 6.5]. Since stable and unstable h-fibers are uniformly transversal
[7, Lemma 3.10], one can easily ensure the necessary bound on the length of
the chain.

Lemma 3.7. There is a global constant d0 = d0(D) > 0 such that for every
small force F there is a simple 4-loop (four is the minimal number of h-fibers
in a loop), where all the h-fibers have length ≥ d0.

Proof. This follows from Corollary 3.4 and Lemma 3.5.

We now turn to the flow Φt : Ω → Ω. Let X ∈ M and L ⊂ M a
loop consisting of segments of h-fibers γ1, . . . , γn, so that γi ∩ γi+1 6= ∅ and
γ1 ∩ γn = {X}. Consider Y = ΦtX for some t ∈ (0, τ(X)). We now ‘lift’ the
loop L from M to Ω in the following way: for each stable or unstable h-fiber
γi let Γi be a stable (resp., unstable) manifold of the flow Φt that projects
down onto γi and such that Γi ∩ Γi+1 6= ∅ for i = 1, . . . , n − 1. (We assume
that L is small enough so that the entire construction lies in the interior of
Ω and avoids intersections with the boundary ∂Ω.)

Now it is clear that ∪n
i=1Γi is a continuous curve in Ω starting at Y

and terminating at some point Y ′ lying on the trajectory Φt(Y ), i.e. Y ′ =
Φτ (L)(Y ) for some small τ (L). We call L a closed loop if τ (L) = 0 and an
open loop otherwise. Clearly, reversing the orientation of L (i.e., traversing
L in the opposite direction) simply changes the sign of τ (L). Given an
orientation of L, one can easily verify that τ (L) does not depend on the
choice of the initial point X ∈ L or t.

In the billiard systems (where F = 0), all the loops are open, and in
fact |τ (L)| equals the ν0-measure of the domain bounded by L, see [8,
Lemma 6.40]. Next we verify the existence of open loops for small forces.
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Lemma 3.8. For every ε > 0 there is a δ′∗ = δ′∗(D, B0, ε) > 0 such that
whenever a force F satisfies Assumptions A–C with δ0 < δ′∗, then∣∣1−max

x,y,θ
p(x, y, θ)/ min

x,y,θ
p(x, y, θ)

∣∣ < ε

i.e. the function p(x, y, θ) is almost constant on Ω.

Proof. Due to (1.5), p slowly changes along the trajectories of the flow, and
due to (1.2) it does not change at collisions. Now the lemma follows from
the uniform bound (1.8) on the derivatives of p, and the uniform bounds on
correlations in Theorem 1.1.

Lemma 3.9. For every ε > 0 there is a δ′′∗ = δ′′∗(D, B0, ε) > 0 such that
whenever a force F satisfies Assumptions A–C with δ0 < δ′′∗ , then all the first
order derivatives of the function p(x, y, θ) are less than ε.

This lemma follows from Lemma 3.8 and the following elementary fact:

Sublemma 3.10. Let Ω be a smooth compact manifold with boundary, f : Ω →
R a C2 function whose first and second order derivatives are uniformly bounded
by a constant B0. Then for every ε > 0 there is a δ = δ(Ω, B0, ε) > 0 such
that if |f(X)−f(Y )| < δ for all X, Y ∈ Ω, then all the first order derivatives
of f are less than ε.

The following lemma sharpens [7, Lemma 3.6]:

Lemma 3.11. For every ε > 0 there is a δ′′′∗ = δ′′′∗ (D, B0, ε) > 0 such
that whenever a force F satisfies Assumptions A–C with δ0 < δ′′′∗ , then for
any strongly divergent family of trajectories on an interval (t0,∞) we have
|αt| < ε for all t > t0 + c for some constant c > 0.

The proof is a modification of that of Lemma 3.6 in [7]. The main differ-
ence is that now, in the equation (3.22), all the terms can be made arbitrarily
small, except κ, which is still positive and bounded away from zero. Hence,
the term −κ(α− pθ/p) drives α to zero whenever α is not small enough, and
the other terms are not strong enough to stop this drive.

We now recall the meaning of the function αt, see [7, p. 204]. Let Γu ⊂ Ω
be an unstable manifold of the flow, then its trajectories {Φs(Y )}, Y ∈ Γu,
s > 0, make a strongly divergent family. For every t > 0 the image Φt(Γu) is
an unstable manifold, too; its projection onto the table D is a curve that is a
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cross-section of the above family of flow lines. Now αt is the cotangent of the
angle between that cross-section and the corresponding flow-line. If αt = 0,
then the cross-section is orthogonal (and this is the case for unperturbed
billiards); if αt is small, then the cross-section is almost orthogonal. The
above lemma now implies that unstable manifolds of the perturbed flow Φt

are good approximations to those of the billiard flow Φt
0. Due to the time

reversibility, a similar property holds for stable manifolds. Now it takes a
simple geometric argument to conclude the following:

Corollary 3.12. Let L ⊂ M be a simple 4-loop from Lemma 3.7. If ε in
Lemma 3.11 is small enough, we have τ (L) 6= 0, i.e. L is an open loop.

Next we establish a general fact:

Proposition 3.13. If there exists an open loop L ⊂M, then the flow Φt is
mixing and Bernoulli.

Proof. For simplicity we assume that L is an open 4-loop (and one exists due
to Corollary 3.12); it will be clear from our argument that it applies to arbi-
trary loops, too. The following lemma can be verified by direct inspection:

Lemma 3.14. Let L1, . . . ,Lk ⊂ M be simple loops, oriented in the same
way (say, all – clockwise), and bounding nonoverlapping domains V1, . . . , Vk.
Suppose that these domains are adjacent to each other so that V = V1∪· · ·∪Vk

is a simply connected domain in M . Then V is bounded by a loop L and we
have τ (L1) + · · ·+ τ (Lk) = τ (L).

Now, let γu
1 , γs

2, γu
3 , and γs

4 denote the sides of the 4-loop L (which
are alternating unstable and stable h-fibers). Let X1 and X2 denote the
midpoints of γu

1 and γu
3 , respectively, and V the open ε-neighborhood of the

straight line joining X1 with X2, where ε � dist(X1, X2). Due to Lemma 3.6,
there is a zigzag line L′ joining γu

1 ∩ V with γu
3 ∩ V , lying entirely in V , and

having length |L′| ≤ C · dist(X1, X2).
The zigzag line L′ divides the domain bounded by L into 2 subdomains,

each bounded by a loop. Due to Lemma 3.14 one of these two loops is open,
we denote it by L1. It has four sides: two unstable sides (≈halves of γu

1 and
γu

3 ) and two stable sides: one is γs
2 or γs

4 and the other is L′ (the latter is, of
course, a zigzag line, but it stretches along a stable curve joining X1 and X2,
so we call it a stable side). Now we apply the same argument to construct a
zigzag line joining the middle part of γs

2 (or γs
4) with the middle part of L′
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and stretching along an unstable curve. This gives us two smaller loops, one
of them will be open (again by Lemma 3.14), and we denote it by L2.

Now we repeat our construction inductively and obtain a sequence of
open loops Ln, n ≥ 1, such that |Ln| → 0, hence τ (Ln) → 0, as n → ∞
(but τ (Ln) 6= 0 for every n). In other words, there are open loops with
arbitrarily small values of τ (L)! Recall that all sides of our loops are density
h-fibers, hence there are plenty of open loops with arbitrarily small τ values.
More precisely, if we remove an arbitrary collection of h-fibers of the total
ν-measure zero from M, then there still remain open loops with arbitrarily
small (but non-zero) τ values.

Next, it is known that, under general assumptions, a completely hyper-
bolic flow (which Φt is) with an ergodic SRB measure is either Bernoulli or
Bernoulli times rotation. In the latter case a factor of the flow Φt is a circle
rotation (and, of course, in this case the flow is not even mixing). Hence,
the Bernoulli property is equivalent here to the mixing property. A general
result of this sort was obtained by Ornstein and Weiss [27]. In the particular
setting of certain perturbations of billiard flows, this fact was proved earlier
by Kubo and Murata [21].

Assume now that the flow Φt is Bernoulli+rotation, i.e. there is a factor
Ξ: Ω → S1 so that Ξ ◦ Φt ◦ Ξ−1 is the rotation of the circle S1 at constant
speed. We call the sets Ξ−1(p) ⊂ Ω, for p ∈ S1, layers. It is clear that
µ-almost every stable or unstable manifold Γ ⊂ Ω lies in one layer; we call
such stable and unstable manifolds typical. We call the projections of typical
stable and unstable manifolds onM, along the trajectories of the flow, typical
h-fibers; then ν-almost every h-fiber is typical.

Let L ⊂ M be any loop consisting of typical h-fibers. Its ‘lift’ in Ω,
as constructed above, will consist of typical stable and unstable manifolds
of the flow Φt. Since every typical stable and unstable manifold lies in one
layer, the entire lift of the loop L belongs in one layer, too. Hence, τ (L) is a
multiple of the period of the rotation Ξ◦Φt◦Ξ−1 of S1. But we have seen that
there are plenty of loops consisting of typical h-fibers with arbitrarily small
non-zero τ values, thus the period of rotation must be zero. This proves

Theorem 3.15. The flow Φt : Ω → Ω is mixing and Bernoulli.

Lastly we present a central limit theorem for the flow Φt. Let F : Ω → R
be a bounded function such that f(X) =

∫ τ(X)

0
F (ΦtX) dt is a dynamically

Hölder continuous function on M (this holds, for example, when F is smooth
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with bounded derivatives). Note that

µ(F ) =

∫
Ω

F dµ = ν(f)/ν(τ).

Denote St(X) =
∫ t

0
F (ΦtX) dt for all t > 0 and X ∈ Ω.

Theorem 3.16 (Central Limit Theorem). There is σF ≥ 0 such that the
function (St−µ(F ) t)/

√
t on Ω converges to a normal distribution N (0, σ2

F ).

This theorem follows from the central limit theorem for the map F applied
to f and τ , see, e.g., [8, Theorem 7.68]. Note that we are not using the mixing
property of the flow Φt. In fact, probabilistic limit theorems usually hold for
suspension flows regardless of their mixing properties, as long as the base
map is strongly chaotic, see e.g. [13, 24].

As a corollary, let q̃(t) =
∫ t

0
p(s) ds denote the position of the moving

particle on the universal cover of the torus T2. Then there exists a 2-vector
a =

∫
Ω
p dµ and a 2× 2 positive definite matrix V such that (q̃(t)− at)/

√
t

converges to a two-dimensional normal distribution N (0,V). The matrix V
is close to the diffusion matrix of the unperturbed Sinai billiard, which is
known to be non-singular [3], thus V cannot be singular either.

In Theorem 3.16, σ2
F = σ2

f/ν(τ), where σ2
f is defined by the infinite series

(2.12). If the flow Φt has rapidly decaying correlations, one usually can prove
that

(3.2) σ2
F =

∫ ∞

−∞
µ
(
(F ◦ Φt) · F

)
dt.

For the unperturbed billiard flow Φt
0, correlations decay at least as fast as a

‘stretched exponential’ function [9], which ensures (3.2) for that special case.
But the results of [9] to dot extend to the perturbed flow Φt.

By using a different approach, Melbourne [23] obtained fairly strong (‘su-
perpolynomial’) bounds on correlations for rather general hyperbolic flows
under the assumption that four periodic orbits exist whose periods satisfy
a Diophantine-type condition, see (2.1) in [23]. This result implies rapid
mixing, and therefore (3.2), for typical (in certain topological and measure-
theoretic senses) flows Φt. It would be interesting to obtain bounds on cor-
relations for all flows Φt covered in this paper.
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