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Abstract

We develop Markov approximations for very general suspension
flows. Based on this, we obtain a stretched exponential bound on
time correlation functions for 3-D Anosov flows that verify ‘uniform
nonintegrability of foliations’. These include contact Anosov flows and
geodesic flows on compact surfaces of variable negative curvature. Our
bound on correlations is stable under small smooth perturbations.

1 Introduction

Let φt : M → M be a measurable flow preserving a probability measure
µ, and F,G two square integrable functions on M . The time correlation
function is defined by

CF,G(t) =
∫
M
F (φty)G(y) dµ(y)−

(∫
M
F (y) dµ(y)

)
·
(∫

M
G(y) dµ(y)

)
(1.1)
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The flow φt is mixing if and only if the correlation function (1.1) converges
to zero (decays) as t→∞. The asymptotics of CF,G(t), as t→∞, is of great
interest in the theory of chaotic dynamics and statistical physics.

The basic classes of mixing flows are Anosov and Axiom A flows, including
geodesic flows on manifolds with negative curvature. In 1975 Bowen and
Ruelle [7, 30] raised a question:

Do the correlations for mixing Axiom A flows with Gibbs invariant measures
and smooth functions F,G decay exponentially in t?

Since then it has been a major challenging problem to obtain upper
bounds on correlations for mixing flows. Formally, a negative answer to
the above question was given by Ruelle [31] and Pollicott [25] who found
mixing Axiom A flows for which the correlations decay arbitrarily slowly.
There are no examples of mixing Anosov flows or geodesic flows on nega-
tively curved manifolds with a decay of correlations slower than exponential.
There is a strong belief and excessive numerical evidence that, normally, the
correlations for such flows decay exponentially fast in t.

Only a few rigorous results exist in this direction, however. Exponen-
tial upper bounds on correlations have been established for geodesic flows on
manifolds of constant negative curvature in two dimensions (Moore [23], Rat-
ner [29], Collet et al. [13]) and three dimensions (Pollicott [26]). For these
flows representation group theory does the job, but it presumably cannot be
adapted to Anosov or Axiom A flows.

Our poor knowledge of the asymptotics of correlation functions for mixing
flows contrasts to the well established exponential bounds on correlations for
all the basic classes of discrete-time mixing systems, including Anosov and
Axiom A diffeomorphisms, expanding interval maps, etc. The reason why
the correlations for flows are substantially harder to estimate than those for
diffeomorphisms is that flows have a zero Lyapunov exponent in the direction
of the flow. The time t map φt is then only partially hyperbolic [8] for any
t ∈ IR. In other words, there is no exponential instability of trajectories in
the flow direction. The mechanism of mixing in the phase space of a flow is,
therefore, more subtle than that of a diffeomorphism.

The lack of rigorous bounds on the correlations for mixing flows is a real
headache for physicists. For example, the Green-Kubo formulas for transport
coefficients involve integrals of autocorrelation functions,

∫∞
−∞CF,F (t) dt, for

which nobody can rigorously prove integrability, let alone exponential decay.
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In some cases bounds on time correlations are the only missing components
in rigorous proofs of Green-Kubo formulas and related transport laws [10].

In this paper we give a partial solution to this old problem, as described
below.

Let φt be a C2 Anosov flow on a 3-D compact Riemannian manifold M .
We assume that it is topologically mixing and its stable and unstable folia-
tions satisfy a condition that we call ‘uniform nonintegrability of foliations’
(the exact meaning is given by the assumption (A5) stated in Sections 13).
Let µ be the Sinai-Bowen-Ruelle (SBR) measure for φt. Let F,G be two so
called generalized Hölder continuous functions (defined in Section 2).

Theorem 1.1 Under the above conditions we have

|CF,G(t)| ≤ v(F,G) · cφe−aφ

√
t (1.2)

Here cφ > 0 and aφ > 0 depend on the flow φt alone. On the contrary, the
factor v(F,G) is independent of the flow.

The exact expression for v(F,G) is given in (7.5).
The function of t on the right-hand side of (1.2) is often called a stretched

exponential. It decays slower than any exponential, but fast enough for
virtually all physical applications.

We also show that this theorem covers all contact 3-D Anosov flows and
all geodesic flows on surfaces of variable negative curvature.

For physical applications mentioned before, it is important that the bound
on correlations be uniform for all flows close enough to the given one [10].
Responding to these needs, we study small perturbations of Anosov flows in
C1 metric. Let φt and ψt be two flows on M satisfying the assumptions1 of
Theorem 1.1.

Theorem 1.2 For any ε > 0 there is a δ > 0 such that if ψt is δ-close to φt

in C1 metric, then |cψ − cφ| < ε and |aψ − aφ| < ε.

In other words, the values of aφ and cφ depend continuously on the flow
φt in C1 metric.

1In (A5) stated in Section 13 two positive numbers d and d and a ball B0 ⊂ M are
involved. Those must be the same for both flows φt and ψt.
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The proofs of Theorems 1.1 and 1.2 rely on purely dynamical arguments.
We use Markov partitions and symbolic dynamics created by Sinai, Bowen
and Ruelle, and develop special approximations of mixing flows by Markov
chains.

The paper consists of two parts. In the first, spanning Sections 2-7, we
develop the techniques of Markov approximations to flows in a very general
setup – we work with suspension flows built under generalized Hölder contin-
uous functions over measurable transformations of metric spaces. These are
‘bare bones’ of our techniques, readily applicable to wide classes of mixing
flows, including billiards, nonuniformly hyperbolic flows, etc. The results of
this part are summarized in Section 7, were we give sufficient conditions for
a stretched exponential bound on correlations.

In the second, principal part of the paper, presented in Sections 8-18,
we study Anosov flows and prove the above two theorems. The main The-
orem 1.1 is proved in Sections 8-16. Theorem 1.2 is proved in Section 17.
Contact and geodesic flows are discussed in Section 18.

Our method presently does not produce an exponential bound on cor-
relations. But we conjecture that under the assumptions of Theorem 1.1
the correlations do decay exponentially fast, and our method can be refined
to produce an exponential bound. We also believe that the present results
and proofs can be extended to physically interesting billiard models, and to
multi-dimensional Anosov flows.

Acknowledgements. This work was started during my vitits at Georgia
Institute of Technology and Princeton University. It is my pleasure to ac-
knowledge the hospitality of these institutions. Personally, I am indebted
to Ya. Sinai, L. Bunimovich and J. Lebowitz for stimulating my interest in
the study of correlation functions and numerous fruitful discussions. I also
warmly thank A. Katok, C. Liverani, K. Khanin, C. Haskell, D. Dolgopyat
and A. Blokh for very helpful remarks and suggestions. I acknowledge partial
support by NSF grant DMS-9401417.

2 Suspension flows

Let Ω be a metric space with a metric ρ and a nonatomic Borel probability
measure ν. Let T : Ω → Ω be an invertible measure-preserving transfor-
mation (i.e. ν(A) = ν(TA) = ν(T−1A) for every measurable A ⊂ Ω). We
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assume that diam Ω <∞.
Now let l(x) be a positive bounded measurable function on Ω. A suspen-

sion flow build under the function l(x) is defined on the measurable space
M = {(x, s) : x ∈ Ω, 0 ≤ s < l(x)} by the rule

Φt(x, s) =

{
(x, s+ t) for 0 ≤ t < l(x)− s
(Tx, s+ t− l(x)) for l(x)− s ≤ t < l(Tx) + l(x)− s

(2.1)

This flow is measurable and preserves the probability measure µ on M de-
fined by dµ = cµ · dν × ds, where c−1

µ =
∫
Ω l(x)dν(x). The map T is often

called the base transformation and l(x) the ceiling function. For any point
y = (x, s) ∈ M we denote its ‘coordinate’ projections by π1(y) = x and
S(y) = s.

We intentionally do not assume any ergodic or mixing property of the
map T or the flow Φt, nor the existence of local coordinates in Ω or M. All
we need for the machinery developed in Sections 2-7 is a metric on Ω. The
metric ρ is extended toM in a natural way: for any y = (x, s) and y′ = (x′, s′)
we put ρ(y, y′) = (ρ2(x, x′) + |s− s′|2)1/2. Notice that diamM <∞.

Here we do not follow a tradition to identify points (x, l(x)) and (Tx, 0)
of M. In our metric the distance between these points is positive, but this
will not be essential for our results.

We will study functions that satisfy the following generalized Hölder con-
tinuity. Its definition is similar to the one introduced in [21]. Let M ′ be
a metric space with a probability measure, µ′. For any measurable func-
tion f : M ′ → IR and a subset B ⊂ M ′ we define the oscillation of f(x)
on B by osc (f,B) = supB f(x) − infB f(x). Let Br(x) be the ball in M ′

with radius r centered at x ∈ M ′. We define the oscillations of f(x) by
oscr(f, x) = osc(f,Br(x)).

Definition (motivated by [21]). A function f(x) on a metric space M ′ with
a measure µ′ is said to be generalized Hölder continuous if there are α > 0
and C > 0 such that ∫

M ′
oscr(f, x) dµ

′(x) ≤ Crα (2.2)

for all r > 0. We call α the (generalized) Hölder exponent of f and denote
the class of functions satisfying (2.2) with some C = Cf <∞ by GHα(M

′).

Any (ordinary) Hölder continuous function on M ′ with an exponent α
belongs in GHα(M

′). If M ′ is a compact manifold, the measure µ′ has a
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bounded density and the function f is Hölder continuous on a finite number
of domains in M ′ with piecewise smooth boundary that make a partition
of M ′, then f is also generalized Hölder continuous. In particular, these
include characteristic functions of piecewise smooth domains. Yet, the class
GHα(M

′) is far larger than all the classes just mentioned.
For any f ∈ GHα(M

′) we define the α-variation of f by

varα(f) = osc(f,M ′) + sup
r
r−α

∫
M ′

oscr(f, x) dµ
′(x) (2.3)

We now make two assumptions on the suspension flow Φt.

Assumption L1 (Generalized Hölder continuity of the ceiling
function). Let l(x) ∈ GHαl

(Ω) for some αl ∈ (0, 1].

Assumption L2 (Lower bound on the density of returns to Ω).
There are t0 > 0 and m0 ≥ 1 such that for any point y = (x, s) ∈ M its
trajectory {Φty} for 0 ≤ t < t0 intersects the base Ω no more than m0 times,
i.e.,

l(x) + l(Tx) + · · ·+ l(Tm0x) > t0.

for any x ∈ Ω. Without loss of generality we assume that t0 ≤ 1, so that
m0/t0 ≥ 1.

In particular, L2 holds if the ceiling function l(x) has a positive lower
bound, lmin > 0.

Next, we specify which correlation functions (1.1) will be studied. Let
F,G ∈ GHα(M) be two generalized Hölder continuous functions on M for
some α > 0. We are interested in the asymptotics of CF,G(t), as t → ∞,
and so we always assume that t > 1. Since CF+c,G+d(t) ≡ CF,G(t) for any
constants c and d, we can (and will) assume that both functions F and G
have zero means: ∫

M
F (y) dµ(y) =

∫
M
G(y) dµ(y) = 0.

Note that in this case ||F ||∞ ≤ oscF (M) ≤ varα(F ) and ||G||∞ ≤ oscG(M) ≤
varα(G).

We will assume that α ≤ αl. This simply means that the functions F
and G are not supposed to be any ‘better’ (smoother) than the function l.
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This is not a restrictive assumption: if F,G ∈ GHα(M) and αl < α, then
F,G ∈ GHαl

(M) as well. In any case, one cannot gain much by making
F and G ‘better’ (smoother) than l(x), since the smoothness of F (Φt(y)) in
(1.1) will depend on how smooth both F and l are, not just F .

3 Markov approximations for the base map

T

We will employ the definition of Markov approximations to discrete time
dynamical systems introduced in [11].

Let A = {Ai} be a finite or countable measurable partition of the space Ω
into subsets of positive measure. By a Markov approximation to the map T
we mean a probabilistic stationary Markov chain with transition probabilities

πij = ν(Aj/TAi) = ν(Aj ∩ TAi)/ν(Ai) (3.1)

and the stationary distribution

pi = ν(Ai). (3.2)

The ideas behind this approximation, its properties and existing applica-
tions are discussed in [11, 12]. If (Ω, T, ν) is a hyperbolic dynamical system
with a smooth invariant measure and {Ai} is a Markov partition or a Markov
sieve [9, 11], then the above Markov approximation leads to an effective es-
timation of the decay of correlations and gives a proof of the certain limit
theorem.

We now briefly recall the necessary properties of the above Markov chain.
The ‘discrepancy’ of the Markov approximation defined by (3.1) and (3.2),
within N iterates of the map T , is measured by the following quantity:

χN := sup
n≤N

∑
i0,i−1,...,i−n

|ν(Ai0/TAi−1 ∩ · · · ∩ T nAi−n)− ν(Ai0/TAi−1)|

×ν(TAi−1 ∩ · · · ∩ T nAi−n) (3.3)

Here and further on ν(A/B) means the conditional measure, = ν(A∩B)/ν(B),
and we always set it to zero whenever ν(B) = 0. The quantity χN measures
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how distant the ‘long-memory’ and ‘short-memory’ conditional distributions
are within the first N iterates.

Recall that given two probability distributions P = {pi} and Q = {qi} on
the same index set {i}, the distance in variation between P and Q is defined
to be

Var (P,Q) =
1

2

∑
i

|pi − qi|. (3.4)

Now (3.3) estimates twice the mean distance in variation between the long-
and short-memory conditional distributions on {Ai}.

By means of (3.3) one can estimate how the finite dimensional distribu-
tions of the Markov chain,

pi−ni−n+1···i−1i0 = pi−nπi−ni−n+1 · · ·πi−1i0 (3.5)

are close to those of the dynamical system in the variational metric (3.4). It
is shown in [11] that∑

i0,i−1,...,i−n

|ν(Ai0 ∩ TAi−1 ∩ · · · ∩ T nAi−n)− pi−n···i−1i0| ≤ (n− 1)χN (3.6)

for any n ≤ N .
For any x ∈ Ω, let A(x) be the atom of the partition A that contains x.

Let d(x) =diamA(x), measured in the metric ρ, and

D = D(A) =
∫
Ω
d(x) dν(x). (3.7)

The techniques of Markov approximations work well when both χN and
D(A) are small enough.

4 Discretization of the suspension flow

We will also define Markov approximations to the suspension flow Φt, but
first we need to discretize this flow. We start with discretizing the ceiling
function l(x), which will be done in two steps. Let l̄(x) = E(l/A) be l
conditioned on the partition A, i.e.

l̄(x) = [ν(A(x))]−1 ·
∫
A(x)

l(x′) dν(x′)
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for any x ∈ Ω. The function l̄(x) is constant on every atom of A.
Next, let δ > 0 be a small parameter, a ‘quantum’ of time. Consider

another discrete function on Ω defined by

l̂(x) = l̂δ,A(x) := ([l̄(x)/δ] + 2)δ (4.1)

where [a] stands for the integral part of a real number a. Clearly, |l̂(x) −
l̄(x)| ≤ 2δ. The function l̂(x) is not only discrete, but its values are integral
multiples of δ. Its minimum value on Ω is not less than 2δ.

Denote the suspension flow build under the function l̂(x) by Φ̂t. We call
it a discrete flow. This flow acts on M̂ = {(x, s) : x ∈ Ω, 0 ≤ s < l̂(x)}. The
metric ρ is defined on M̂ in the same way as on M, so that we now have a
unique metric on M∪M̂. The invariant measure of the flow Φ̂t is

dµ̂ := cµ̂ · dν × ds with c−1
µ̂ =

∫
Ω
l̂(x)dν(x)

Note that on the set M∩ M̂ we have dµ̂/dµ = cµ̂/cµ. Since l̄(x) ≤ l̂(x) ≤
l̄(x) + 2δ, we have

1 ≤ cµ
cµ̂
≤ 1 + 2δcµ (4.2)

We assume that δ is small enough, so that at least cµ/cµ̂ ≤ 2.

We call Φ̂t the discrete version of the original flow Φt generated by the
partition A and δ > 0. The smaller the values of δ and D, the more similar
are the flows Φ̂t and Φt. Next, we specify how similar they are in terms of
the correlation function (1.1).

First, we extend the functions F and G toM∪M̂ by setting them to zero
on M̂\M. This extension is not harmless, however, since it can increase the
oscillations of these functions. We thus have to prove that F and G, after
their extension to M̂ \ M, will be still generalized Hölder continuous, i.e.
belong to both GHα(M) and GHα(M̂). Let us denote, for a moment, the
‘extended’ functions by F̂ and Ĝ, respectively.

Let y = (x, s) ∈M∪M̂ and r > 0. Then either Br(y)∩(M̂\M) = ∅ and
then oscr(F̂ , y) =oscr(F, y), or Br(y) ∩M = ∅ and then oscr(F̂ , y) = 0, or
else there is a point y′ = (x′, s′) ∈ Br(y) for which (s− l(x)) · (s′− l(x′)) < 0.
In the last case ρ(x, x′) < r, s′ ≥ l(x′), and |s− s′| < r, so that

|s− l(x)| ≤ |s− s′|+ |l(x)− l(x′)| ≤ r + oscr(l, x)
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In the last case we use the bound oscr(F̂ , y) ≤osc (F,M) and then get∫
M

oscr(F̂ , y) dµ(y) ≤
∫
M

oscr(F, y) dµ(y) + cµ

∫
Ω
(oscr(l, x) + r) · osc (F,M) dν(x)

≤ varα(F ) · [rα + cµ · (varαl
(l) · rαl + r)]

Due to our assumption α ≤ αl we conclude that F̂ ∈ GHα(M). Similarly,
one can integrate over M̂ and verify that F̂ ∈ GHα(M̂). In all that follows,
we will denote the new, extended functions by the same symbols, F and G,
and this will cause no confusion.

We now consider the correlation function of the discrete flow Φ̂t on M̂:

ĈF,G(t) =
∫
M̂
F (Φ̂ty)G(y) dµ̂(y)−

(∫
M̂
F (y) dµ̂(y)

)
·
(∫

M̂
G(y) dµ̂(y)

)
(4.3)

Theorem 4.1 Let Φt be a suspension flow and Φ̂t its discrete version gen-
erated by a partition A and δ > 0. For any t > 1 we set N = [t/δ]. Then

|CF,G(t)− ĈF,G(Nδ)| ≤ θ1 · varα(F )varα(G) ·
[
t(δ +Dαl/(αl+1))

]α/(2α+2)
(4.4)

where the constant θ1 > 0 is determined by the flow Φt, and θ1 is a continuous
function of the following six parameters of this flow: m0, t0, cµ, αl, varαl

(l) and
diamM.

Convention. We will denote by θi, i ≥ 1, various positive constants
determined by the suspension flow Φt and depending continuously on its
parameters listed above.

Note that we have ‘discretized’ the time also, by substituting Nδ for
t in (4.3). Theorem 4.1 shows that the difference between the correlation
functions of the original flow and that of its discrete version is bounded by
an algebraic function in δ and D. Intuitively, this is clear because the smaller
δ and D, the finer is the partition A and the closer the two flows, after that
the (generalized) Hölder continuity of F,G and l provides the above power-
law estimates.

A complete proof of Theorem 4.1 is provided in Appendix.
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5 Markov approximation to the suspension

flow

We assume that the partition A of the base space Ω is fixed and the value of
δ is chosen. We will study the map T̂ := Φ̂δ that acts on the space M̂ and
preserves the measure µ̂. Then the quantity ĈF,G(Nδ) entering (4.4) is the

correlation coefficient for the transformation T̂ and its Nth iterate.
Denote by Â the partition of the space M̂ into atoms Ai × [sδ, (s+ 1)δ),

where Ai ∈ A and s = 0, 1, . . . , l̂(Ai)/δ − 1. We denote the atoms of Â by
Xi, numbered in an arbitrary order. For any Xi = Aj × [sδ, (s + 1)δ) we
denote A(Xi) = π1(Xi) = Aj ∈ A and s(Xi) = s. We call the atoms Xi

with s(Xi) = 0 the bottom atoms and those with s(Xi) = l̂(A(Xi))/δ − 1
the top atoms. Over every atom A ∈ A, there is a column of atoms of Â
starting with a bottom atom and terminating with a top atom. Every atom
X except the top ones is shifted (elevated) by the map T̂ one level up, so that
T̂X is another atom with A(T̂X) = A(X) and s(T̂X) = s(X)+1. Every top
atom breaks into pieces under T̂ which ‘fall’ down into some bottom atoms
according to the action of T on Ω.

We now define the Markov approximation to the map T̂ generated by the
partition Â of the space M̂ according to the rules similar to (3.1)-(3.2): we
take a Markov chain with transition probabilities

π̂ij = µ̂(Xj/T̂Xi) (5.1)

and stationary distribution
p̂i = µ̂(Xi). (5.2)

The quality of this approximation is given by the value similar to (3.3):

χ̂N := sup
n≤N

∑
i0,i−1,...,i−n

|µ̂(Xi0/T̂Xi−1 ∩ · · · ∩ T̂ nXi−n)− µ̂(Xi0/T̂Xi−1)|

×µ̂(T̂Xi−1 ∩ · · · ∩ T̂ nXi−n) (5.3)

Theorem 5.1 There are constants θ2, θ3 and κ̂ determined by the flow {Φt}
and depending continuously on its parameters, such that

χ̂N ≤ δ
(
θ2χ[κ̂t] + θ3D

αl/(αl+1)
)

(5.4)

Furthermore, if the ceiling function l(x) has a positive lower bound, we can
set θ3 = 0.
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Theorem 5.1 shows that if a partition A generates a good Markov ap-
proximation for the base transformation T and the atoms of A are small
enough, then Â will generate a good Markov approximation for the map T̂ .
The rather technical proof of Theorem 5.1 is provided in Appendix.

Let Π̂ = ||π̂ij|| be the matrix of transition probabilities and P̂ = ||p̂i||
its stationary row vector. We also denote by π̂

(N)
ij the N -step transition

probabilities for this Markov chain.
To bound the correlation coefficient ĈF,G(Nδ), we will discretize the func-

tions F and G. Let F̄ and Ḡ be the functions F and G conditioned on the
partition Â of M̂. That is, on every Xi ∈ Â the function F̄ takes the value

F̄ (Xi) = F̄i := (µ̂(Xi))
−1
∫
Xi

F (y) dµ̂(y)

Similarly, we denote by Ḡ(Xi) = Ḡi the values of the function Ḡ. Let
∆F (y) = F (y)− F̄ (y) and ∆G(y) = G(y)− Ḡ(y) for any y ∈ M̂.

For brevity, we denote by 〈f(y)〉 the average of a function f on M̂ with
respect to the measure µ̂. The following expansion of the correlation function
is immediate:

ĈF,G(Nδ) = 〈F̄ (T̂Ny)Ḡ(y)〉 − 〈F̄ (y)〉 · 〈Ḡ(y)〉

+〈∆F (T̂Ny)Ḡ(y)〉+ 〈F̄ (T̂Ny)∆G(y)〉+ 〈∆F (T̂Ny)∆G(y)〉 (5.5)

Theorem 5.2 The last three terms in the expansion (5.5), combined, do not
exceed θ4 · varα(F )varα(G) · (δ +D)α/(α+1).

The proof of Theorem 5.2 is provided in Appendix.
The main part of the expansion (5.5) is

Ĉ
(main)
F,G (N) := 〈F̄ (y)Ḡ(T̂−Ny)〉 − 〈F̄ (y)〉 · 〈Ḡ(y)〉

=
∑
i,j

ḠiF̄j ·
[
µ̂(T̂NXi ∩Xj)− µ̂(Xi)µ̂(Xj)

]
(5.6)

This last sum can be approximated in terms of the Markov chain (5.1)-(5.2)
as follows:

Ĉ
(chain)
F,G (N) :=

∑
i,j

ḠiF̄j ·
[
p̂iπ̂

(N)
ij − p̂ip̂j

]
(5.7)
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with the discrepancy estimated by

|Ĉ(main)
F,G (N)− Ĉ

(chain)
F,G (N)| ≤ ||F ||∞||G||∞

∑
i,j

∣∣∣µ̂(T̂NXi ∩Xj)− p̂iπ̂
(N)
ij

∣∣∣
≤ ||F ||∞||G||∞Nχ̂N
≤ t · ||F ||∞||G||∞

(
θ2χ[κ̂t] + θ3D

αl/(αl+1)
)
(5.8)

Here the middle inequality follows from the bound (3.6) applied to the
Markov chain (5.1)-(5.2), and the last inequality follows from Theorem 5.1.
The quantity (5.7) measures ‘intrinsic’ correlations in the Markov chain (5.1)-
(5.2).

The next construction is, at first sight, artificial. Its purpose will become
clear only in Section 16.

We perturb the chain (5.1)-(5.2) slightly, ‘smoothing it out’ in the di-
rection of the flow. The degree of ‘smoothing’ is specified by an integer
parameter η, 1 < η < δ−1.

First, we define an auxiliary Markov chain whose states are still Xi ∈ Â,
as follows. Its transition probabilities, Π∗ = ||π∗ij||, are defined for all i 6= j
by

π∗ij =

{
1/(2η + 1) if A(Xi) = A(Xj) and |s(Xi)− s(Xj)| ≤ η
0 otherwise

(5.9)

and then we set π∗ii = 1−∑j 6=i π
∗
ij for every Xi ∈ Â. Roughly speaking, every

atom X ∈ Â under the action of Π∗ is ‘dispersed’ uniformly into (2η + 1)
neighboring atoms that line up around X in the same column of Â.

Since the distribution (5.2) is uniform within every column of atoms of
Â, it is invariant for the auxiliary chain (5.9).

We now pick a point of time t1 ∈ (1, t) and setK = [t1/δ]. Let L = [N/K],
so that N = KL+ L0 for some L0 < K. We also pick K1, 1 < K1 < K, and
put K2 = K −K1. Denote the K-step transition probabilities of the Markov
chain (5.1)-(5.2) by π̃ij = π̂

(K)
ij , and let Π̃ = ||π̃ij|| be the corresponding

matrix. Also, let Π̃′ = ||π̃′ij|| = ||π̂(K1)
ij || and Π̃′′ = ||π̃′′ij|| = ||π̂(K2)

ij ||. Then
obviously,

π̂
(N)
ij =

∑
i1,...,iL

π̃′ii1 · π̃i1i2 · π̃i2i3 · · · π̃iL−1iL π̂
(K2+L0)
iLiL+1

(5.10)
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where iL+1 = j. One can think of the action of a nonhomogeneous Markov
chain whose transition probabilities are taken firstly from Π̃′, then L − 1
times from Π̃, and lastly, at the (L+ 1)-st step, from Π̂K2+L0 .

We now consider another nonhomogeneous Markov chain, whose tran-
sition probabilities L times are taken from the matrix Π̃′ · Π∗ · Π̃′′, and at
the last, (L + 1)-st step, they are taken from Π̂L0 . The resulting transition
probability, that of the transition from Xi to Xj, is then

π
(per)
ij :=

∑
j1,l1,j2,l2,...,jL,lL

π̃′ij1 · π
∗
j1l1
π̃l1j2π

∗
j2l2

· · · π̃lL−1jLπ
∗
jLlL

π̂
(K2+L0)
lLjL+1

(5.11)

where jL+1 = j. In other words, we perturb the homogeneous Markov chain
(5.1)-(5.2) by applying (5.9) first at the K1-th step and then after every
K1 +K2 = K steps. Based on obvious similarity of (5.10) and (5.11) we will
compare the quantity

C
(per)
F,G (N) :=

∑
i,j

ḠiF̄j ·
[
p̂iπ

(per)
ij − p̂ip̂j

]
(5.12)

with Ĉ
(chain)
F,G (N) defined by (5.7). If the perturbation parameter η is small

enough (� δ−1), the Markov chains (5.10) and (5.11) are close. Precisely:

Theorem 5.3 We have

|Ĉ(chain)
F,G (N)−C(per)

F,G (N)| ≤ θ5·varα(F )varα(G)
(
Dα/(α+1) + (t/t1)

2(ηδ)α/(α+1)
)

(5.13)

This theorem is proved in Appendix.
The quantity (5.12) is bounded as follows:

|C(per)
F,G (N)| ≤ ||F ||∞||G||∞ ·

∑
i,j

p̂i
∣∣∣π(per)
ij − p̂j

∣∣∣ (5.14)

Consider the Markov chain with the transition matrix

Π̄ = ||π̄ij|| := Π̃′ · Π∗ · Π̃′′ (5.15)
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whose stationary distribution is still P̂ = ||p̂i||. For any n ≥ 1 denote by π̄
(n)
ij

the n-step transition probabilities of this chain, i.e. ||π̄(n)
ij || = Π̄n. In virtue

of (5.11) and (5.14) we have ||π(per)
ij || = Π̄L · Π̂L0 . Therefore,

|C(per)
F,G (N)| ≤ ||F ||∞||G||∞ ·

∑
i,j

p̂i
∣∣∣π̄(L)
ij − p̂j

∣∣∣ (5.16)

since the correlations in Markov chains decay monotonically. We call the
quantity

V̄ (L) :=
1

2

∑
i,j

p̂i
∣∣∣π̄(L)
ij − p̂j

∣∣∣ (5.17)

the mixing coefficient of the Markov chain (Π̄, P̂ ). As it turns out, it is this
coefficient that is ultimately responsible for the mixing rates of the flow Φt.

We summarize the results of Sections 4-5 in the following corollary:

Corollary 5.4 For all t > 1 we have

|CF,G(t)| ≤ θ6 · varα(F )varα(G) ·
[
tθ7 ·

(
(ηδ)θ8 +Dθ9 + χ[κ̂t]

)
+ V̄ (L)

]
According to our convention, the constants θi > 0 and κ̂ depend continuously
on the parameters of the flow Φt. In particular, they do not depend on the
choice of t1 or K1.

6 Mixing coefficients in Markov chains

From now on we assume that the partitions A and Â are finite, so that all
the above Markov chains are finite.

In the previous section we ended up with the Markov chain (Π̄, P̂ ), whose
mixing coefficient V̄ (L) is yet to be estimated. It measures the mean distance
in variation between the L-step transition probabilities and the stationary
distribution P̂ . In this section we find sufficient conditions under which the
mixing coefficients of Markov chains can be effectively bounded.

In order to display the results of this section in a general form, we will
work with an abstract homogeneous Markov chain with a finite number of
states. We denote the sates by 1, 2, . . . , I, the matrix of transition prob-
abilities by Π = ||πij|| with 1 ≤ i, j ≤ I and the stationary distribution
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by P = ||pi||. We denote by π
(m)
ij the m-step transition probabilities, i.e.

||π(m)
ij || = Πm. We denote by J the set of indices {1, 2, . . . , I}. Let

pmin = min pi > 0

For any m ≥ 1 let

V
(m)
i =

1

2

I∑
j=1

|π(m)
ij − pj| and V (m) =

I∑
i=1

piV
(m)
i

V (m) is the mixing coefficient of the Markov chain. For every i, j ∈ J let

γi,j =
I∑

k=1

πikπjk
pk

Theorem 6.1 Suppose that the Markov chain satisfies the following regular-
ity condition:

γ = min
i,j

γi,j > 0 (6.1)

Then for any m ≥ 1 and all i ∈ J we have

V (m) ≤ sup
i
V

(m)
i ≤ 50γ−1/2p−1

min · (1− γ/2)m/3

It is possible to relax the assumption (6.1) of this theorem: we will now
assume a positive lower bound on γi,j for an ‘overwhelming majority’ of pairs
(i, j) rather than for every single pair (i, j). In that case the bound on V (m)

is weaker, but still sufficient for us. Let

Q(γ) :=
∑

(i,j): γi,j<γ

pipj

Theorem 6.2 For any γ > 0 and any m ≥ 1 we have

V (m) ≤ const ·
[
γ−1/2p−2

min(1− γ/40)m/3 +m(pmin +Q(γ))
]

(6.2)

where const is an absolute constant (one can set const = 50).
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Note that Theorem 6.2 formally does not guarantee any convergence to
equilibrium. It can be used effectively only when m(pmin + Q(γ)) � 1. We
will demonstrate how it works in the next section.

The last theorem in this section shows that the hypotheses of Theorem 6.2
are stable under certain perturbations. Consider two Markov chains with
matrices of transition probabilities Π = ||πij|| and Π′ = ||π′ij|| and with a
common stationary distribution P = ||pi||. Let

γ′i,j =
I∑

k=1

π′ikπ
′
jk

pk
and Q′(γ) :=

∑
(i,j): γ′i,j<γ

pipj

Theorem 6.3 Let

χ′ :=
1

2

I∑
i,j=1

pi|πij − π′ij| < 1.

Then for any γ > 0 we have

Q′(γ/2) ≤ Q(γ) + 50γ−1χ′

Theorems 6.1, 6.2 and 6.3 are purely probabilistic. They are introduced
and proved in [12].

Remark. Theorem 6.1 alone would suffice for Anosov flows treated below
in Sections 8-18. Theorems 6.2 and 6.3 are designed for flows with singulari-
ties (hence, with countable Markov partitions) and we include them here for
future use.

7 Sufficient conditions for a stretched expo-

nential bound on correlations

We now turn back to the Markov chain (Π̄, P̂ ) defined in Section 5. Consider
yet another chain, with the following matrix of transition probabilities

¯̄Π = ||¯̄πij|| := ΠK1 · Π∗ · ΠK2 (7.1)
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where for any k ≥ 1 we set

Πk = ||(πk)ij|| := ||µ̂(Xj/T̂
kXi)||

The matrices Π̄ and ¯̄Π have a common stationary vector, P̂ . Furthermore,

∑
i,j

p̂i|π̄ij − ¯̄πij| =
∑
i,j

p̂i

∣∣∣∣∣∣
∑
k,l

(
π̃′ikπ

∗
klπ̃

′′
lj − (πK1)ikπ

∗
kl(πK2)lj

)∣∣∣∣∣∣
≤

∑
i,j

p̂i
∑
k,l

π̃′ikπ
∗
kl|π̃′′lj − (πK2)lj|

+
∑
i,j

p̂i
∑
k,l

|π̃′ik − (πK1)ik|π∗kl(πK2)lj

≤ K1χ̂N +K2χ̂N = Kχ̂N (7.2)

where we have applied the bound (3.6) to the Markov chain (Π̂, P̂ ).

We now apply Theorem 6.2 to the Markov chains (Π̄, P̂ ) and ( ¯̄Π, P̂ ). We
put

γ̂i,j : =
∑
k

¯̄πik ¯̄πjk
p̂k

(7.3)

≥
∑
k

∑
l1l2l3l4

(c) µ̂(T̂K1Xi ∩Xl1)µ̂(Xl3 ∩ T̂−K2Xk)µ̂(T̂K1Xj ∩Xl2)µ̂(Xl4 ∩ T̂−K2Xk)

(2η + 1)2µ̂(Xk)µ̂(Xi)µ̂(Xl3)µ̂(Xj)µ̂(Xl4)

where the summation in
∑(c) is taken over the quadruples (l1, l2, l3, l4) sat-

isfying a “coupling” condition: the atoms Xl1 and Xl3 must be in the same
column in Â separated by no more than η − 1 other atoms, and the same
must hold for the atoms Xl2 and Xl4 . For any γ > 0 let

Q̂(γ) :=
∑

(i,j): γ̂i,j<γ

µ̂(Xi)µ̂(Xj) (7.4)

Then, by virtue of Theorems 6.2 and 6.3 and due to (7.2) we can bound the
mixing coefficient V̄ (L) of the the Markov chain (Π̄, P̂ ) by

V̄ (L) ≤ const ·
[
γ−1p̂−2

min(1− γ/80)L/3 + L(p̂min + Q̂(γ) + 25γ−1Kχ̂N)
]

for any γ > 0, where, say, const= 2500. Here p̂min = min p̂i > 0. Recall that
LK ≤ N and L = [t/δ]/[t1/δ] < t. By Theorem 5.1 we can bound χ̂N and
obtain the following corollary.
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Corollary 7.1 For any γ > 0 we have

V̄ (L) ≤ θ10 · γ−1
[
p̂−2

min(1− γ/80)L/3 + t
(
p̂min + Q̂(γ) + χ[κ̂t] +Dαl/(αl+1)

)]

We are now in a position to formulate all the assumptions under which a
stretched exponential bound on CF,G(t) holds. The first assumption involves
only the base transformation T :

Assumption T. For any H > 1 there is an mH > 0 such that for all
m ≥ mH there is a partition A = A(m,H) of the base space Ω such that
(i) D = D(A) ≤ c1e

−a1m;
(ii) c2e

−a2m ≤ ν(A) ≤ c3e
−a3m for every A ∈ A;

(iii) χ[mH ] ≤ c4e
−a4m.

Here ai and ci, i = 1, . . . , 4, are positive constants (independent of m and
H).

Note that the only nontrivial condition here is (iii), which requires a ‘good’
Markov approximation to the map T by the chain (3.1)-(3.2). Assumption T
does not require any ergodic or mixing properties of the transformation T .
In fact, it is satisfied for plenty of non-ergodic transformations, for example,
rational circle rotations: for a rotation z → e2πik/nz it is enough to partition
the circle |z| = 1 into mn equal arcs for any m ≥ 1.

The second assumption involves the flow {Φ̂t}.

Assumption F. For any H > 1 there is m′
H ≥ mH such that for all

m ≥ m′
H there are

(i) δ = c5e
−a5m;

(ii) η ≤ c6e
a6m with a6 < a5, so that ηδ decays exponentially in m;

(iii) K1 = [β1m/δ], K2 = [β2m/δ], and K = K1 +K2;
such that the partition A = A(m,H) entering Assumption T can be chosen so
that in the above notations we have
(iv) Q̂(γ0) ≤ c7e

−a7m.
where Q̂(γ) is given by (7.3)-(7.4). Here γ0, β1, β2, and ai, ci, i = 5, 6, 7, are
positive constants (independent of m and H).

The core of this assumption is, of course, the item (iv): this is a sufficient
condition for bounding the mixing coefficient of the approximating Markov
chain ( ¯̄Π, P̂ ) in Corollary 7.1.
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Theorem 7.2 Under Assumptions T and F, there are constants c > 0 and
a > 0 such that the correlation function for the suspension flow {Φt} obeys
the bound

|CF,G(t)| ≤ varα(F )varα(G) · c · e−a
√
t (7.5)

for all t > 0. The constants c > 0 and a > 0 depend continuously on
γ0, β1, β2, m

′
H , ci, ai, 1 ≤ i ≤ 7, and on the parameters of the flow:

m0, t0, cµ, αl, varαl
(l) and diamM.

Proof. Let m = [z
√
t] with a sufficiently small z > 0 that will be chosen

below. We put H = 3 and take the partition A = A(m,3) satisfying Assump-
tions T and F (one exists for every m ≥ m′

3). The partition A and the value
δ given by Assumption F then specify the ‘discretized’ space (M̂, µ̂), the map
T̂ on it and the partition Â. The value p̂min = min{µ̂(X); X ∈ Â} satisfies
the bounds

ĉµc2c5e
−(a2+a5)m ≤ p̂min ≤ ĉµc3c5e

−(a3+a5)m

Next, for any z > 0 and all t > (κ̂/z3 + 3/z)2 (the constant κ̂ enters Corol-
lary 5.4) we have m3 ≥ κ̂t, and so

χ[κ̂t] ≤ χm3 ≤ c4e
−a4m

We then substitute the two above bounds into the inequalities in Corollar-
ies 5.4 and 7.1 (with γ = γ0) and we make use of Assumptions T and F
immediately obtaining exponential (in m) bounds on all the terms but one.
That one, ‘naughty’ term is p̂−2

min(1− γ0/80)L/3. Recall that

L = [N/K] ≥ [t/δ]

2[β1m/δ] + 2[β2m/δ]
≥ t− δ

2(β1 + β2)m
≥ m

4z2(β1 + β2)

Hence

p̂−2
min(1− γ̂/80)L/3 ≤ 4(cµc2c5)

−2 exp

([
2(a2 + a5) +

ln(1− γ0/80)

12z2(β1 + β2)

]
m

)
.

If z is small enough, the exponent will be negative, and this term will decay
exponentially in m, too. The above estimates are valid for all

t ≥ t∗ = max{(m′
3/z)

2, (κ̂/z3 + 3/z)2}
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and so we obtain (7.5) for all these values of t. On the finite interval t ∈
[0, t∗] nothing can go wrong, since the function CF,G(t) is always bounded by
||F ||∞ · ||G||∞. Theorem 7.2 is proved.

Remark. Anosov flows discussed below satisfy some stronger assumptions
than our T and F. In particular, we will prove that χn ≤ c4e

−a4m for all n ≥ 1
in T and Q̂(γ0) = 0 in F.

8 Anosov flows

In Sections 8-18 we work with transitive Anosov flows on 3-D manifolds.
We will first invoke the techniques of Markov partitions and symbolic dy-
namics and prove Assumption T. Then, under an extra condition stated in
Section 13, we prove Assumption F, which implies a stretched exponential
bound on correlations.

Here we use the terminology and results of classical works by Anosov,
Sinai, Bowen and Ruelle [1, 34, 5, 6, 7].

Let M be a compact connected C∞ Riemannian manifold, dimM = 3.
Let φt : M →M be a flow of class at least C2. This means that its trajectories
are defined by ordinary differential equations dφt/dt = v(y) with a C2 vector
field v(y) on M . We assume that φt is an Anosov flow, i.e.

(A1) M does not have fixed points, i.e. v(y) 6= 0 for every y ∈M ;

(A2) for every y ∈M there is a Dφt-invariant splitting

TyM = Eφy ⊕ Euy ⊕ Esy (8.1)

into three one-dimensional subspaces, such that Eφy is tangent to the flow,
and there are constants Cφ > 0 and λφ ∈ (0, 1) such that

||Dφt(v)|| ≤ Cφλ
t
φ||v|| for v ∈ Esy , t ≥ 0

||Dφ−t(v)|| ≤ Cφλ
t
φ||v|| for v ∈ Euy , t ≥ 0.

The Anosov splitting (8.1) depends on y continuously [1]. It is even
Hölder continuous, as it was proved in [2], see the proof in [20].

For any y ∈ M there are local (strongly) stable and unstable fibers Ws
y

and Wu
y , respectively [1, 5]. These fibers are as smooth as the flow itself [3],
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i.e., they are at least C2. However, the foliations of M by local stable and
unstable fibers may not be even C1, they are typically only Hölder continuous
[24] (even in 3-D, despite Anosov’s original claim in [1]).

For small ε > 0, we call the C2 surfaces

Wwu
y := φ[−ε,ε](Wu

y ) and Wws
y := φ[−ε,ε](Ws

y)

local weakly unstable and stable manifolds (or leaves), respectively. Here
and further on we adopt Bowen’s notation

φ[a,b]A := ∪a≤t≤bφtA

for any A ⊂M . For every two close points, y′, y′′ ∈M the sets

[y′, y′′]u := Wws
y′ ∩Wu

y′′ and [y′, y′′]s := Ws
y′ ∩Wwu

y′′

are not empty and each consists of one point.

Remark. The above points [y′, y′′]u and [y′, y′′]s obviously lie on one orbit
of the flow, so that [y′, y′′]s = φτ [y′, y′′]u for some |τ | ≤ ε. We call this
τ = τ(y′, y′′) the temporal distance between the fibers Wu

y′′ and Ws
y′ . This

distance will play a key role in Section 13.

Our next assumption is

(A3) Anosov flow φt is topologically transitive, i.e. it has a dense orbit2;

Equivalently, we can assume that periodic orbits of the Anosov flow φt

are dense in M , or that it has no wandering points in M . Under any of these
assumptions the Anosov flow φt satisfies Smale’s Axiom A for flows [35, 5]
and its only basic set is the whole M .

A transitive Anosov flow is said to be topologically mixing if for some (and
then for all) points x ∈M their (full) stable and unstable fibers are dense in
M .

Fact (Alternative for Anosov flows [1, 7, 24]). For every transitive Anosov
flow φt there are exactly two possibilities:
(i) the flow φt is topologically mixing, then all its Gibbs invariant measures
(see below) are mixing and Bernoulli [28];

2Examples of nontransitive Anosov flows were constructed in [15].

22



(ii) the flow φt has continuous nonconstant eigenfunctions (= a discrete com-
ponent in its spectrum), it is then a suspension flow under a constant ceiling
function, and it has no mixing invariant measures.

Naturally, we assume that

(A4) the flow φt is topologically mixing.

In the case of Axiom A flows, even this assumption does not guarantee
any bound on correlations, as it was demonstrated by Pollicott [25]. It is
unknown if (A4) guarantees any bound on correlations for Anosov flows. We
will prove Theorem 1.1 under an extra assumption, (A5), stated in Section 13.
On the other hand, many strong statistical properties, like the central limit
theorem and its invariance principle, have been established for both types of
Anosov (and Axiom A) flows [14].

We equip the flow φt with the so called Sinai-Bowen-Ruelle (SBR) mea-
sure µ. It is defined [34] to be a φt-invariant probability measure whose
conditional measures on local unstable fibers are absolutely continuous with
respect to the Riemannian volume on those fibers (the volume, or the length,
is induced on the fibers by the Riemannian metric in M). Every topologi-
cally mixing Anosov flow has a unique SBR measure µ. Likewise, there is a
unique invariant measure µ− absolutely continuous on stable fibers. These
two measures are generally different. They coincide iff the flow preserves an
absolutely continuous measure on M , and in this case µ = µ− is that mea-
sure. Note, however, that typical Anosov flows do not enjoy this property,
they form an open dense subset in the space of C2 flows [34]. Our main
results hold for both measures µ and µ−, but in view of the time symmetry
it is enough to study one.

The SBR measure µ is a Gibbs measure, see [34] and Section 10 below. Its
other remarkable property is that for any absolutely continuous probability
measure ρ0 on M its image ρt defined by ρt(A) = ρ0(φ

−tA) weakly converges,
as t→∞, to µ, see, e.g., [7]. In other words, any initial smooth probability
distribution on M converges under the action of φt to the SBR measure. In
nonequilibrium statistical physics, SBR measures describe stationary states
for nonhamiltonian systems [10, 16].

Denote by Λu
t (y) the Jacobian of the linear map Dφt : Euy → Euφty, where

the Euclidean structure in Euy is induced by the Riemannian metric in M .
Let ξ be any measurable partition of M whose atoms are local unstable
fibers. For any y ∈ M denote by ξ(y) the atom of ξ containing y and by
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fξ(y) the density of the SBR measure µ conditioned on ξ(y) with respect
to the Riemannian length on ξ(y). Then for every y1, y2 ∈ ξ(y) we have a
remarkable formula [32, 20]

fξ(y1)

fξ(y2)
= lim

t→−∞

Λu
t (y1)

Λu
t (y2)

(8.2)

The function fξ is at least Lipschitz continuous [32] on every fiber ξ(y), and
for any ε > 0 there is a δ > 0 such that for any y1, y2 ∈ ξ(y) we have [7]

dist (y1, y2) < δ =⇒ e−ε < fξ(y1)/fξ(y2) < eε (8.3)

The foliations by local stable and unstable fibers and leaves are all abso-
lutely continuous [1, 3, 8] in the following sense. For any two close local unsta-
ble leavesWwu

1 ,Wwu
2 the mapH : Wwu

1 →Wwu
2 defined byH(y) = Ws

y∩Wwu
2

is called canonical isomorphism or holonomy map. Its Jacobian with respect
to the Riemannian area on unstable leaves is bounded away from 0 and ∞.
Moreover, it is close to one if the leaves are close enough to each other. The
same property holds for stable leaves. Likewise, for two close local unstable
fibers Wu

1 , Wu
2 the map H : Wu

1 → Wu
2 defined by H(y) = Wws

y ∩Wu
2 can

also be termed a canonical isomorphism or holonomy map. Its Jacobian with
respect to the Riemannian length has similar properties, see Sect. 13 for a
detailed argument.

9 Markov families and special representations

A closed subset R ⊂M is called a rectangle if there is a small closed smooth
disk D ⊂ M transversal to the flow φt, such that R ⊂ D, and for any
y′, y′′ ∈ R the point

[y′, y′′]R := D ∩ φ[−ε,ε]{[y′, y′′]u}

exists and also belongs to R. A rectangle R is said to be proper if R = R∗,
where R∗ is the set of the interior points of R considered as a subset of D.
For any rectangle R and y ∈ R we put

W u
y (R) := R ∩Wwu

y and W s
y (R) := R ∩Wws

y
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Then R is a direct product of the sets W u
y (R) and W s

y (R) in the set-theoretic
and topological senses.

Definition (cf. [5]). A finite collection of closed sets R = {R1, . . . , RI} is
said to be a proper family of size α > 0 if
(i) M = φ[−α,0](Ω), where Ω = R1 ∪ · · · ∪RI ;
and there are disks D1, . . . , DI containing these sets such that for every i
(ii) diamDi < α;
(iii) Ri = R∗i , where R∗i is the interior of Ri considered as a subset of Di;
(iv) for any i 6= j at least one of the two sets Di ∩ φ[0,α]Dj and Dj ∩ φ[0,α]Di

is empty; in particular, Di ∩Dj = ∅.
It follows from (i) that for any x ∈ Ω there is a smallest positive l(x) such

that φl(x)(x) ∈ Ω. According to (i) and (iv), the function l(x) is bounded
from above and below: 0 < lmin ≤ l(x) ≤ lmax < ∞. The set Ω is called a
cross-section of the manifold M . It generates the first return map (Poincaré
map), T (x) = φl(x)(x), which is a one-to-one map T : Ω → Ω. It is easy to
check that the functions l(x) and T (x) are locally as smooth as the flow φt,
i.e. at least of class C2. They are not continuous globally on Ω, but l(x) and
all iterations of T are continuous on the T -invariant set

Ω∗ =
{
x ∈ Ω : T kx ∈ ∪Ii=1R

∗
i for all k ∈ ZZ

}
Definition. A proper family of sets R = {R1, . . . , RI} of a small size α is
said to be a Markov family, if
(i) every Ri ∈ R is a (proper) rectangle;
(ii) if x ∈ R∗i ∩ T−1(R∗j ), then W s

x(Ri) ⊂ T−1(W s
Tx(Rj)) and T (W u

x (Ri)) ⊃
W u
Tx(Rj).

Theorem 9.1 Any transitive 3-D Anosov flow φt : M → M has Markov
families of arbitrary small sizes whose rectangles are connected.

The existence of Markov families was proved by Bowen [5]. Marcus [22]
showed how to establish the connectivity of rectangles of Markov partitions
with one-dimensional stable and unstable fibers for Axiom A diffeomor-
phisms. He proved that every rectangle in Bowen’s construction of Markov
partitions [5, 6] consists of a finite number of connected subrectangles, and
those form a (naturally, finer) Markov family. Alternatively, one can use
Sinai’s construction of Markov partitions for Anosov diffeomorphisms [33] to
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construct Markov families for 3-D Anosov flows, and then all the rectangles
will be automatically connected.

We will only consider Markov families with connected rectangles. For
every connected rectangle R and x ∈ R the sets W u,s

x (R) are segments of
C2-smooth curves. The boundary ∂R consists of two parts: ∂uR and ∂sR,
where

∂uR = ∪x∈R∂W s
x(R) and ∂sR = ∪x∈R∂W u

x (R)

Each part is the union of exactly two segments of smooth curves, ∂uR =
W u
y′(R) ∪W u

y′′(R) and ∂uR = W u
y′(R) ∪W u

y′′(R) for some y′, y′′ ∈ R. Every
connected rectangle R is then a curvilinear quadrilateral in the corresponding
disk D.

The set Ω is now a manifold with I connected components, each of which
is a smooth surface with boundary. The function l(x) and the Poincaré map
T are piecewise smooth (of class at least C2) on Ω with a finite number of
discontinuity lines, which are formed by ∂Ω ∪ T−1(∂Ω). Here ∂Ω = ∪i∂Ri.
We also put ∂u,sΩ = ∪i∂Ru,s

i .
For every Ri ∈ R and x ∈ Ri let Es,u

x be the tangent lines to W s,u
x (Ri),

respectively. The splitting

TxΩ = Es
x ⊕ Eu

x (9.1)

is DT -invariant and there are constants CT > 0 and λT ∈ (0, 1) such that

||DT n(v)|| ≤ CTλ
n
T ||v|| for v ∈ Es

x, n ≥ 0

||DT−n(v)|| ≤ CTλ
n
T ||v|| for v ∈ Eu

x , n ≥ 0. (9.2)

(at singular points x ∈ ∂Ω ∪ T−1(∂Ω) a one-sided derivative DT can be
defined and used in (9.2)). The Anosov splitting (9.1) depends on x con-
tinuously, it is even Hölder continuous, since such is the splitting (8.1). At
every point x ∈ Ri ∈ R the curves W s,u

x (Ri) are stable and unstable fibers
for T , respectively. We denote by Λu(x) the Jacobian of the linear map
DT : Eu

x → Eu
Tx. This is also a Hölder continuous function on Ω.

Remark. The map T : Ω → Ω is not exactly an Anosov diffeomorphism,
since Ω is disconnected and T is discontinuous on Ω ∩ T−1∂Ω. Nontheless,
all the main results by Sinai [32, 34] and Bowen [6] apply to T , because the
discontinuity lines of both T and T−1 coincide with some stable and unstable
fibers.
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The invariant measure µ of the flow φt induces an invariant measure ν
for the Poincaré map T : Ω → Ω. For any Borel A ⊂ Ω and a small t > 0
we define ν by µ(φ[0,t]A) = tν(A). The measure ν is a SBR measure for the
map T , i.e. its conditional measures on unstable fibers W u

x (Ri), x ∈ Ri, are
absolutely continuous with respect to the Riemannian length. The ergodicity
of ν is obviously equivalent to that of µ. The measure ν need not be mixing,
however, despite the mixing property of µ. If ν is not mixing, we have
Ω = Ω(1) ∪ · · · ∪ Ω(r), with Ω(i) ∩ Ω(j) = ∅ for i 6= j, so that T (Ω(i)) = Ω(i+1)

(with Ω(r+1) = Ω(1), of course), every Ω(i) is a union of some rectangles of R
and the map T r is mixing on Ω(1), see [7]. Then we replace Ω by Ω(1), the
function l(x) by l(x) + · · ·+ l(T r−1x) and T by T r. Thus, we can (and will)
always assume that the measure ν is mixing.

We now represent every point y ∈M by a unique pair

y = (x, s) : x ∈ Ω, 0 ≤ s < l(x), y = φsx

Then the flow φt : M → M becomes isomorphic to a suspension flow built
under l(x) over the map T : Ω → Ω. This is called a special representation
of the flow φt. We will use the notations of Section 2 and denote this flow by
Φt : M→M. The metric ρ on Ω is induced by the Riemannian metric onM ,
and its extension to M was defined in Sect. 2. The ‘coordinate’ projections
π1 : M→ Ω and S : M→ [0, lmax) are defined by π1(y) = x and S(y) = s.

The isomorphism between (M,φt) and (M,Φt) is understood in the mea-
sure theoretic sense: it is a one-to-one map ψ : M →M that preserves the
dynamics, ψ ◦ φt = Φt ◦ ψ, and the invariant measure (we even use here the
same notations Ω, T, l(x), µ, ν as in Section 2, but there will be no confusion).
We often denote ψ-isomorphic subsets of M and M by the same symbols,
slightly abusing notations.

The isomorphism ψ : M →M does not, however, preserve the metric or
even the topology of M , because ψ is only a piecewise smooth map. It is
locally a diffeomorphism with bounded derivatives, but it has a finite number
of discontinuity surfaces in M . The union of those is Ω ∪ Ω1, where

Ω1 = π−1
1 (∂Ω) = {(x, s) : x ∈ ∂Ω, 0 ≤ s < l(x)} (9.3)

The set Ω ∪ Ω1 is a finite union of smooth compact surfaces in M . It is the
preimage of the boundary ∂M under the natural continuous extension of
ψ−1 to the closure M̄. We call the smooth components of Ω1 ‘side walls’ of
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M, thinking of Ω as its ‘floor’. We also put Ωu,s
1 = π−1

1 (∂u,sΩ). Note that
φt(Ωs

1) ⊂ Ωs
1 and φ−t(Ωu

1) ⊂ Ωu
1 for all t > 0.

The discontinuities of ψ will not cause any problems for our main results.
Indeed, if F is a generalized Hölder continuous function on M , then so is the
function F = F ◦ ψ−1 on M. Moreover, the generalized Hölder exponent α
for F , recall (2.2), will be also such for F . The ratio of the α-variations of
these two functions, defined by (2.3), is uniformly bounded:

0 < C−1 ≤ varα(F )/varα(F) ≤ C <∞

where C is determined by α and R. Therefore, we obtain

Proposition 9.2 If the stretched exponential bound (7.5) holds for the flow
Φt : M→M, then it also holds for φt : M →M .

The ceiling function l(x) on int Ω = ∪iR∗i is piecewise smooth with a
finite number of discontinuity lines, T−1(∂Ω) \ ∂Ω, coinciding with some
stable fibers of T (we can disregard the discontinuities of l(x) on ∂Ω since
ν(∂Ω) = 0). The ε-neighborhood of these lines has ν-measure < const · ε
because ν is a SBR measure. Thus, l(x) belongs in GHαl

(Ω) with αl = 1,
and we get Assumption L1 in Section 2. Assumption L2 is also ensured by
the lower bound on l(x): l(x) ≥ lmin > 0. It will be enough, hence, to prove
Assumptions T and F, and then Theorem 1.1 will follow from Theorem 7.2.

10 Symbolic dynamics and Gibbs measures

Here we invoke the symbolic dynamics generated by the Markov family R
and study the necessary properties of Gibbs measures.

We recall the basic definitions of symbolic dynamics. A partition matrix
A = A(R) is defined by

Aij =

{
1 if R∗i ∩ T−1R∗j 6= ∅
0 otherwise

(10.1)

Let J = {1, . . . , I} and Σ = J ZZ denote the set of all doubly infinite
sequences ω = {ωi}∞−∞. Fix a d < 1 and a metric ρd on Σ such that
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ρd(ω
′, ω′′) = dn, where n = max{n ≥ 0 : ω′i = ω′′i ∀|i| < n}. Consider

the set
ΣA = {ω ∈ Σ : Aωiωi+1

= 1 for all −∞ < i <∞}

and a left shift homeomorphism σ : ΣA → ΣA defined by (σ(ω))i = ωi+1.
The system (ΣA, σ) is called a subshift of finite type, or a topological Markov
chain.

Fact [5]. There is a continuous onto map π : ΣA → Ω such that3

(i) π(ω) ∈ Rω0 ;
(ii) the projection π is one-to-one on the σ-invariant subset Σ∗

A := π−1(Ω∗),
and on this subset we have T ◦ π = π ◦ σ

Remark. The identity T ◦π = π ◦σ may fail on ΣA \Σ∗
A, but it is possible

[5] to slightly redefine the function l(x) (and hence the map T (x) = φl(x)(x))
on ∂Ω so that this identity will hold on the entire ΣA. This will not be
important for us, however.

The subshift (ΣA, σ) is topologically transitive and topologically mixing.
Equivalently, the matrix A is irreducible and aperiodic, i.e. AK0 contains no
zeroes for some K0 > 0.

For any Hölder continuous function h on ΣA (with respect to the metric
ρd on ΣA) there is a (unique) Gibbs σ-invariant measure νhΣ on ΣA, see [6, 30]
for definitions and basic properties of Gibbs measures. We only recall that
there are 0 < C1 < C2 <∞ and −∞ < P <∞ such that for any m ≥ 1 and
all ω′ ∈ ΣA we have

C1 ≤
νhΣ{ω : ωi = ω′i ∀i = 0, . . . ,m− 1}

exp[h(ω′) + h(σω′) + · · ·+ h(σm−1ω′)− Pm]
≤ C2 (10.2)

Here P = P (h) is the so called the topological pressure of h. For any Hölder
continuous function f on Ω the function h = f ◦ π is [6] Hölder continuous
on ΣA. Then the Gibbs measure νhΣ projected down to Ω is called the Gibbs
measure νfΩ on Ω generated by the function f (or the equilibrium state for the
potential function f). It is T -invariant, and since the shift (ΣA, σ) is topolog-
ically mixing, the measure νfΩ is ergodic and mixing. It is also Bernoulli and
enjoys strong statistical properties [6]. For any f we have νfΩ(Ω \ Ω∗) = 0.

3The map π is Lipschitz continuous [5] with respect to the metric ρd for some d > 0.
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Fact. The SBR measure ν for the map T is a Gibbs measure for a Hölder
continuous potential function g on Ω. Moreover, the function g can be chosen
so that
(i) for some mg ≥ 1 and bg > 0 and for all x ∈ Ω we have

g(x) + g(Tx) + · · ·+ g(Tmg−1x) ≤ −bg < 0 (10.3)

(ii) the topological pressure P = P (g ◦ π) is zero.

Remark. This fact follows from [34, 6] with the function g1(x) = − ln Λu(x).
The bound (10.3) follows from (9.2). Alternatively, one can invoke the results
by Bowen and Ruelle for Axiom A flows [7, Propositions 3.1 and 4.4]. The
above fact then readily follows for the function g2(x) = − ln Λu

l(x)(x), where
Λu
t (y) was defined in Sect. 8. The bound (10.3) then follows from (A2). Note

that the functions g1(x) and g2(x) are homologous, i.e., there exists another
Hölder continuous function h on Ω, such that g2(x) = g1(x) + h(Tx)− h(x).
Due to this, g1(x) and g2(x) have the same equilibrium state (= ν) and the
same pressure (= 0).

Next, for any two integers −∞ < p ≤ 0 ≤ q < ∞ and a symbolic string
(ω′p, ω

′
p+1, . . . , ω

′
q) ∈ J |p|+q the set

Cp,q = Cp,q(ω
′
p, . . . , ω

′
q) = {ω ∈ ΣA : ωi = ω′i for all p ≤ i ≤ q}

is called a cylinder (of length q − p + 1, or a cylinder ‘from p to q’). The
projection π(Cp,q) of any cylinder down to Ω is a proper connected rectangle
R ⊂ Ω (more precisely, R ⊂ Rω′0

∈ R).

Lemma 10.1 There are positive constants b1, b2, b3 and λ1, λ2, λ3 ∈ (0, 1)
determined by the Markov family R such that for every cylinder Cp,q the

rectangle R = π(Cp,q) has the diameter less than b1λ
min{|p|,q}
1 , and the measure

b2λ
|p|+q
2 ≤ ν(R) ≤ b3λ

|p|+q
3

Proof. The bound on the diameter follows from (9.2). The bounds on
the measure readily follow from (10.2), since the potential g of the measure
ν satisfies (10.3) and its topological pressure P is zero. Hence the lemma.

Remark. This lemma can be easily proved for an arbitrary Gibbs measure
νhΩ, with constants bi, λi depending continuously on the potential function h,
but we will not need this.
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11 Markov partitions for the map T

Let Υ be a finite partition of ΣA into disjoint cylinders (generally, of different
lengths). Its projection π(Υ) = {π(C) : C ∈ Υ} down to Ω will be a finite
covering of Ω by proper connected rectangles, which can intersect only in
boundary points.

Definition [6]. A finite covering of Ω by closed proper rectangles is called
a Markov partition for the map T if they intersect only in boundary points,
and for any two rectangles R′, R′′ and any point x ∈ (R′)∗ ∩ T−1(R′′)∗ we
have W s

x(R
′) ⊂ T−1(W s

Tx(R
′′)) and T (W u

x (R′)) ⊃ W u
Tx(R

′′).

The Markovian property of the family R implies that the partition of Ω
into the rectangles R1, . . . , RI is a Markov partition for the map T . Let us
note that there is a different definition and construction of Markov partitions
for Anosov flows, due to Ratner [27], but we will not use those in this paper.

Definition. We say that a finite partition Υ of ΣA into cylinders satisfies the
Markov condition (MC) if for any two cylinders C ′ = Cp′,q′ and C ′′ = Cp′′,q′′
in Υ such that σ(C ′) ∩ C ′′ 6= ∅ we have p′ − 1 ≤ p′′ and q′ − 1 ≤ q′′.

Lemma 11.1 Let Υ be a finite partition of ΣA into cylinders. The covering
π(Υ) of Ω is a Markov partition iff the partition Υ satisfies the Markov
condition (MC).

The proof is a direct inspection, and we omit it. We will only work with
partitions Υ of ΣA satisfying the Markov condition.

The ‘longer’ the cylinders C ∈ Υ are, the smaller are the rectangles of
the Markov partition π(Υ). It is customary to refine Markov partitions by
taking R−n,n = T−nR ∨ · · · ∨ T−nR, which corresponds to the (canonical)
partition Υn of ΣA into cylinders of constant length, C−n,n, i.e. all cylinders
‘from −n to n’. We will also need partitions into cylinders of variable length.
For any finite partition Υ of ΣA into cylinders we put

rmin(Υ) = min
Cp,q∈Υ

{|p|, q} and rmax(Υ) = max
Cp,q∈Υ

{|p|, q}

Lemma 11.2 Let Cp,q ⊂ ΣA be a cylinder, r = min{|p|, q}, and x an ar-
bitrary point in the rectangle R′ = π(Cp,q) ⊂ Ω. Then there is a product
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measure dνpR′ = dνp,uR′ × dνp,sR′ on R′, where the measures dνp,uR′ and dνp,sR′ are
defined on some W u

x (R′) and W s
x(R

′), respectively, such that νpR′ is equivalent
to ν on R′ and

exp (−b4λr4) ≤
dνpR′

dν
≤ exp (b4λ

r
4) (11.1)

Here b4 > 0 and λ4 ∈ (0, 1) are constants determined by the Markov family
R.

Proof. Our proof of this lemma works for an arbitrary Gibbs measure νhΣ,
where h is a Hölder continuous function on ΣA. For any n ≥ 1 let

varn(h) = sup{|h(ω)− h(ω′)| : ωi = ω′i ∀|i| ≤ n}

We pick an arbitrary ω(0) ∈ Cp,q. Let

Cu
p,q = {ω ∈ ΣA : ωi = ω

(0)
i ∀i ≤ q}

and
Cs
p,q = {ω ∈ ΣA : ωi = ω

(0)
i ∀i ≥ p}

Note that π(Cu,s
p,q ) = W u,s

x (R′), where x = π(ω(0)). We then define a product
measure on the cylinder Cp,q obtained by multiplying two conditional mea-
sures generated by νhΣ on Cu

p,q and Cs
p,q, respectively, and then multiplying

the product by a constant factor, νhΣ(Cp,q).
Gibbs measures have locally a product structure, see, e.g., [17]. Haydn

[17] obtained an exact formula for the Radon-Nikodym derivative involved
in (11.1), from which it follows that

exp

[
−2

∞∑
n=r

varn(h)

]
≤ dνpR′

dν
≤ exp

[
2

∞∑
n=r

varn(h)

]
(11.2)

We also mention another way to prove (11.2), suggested by K. Khanin. A
standard definition of Gibbs measures is based on its conditional distributions
on finite cylinders with fixed boundary conditions, see, e.g., Ruelle’s book
[30]. We can specify the boundary conditions by the above element ω(0) ∈ ΣA.
Then (11.2) can be obtained by a direct (but lengthy) calculation.

Now, since the function h is Hölder continuous on ΣA, we have varn(h) ≤
chβ

n
h for some ch > 0 and βh ∈ (0, 1). Lemma 11.2 then follows from (11.2).
Note that the values of b4 and λ4 depend continuously on ch and βh.
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The next lemma is specific for SBR measures. Recall [6] that R′′ ⊂ R′

is called a u-subrectangle in a rectangle R′ if W u
x (R′) ⊂ R′′ for all x ∈ R′′.

Similarly, R′′ ⊂ R′ is an s-subrectangle in R′ if W s
x(R

′) ⊂ R′′ for all x ∈ R′′.

Lemma 11.3 There is a constant λ5 = λ5(R) ∈ (0, 1) such that for any
s-subrectangle R′′ ⊂ R′ of any rectangle R′ ⊂ Ω and any point x ∈ R′′ we
have

λ5
|W u

x (R′′)|
|W u

x (R′)|
≤ ν(R′′)

ν(R′)
≤ λ−1

5

|W u
x (R′′)|

|W u
x (R′)|

where | · | stands for the Riemannian length of a curve.

Proof. First, we show that for any rectangle R′ ⊂ Ω and x′, x′′ ∈ R′ we
have

λ6 ≤ |W u
x′(R

′)|/|W u
x′′(R

′)| ≤ λ−1
6 (11.3)

for some constant λ6 = λ6(R) ∈ (0, 1). Indeed, let H : W u
x′(R

′) → W u
x′′(R

′)
be the holonomy map defined by H(z) = W s

z (R
′) ∩W u

x′′(R
′). Let DH(z) for

z ∈ W u
x′(R

′) be the Jacobian of H with respect to the Riemannian length on
fibers. Then Anosov-Sinai’s formula [3, Equation (5.3)] says that

DH(z) = lim
n→∞

n∏
i=0

Λu(T iz)

Λu(T iH(z))
(11.4)

Since Λu(·) is a Hölder continuous function on Ω and the points z and H(z)
belong to the same stable fiber, we get (11.3). Now, Lemma 11.3 follows
from (8.3).

Proposition 11.4 Let Υ be a finite partition of ΣA into cylinders that satisfy
the Markov condition (MC). Then the partition A = π(Υ) of Ω enjoys the
following properties (in notations of Section 3):

(i) D = D(A) ≤ b1λ
rmin(Υ)
1 ;

(ii) b2λ
2rmax(Υ)
2 ≤ ν(A) ≤ b3λ

2rmin(Υ)
3 for every A ∈ A;

(iii) χn ≤ exp
(
4b4λ

rmin(Υ)
4

)
− 1 for all n ≥ 1.

Proof. The parts (i) and (ii) follow from Lemma 10.1, and for these
we do not need the Markov condition (MC). The proof of (iii) is based on
the fact that the atoms Ai0 , . . . , Ai−n in (3.3) are rectangles of the Markov
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partition A. The set Ai−1 ∩ T−1Ai0 is then an s-subrectangle in Ai−1 and
Ai−1 ∩ TAi−2 ∩ · · · ∩ T n−1Ai−n is a u-subrectangle in Ai−1 . The existence of
the product measure νpAi−1

stated in Lemma 11.2 then readily gives

νpAi−1
(T−1Ai0/Ai−1 ∩ · · · ∩ T n−1Ai−n) = νpAi−1

(T−1Ai0/Ai−1)

and so

exp
(
−4b4λ

rmin(Υ)
4

)
≤ ν(Ai0/TAi−1 ∩ · · · ∩ T nAi−n)

ν(Ai0/TAi−1)
≤ exp

(
4b4λ

rmin(Υ)
4

)
The part (iii) now easily follows. Proposition 11.4 is proved.

Corollary 11.5 Let 0 < d1 < d2 <∞. Then for any m ≥ 1 any partition Υ
of ΣA into cylinders that satisfies the Markov condition (MC) and such that

d1m ≤ rmin(Υ) ≤ rmax(Υ) ≤ d2m (11.5)

will generate a partition A = π(Υ) of Ω which satisfies Assumption T for
any H ≥ 1 with some ai, ci depending on the Markov family R and d1, d2.

Remarks. We actually proved something more than Assumption T, be-
cause χn ≤ c4e

−a4m for all n ≥ 1. Assumption T is weak enough, it can be
easily proved for arbitrary Anosov or Axiom A flows with Gibbs measures.

12 Uniform transitivity of unstable fibers

Here we prove an auxiliary property of Anosov flows with mixing Gibbs
measures.

Let Wu ⊂ M be an unstable fiber. Its image, φtWu, as t grows, gets
longer, and it will fill the space M more and more densely. We will estimate,
roughly speaking, how much of the fiber φtWu ends up in a given domain
U ⊂M .

Without loss of generality, we assume that there is a rectangle R′ =
π(Cp′,q′), for some cylinder Cp′,q′ ⊂ ΣA, such that π1(Wu) = W u

π1(y)(R
′)

for any y ∈ Wu. Let ν be an arbitrary Gibbs measure on Ω and µ the
corresponding measure on M, and thus on M . The measure µ is then a
mixing Gibbs measure for the suspension flow Φt : M → M, see [7]. The
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Gibbs measure ν, restricted on R′, induces a one-dimensional probability
measure on the unstable fiber π1(Wu). We lift this measure up onto Wu

(under π−1
1 ) and denote the obtained measure on Wu by νu0 . For every t > 0

we denote by νut the image of νu0 on the fiber φtWu.

Lemma 12.1 For any open domain U ⊂M there are constants βU > 0 and
tU > 0 such that for all t > tU we have

νut1+t(U) ≥ βU > 0

where t1 = q′ · lmax. The constants βU and tU are independent of the fiber Wu

(but they depend on the Gibbs measure ν, see the end of this section).

Remark. In particular, ν can be the SBR measure for T . In that case,
in view of (8.3), we can simply replace νu0 by the (normalized) Riemannian
length onWu, and the statement of Lemma 12.1 will hold true. For this case,
a discrete-time version of the lemma was proved in [9], and it was called there
the uniform transitivity of unstable fibers.

Before we start the proof, we introduce some convenient terminology. Let
R ⊂ Ω be a proper connected rectangle. For small 0 < s1 < s2 we call the
set

X = φ[s1,s2]R = R× [s1, s2] ⊂M

a box. For all y ∈ X we denote by

Wwu,ws
y (X) = Wwu,ws

y ∩X and Wu,s
y (X) = Wu,s

y ∩X

the unstable and stable leaves and unstable and stable fibers in the box X,
respectively. Every box X is a closed connected domain in M with piecewise
smooth boundary consisting of six faces. These include two stable leaves,
two unstable leaves and two surfaces parallel to R ⊂ Ω, which we call the
top and bottom of X. Every box X is foliated by both stable and unstable
leaves, which are canonically isomorphic in the following natural sense: the
map H : Wwu

y′ (X) → Wwu
y′′ (X) defined by H(x, s) = (W s

x × {s}) ∩ Wwu
y′′ is

one-to-one.
On the contrary, the unstable and stable fibersWu,s

y (X) are not all canon-
ically isomorphic (in the sense of Sect. 8). Some of them may cross all stable
and unstable leavesWws,wu

y (X), respectively, and we call them full-size fibers.
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Some other fibers in X may terminate on its top or bottom, and will not be
then full-size.

Proof of Lemma 12.1. Pick a ball B2r(y0) ⊂ U of some radius 2r > 0
centered at some y0 ∈ U . Let v1 = supy∈U ||dφt(y)/dt|| be the maximum
speed of the flow in U . We put

τ = min{lmin/10, r/(10v1), r/10}

For any q ≥ 1 we take the partition Υq into cylinders C−q,q, see Section 11.

It generates a Markov partition Aq = π(Υq) = {A(q)
1 , . . . , A

(q)
J } of the space

Ω. Consider closed boxes

Yk,j = φ[kτ,(k+2)τ ]A
(q)
j ⊂M

for 1 ≤ j ≤ J and k = 0, 1, . . . kmax = lmax/τ + 1. There are K = Jkmax of
those boxes, and they cover M . Moreover, they overlap, so that every point
of M is covered at least twice.

We now pick q ≥ 1 large enough (thus making the rectangles A
(q)
j ∈ Aq

small enough compared to τ), so that for every y ∈ Yk,j the projection
S(Wu

y (Yk,j)) of the curve Wu
y (Yk,j) on the s-axis in M will be a segment

of length < τ . This is clearly possible due to the transversality of Ω and
the flow φt. Then it is easy to check that any point y ∈ M belongs to a
full-size unstable fiber in some box Yk,j. Consequently, if an unstable fiber
Wu

1 ⊂ M terminates on stable ‘side walls’ Ωs
1, then it can be covered by

full-size unstable fibers

Wu
1 = Wu

y1
(Yk1,j1) ∪ · · · ∪Wu

yL
(YkL,jL) (12.1)

i.e. every Wu
yi

(Yki,ji) crosses all stable leaves in the box Yki,ji .

By increasing q, if necessary, we can ensure that |Ws
y(Yk,j)| ≤ C−1

φ r/2
for all y ∈ Yk,j. It is then clear that for any Yk,j, any t > 0 and any point
y ∈ Yk,j ∩ φ−tBr(y0) we have Wws

y (Yk,j) ⊂ φ−tB2r(y0). The mixing property
of the measure µ on M implies that there is a tU > 0 such that for all Yk,j
we have

µ(Yk,j ∩ φ−tUBr(y0)) ≥ 0.5µ(Yk,j)µ(Br(y0))

(tU also depends on the domains Yk,j, i.e. on q and τ , but these are deter-
mined by U). Hence, for every k, j there is a subset Y s

k,j ⊂ Yk,j which is a
union of stable leaves in Yk,j and

Y s
k,j ⊂ φ−tUU and µ(Y s

k,j) > 0.5µ(Yk,j)µ(Br(y0)) (12.2)
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The set
Ask,j = φ[−lmax−3τ,0]Y s

k,j ∩ A
(q)
j

is an s-subrectangle in the rectangle A
(q)
j . Then the bound in (12.2) can be

rewritten as
ν(Ask,j) > 0.5ν(A

(q)
j )µ(Br(y0))

Note that all our constructions were so far independent of the fiber Wu.
We now take the unstable fiber Wu. It is clear that for every t > t1 the

fiber φtWu terminates on Ωs
1. Due to (12.1) there is a box Ykt,jt in which the

full-size unstable fibers Wu
l,t ⊂ φtWu ∩ Ykt,jt , l ≥ 1, satisfy

νut (∪lWu
l,t) ≥ 1/K (12.3)

The curves π1(Wu
l,t), l ≥ 1, are unstable fibers in the rectangle A

(q)
jt , which

we denote by W u
l,t. Let νul,t be the one-dimensional probability measure on

W u
l,t induced by the Gibbs measure ν on A

(q)
jt .

Let R′ = A
(q)
jt and dνpR′ = dνp,uR′ × dνp,sR′ be the product measure on R′

involved in Lemma 11.2. For every l we can certainly pick dνp,uR′ = νul,t, cf.
the proof of Lemma 11.2. It is then immediate that

νul,t(A
s
kt,jt) = νpR′(Askt,jt)/ν

p
R′(R′)

≥ exp(2b4λ
q
4) · ν(Askt,jt)/ν(R

′)

≥ 0.5 · exp(2b4λ
q
4) · µ(Br(y0))

Summing up over l and combining with (12.3) gives νut (Y
s
kt,jt) ≥ K−1 ·

0.5 exp(2b4λ
q
4)µ(Br(y0)). Now, Lemma 12.1 follows with βU = (2K)−1 exp(2b4λ

q
4)µ(Br(y0)).

Remark. For any U ⊂ M the values of tU and βU depend on the Gibbs
measure µ continuously (in the weak topology of measures), but certainly
not uniformly in U .

13 Uniform nonintegrability of foliations

We now turn to the proof of Assumption F. For this, we need an extra
assumption on the Anosov flow φt.
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Denote by Br(y) ⊂M an open ball of radius r > 0 centered at y ∈M . If r
is small enough, then both families of stable and unstable fibers are orientable
inside Br(y). Pick a ȳ0 ∈ M , a small r0 > 0 and fix some orientations of
the families of stable and unstable fibers in B0 = Br0(ȳ0). Let y ∈ B0 and
δ < r0 a small number. On the fibers Wu

y and Ws
y we take two positively

oriented segments of length δ, starting at y and ending at some y1 ∈ Wu
y and

y2 ∈ Ws
y , respectively. We denote by τy(δ) = τ(y1, y2) the temporal distance

between the fibers Wu
y2

and Ws
y1

defined in Section 8.
The foliations by local stable and unstable fibers are said to be jointly

integrable [24] in B0 if τy(δ) = 0 for all y ∈ B0 and small δ > 0. In that case
those are subfoliations of the same C1 foliation of B0 by surfaces. Plante’s [24]
results imply that the flow φt is topologically mixing iff its stable and unstable
foliations are not jointly integrable in some ball B0. Our next assumption is
a sort of ‘uniform nonitegrability’ for stable and unstable foliations:

(A5) there is an open ball B0 = Br0(ȳ0) ⊂ M where both families of stable
and unstable fibers are orientable, and for some orientation we have, at every
y ∈ B0,

0 < d < limδ→0

τy(δ)

δ2
≤ limδ→0

τy(δ)

δ2
< d <∞ (13.1)

where d and d do not depend on y.

Remarks. Obviously, (A5) implies the previous assumption (A4). The
lower bound (d > 0) is a principal one here. The upper bound (d < ∞)
is assumed for mere convenience. We could relax it, but this would cause
unpleasant complications in our proofs.

Remark. One can also measure the length of fibers in the metric of M
rather than M . This will not alter (A5), only the values of d, d may change.
All the subsequent arguments in this section are valid for both metrics.

We can assume that the radius r0 of the ball B0 is so small that there are
local coordinates in B0 in which for any points y, y′ ∈ B0 the angles between
Euy and Euy′ , and also between Esy and Esy′ do not exceed γ/100, where γ is the
smallest angle between Eφy , Euy and Esy . This means that all the stable fibers
in B0 are almost parallel, and so are all unstable fibers. We also can assume
that the speed of the flow, |dφt/dt|, is almost constant in B0, i.e. for some
v̄0 > 0 we have

0.99v̄0 ≤ |dφt/dt| ≤ 1.01v̄0
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Without loss of generality, we can assume that v̄0 = 1 (this amounts to just a
rescaling of time or length). In the metric of M we always have dΦt/dt = 1.

For two points y, y′ on the same local unstable (or stable) fiber we will
denote by |y− y′|u (resp., |y− y′|s) the length of that fiber between y and y′.

For any two unstable fibers Wu
1 ,Wu

2 ⊂ B0 denote by H : Wu
1 →Wu

2 the
holonomy map, see Sect. 8. Let DH(y) be the Jacobian of H with respect
to the length on unstable fibers.

Lemma 13.1 For any two unstable fibers Wu
1 ,Wu

2 ∈ B0 the Jacobian DH
is uniformly bounded away from 0 and ∞. Moreover, by making the ball B0

smaller if necessary, we can ensure that 0.99 ≤ DH(y) ≤ 1.01 for all y ∈ Wu
1

at which H(y) is defined.

Proof. Let Wwu
2 = φ[−r0,r0]Wu

2 . Put y∗ = Ws
y ∩ Wwu

2 . Denote by H∗
the holonomy map Wu

1 → Wu
y∗ . (Note that H∗ depends on y.) There is a

|τ∗| < r0 such that φτ∗Wu
y∗ = Wu

2 . Then we have DH(y) = DH∗(y) ·Λu
τ∗(y∗).

For the Jacobian DH∗(y) an analog of Anosov-Sinai formula (11.4) holds,
which says that DH∗(y) = limt→∞ Λu

t (y)/Λ
u
t (y∗). The existence of this limit

and its closeness to one follows from the fact that y∗ ∈ Ws
y , and the function

Λu
t (·) is Hölder continuous on M for any t. Lemma 13.1 is proved.

Remark. Similarly, the Jacobian of the holonomy map between any two
stable fibers in B0 will be in the interval [0.99, 1.01].

Let 0 < r1 < r0/1000, so that r1 � r0.

Definition. We call an H-frame any triple of fibers {Ws
y0
,Wu

y1
,Wu

y2
} lying

in the ball B0, all terminating on ∂B0 such that
(i) y0 ∈ Br1(ȳ0) and y1, y2 ∈ Ws

y0
;

(ii) the point y0 lies between y1 and y2 on the fiber Ws
y0

, and this fiber is
positively oriented from y1 to y2;
(iii) 3r1 < |yl − y0|s < 5r1 for l = 1, 2.
One can visualize an H-frame as a letter H, it consists of two unstable fibers
joined by a stable one.

For any H-frame {Ws
y0
,Wu

y1
,Wu

y2
} and any y ∈ Wu

y1
we denote by τ∗(y) =

τ(y, y2) the temporal distance between the fibers Wu
y2

and Ws
y . Our assump-

tion (A5), along with Lemma 13.1 and the subsequent remark, implies that
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the function τ∗(y) is monotone increasing as y moves alongWu
y1

in the positive
direction, and

4r1d ≤
|τ∗(y′)− τ∗(y

′′)|
|y′ − y′′|u

≤ 12r1d (13.2)

for all y′, y′′ ∈ Wu
y1

such that max{|y′ − y1|u, |y′′ − y1|u} < 100r1.
We now fix an H-frame {Ws

z0
,Wu

z1
,Wu

z2
} with z0 = ȳ0, the center of the

ball B0, and |z1− z0|s = |z2− z0|s = 4r1. Let Ds
r(z1) and Ds

r(z2) be two open
discs on the surfaceWws

z0
with a small radius 0 < r < r1 centered at z1 and z2,

respectively. Denote by U1
r and U2

r the unions of all local unstable fibers in B0

terminating on ∂B0 and crossing the discs Ds
r(z1) and Ds

r(z2), respectively.
For small r, the set U1

r and U2
r are kind of tubular neighborhoods of the

fibers Wu
z1

and Wu
z2

, respectively. They are ‘distorted’ cylinders (of radius r)
with axes Wu

zl
, l = 1, 2. We put r = r2 = r2

1d, so that r2 � r1. Then (13.2)
immediately implies

Proposition 13.2 Let y′1 ∈ Ds
r2

(z1) and y′2 ∈ Ds
r2

(z2). Then there is a local
stable fiber Ws

y0
for some y0 ∈ Br1(ȳ0) that crosses the unstable fibers Wu

y′1
and Wu

y′2
at some points y1 and y2, respectively. The points y1 and y2 lie in

the r1-neighborhoods of the discs Ds
r2

(z1) and Ds
r2

(z2), respectively.

Remark. All triples of fibers {Ws
y0
,Wu

y1
,Wu

y2
} involved in this proposition

are H-frames. In other words, we have plenty of H-frames around: one can
take any pair of unstable fiber Wu

1 ∈ U1
r2

and Wu
2 ∈ U2

r2
and join them by a

stable fiber Ws making an H-frame.

Note that all the points zl, y
′
l, yl, l = 1, 2, in the above constructions, and

their r1-neighborhoods, are in the ball B20r1(ȳ0). We put B1 = B50r1(ȳ0),
so that B1 ⊂ B0. Without loss of generality we can assume that there
is a cylinder Cp0,q0 ⊂ ΣA such that the rectangle R0 = π(Cp0,q0) satisfies
π1(B1) ⊂ R0 ⊂ π1(B0) and there is a box

Y = φ[s1,s2]R0 = R0 × [s1, s2]

such that B1 ⊂ Y ⊂ B0.

Remark. In Sections 14-15 three extra conditions, (B1)-(B3), will be
imposed on domains Y,B1, B0 and the values of r0, r1, r2. After that all of
them will be fixed.
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We now construct special tubular neighborhoods of the middle bar (stable
fiber) of an H-frame.

For any H-frame {Ws
y0
,Wu

y1
,Wu

y2
} and l = 1, 2 let Du

ε (yl) be a disc on
the surface Wwu

yl
centered at yl with radius ε ∈ (0, r1). Due to (A5) and

Lemma 13.1, for any point y ∈ Du
ε (yl) we have |τ(y, y3−l)| ≤ d0ε, where

d0 = 15r1d + 2. For r1 small enough, we have d0 ≤ 3. Let Vε ⊂ Y be the
union of stable fibers terminating on ∂Y that cross both discs Du

ε (y1) and
Du
ε (y2). Then Vε is a sort of tubular neighborhood of the stable fiber Ws

y0
, it

is a ‘distorted’ cylinder of radius ε stretching across the box Y . We call Vε
a stable ε-tube corresponding to the given H-frame. Our previous estimates
imply that

Vε ∩Wwu
yl
⊃ Du

d−1
0 ε

(yl) ⊃ Du
ε/3(yl) (13.3)

for l = 1, 2.

Lemma 13.3 Let {Ws
y0
,Wu

y1
,Wu

y2
} be an H-frame. For all ε ∈ (0, r1) its

stable ε-tube Vε satisfies µ(Vε) > κ1ε
2, where κ1 = κ1(Y ) > 0 does not

depend on the frame.

Proof. Due to (13.3), it is enough to show that ν(π1(Vε)) > κ′1ε with some
κ′1 = κ′1(Y ) > 0. Put x1 = π1(y1) ∈ R0. The set π1(Vε) is an s-subrectangle
in R0 such that |W u

x1
(π1(Vε))| > κ′′1ε with some κ′′1 = κ′′1(Y ) > 0, due to

(13.3) and the transversality of Ω and the flow φt. Now the result follows
from Lemma 11.3. Lemma 13.3 is proved.

Remark. The proof of this lemma is the only place where we rely on
the fact that µ is the SBR measure (otherwise Lemma 11.3 could not be
applied). Lemma 13.3 will be only used at the very end of Section 16. All
the other arguments in Sections 8–16 hold true for arbitrary Gibbs measures.
It would be desirable to extend Theorem 1.1 to arbitrary Gibbs measures,
but for its present proof the use of Lemma 11.3 here and that of Lemma 13.3
in Section 16 seem to be indispensable.

14 Markov partitions for the flow Φ̂t

Let Υ be a finite partition of the symbolic space ΣA into cylinders, which sat-
isfy the Markov condition (MC). Its projection A = π(Υ) is then a Markov
partition {Ai} of the space Ω, whose atoms are connected rectangles. We
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consider A as a (mod 0) partition of the space Ω, neglecting possible inter-
sections of its atoms in boundary points.

For any such A and δ > 0 we can use the notations and constructions of
Sections 4-5 thinking of δ as a quantum of time. In particular, Φ̂t : M̂ → M̂
is a discrete approximation to the flow Φt : M → M, and T̂ = Φ̂δ, and
Â is a partition of M̂. Since the base Ω is a manifold with boundary, the
space M̂ is also a manifold with boundary. Every atom X ∈ Â is a box
in the terminology of Section 12. It is a direct product of the rectangle
A(X) = π1(X) ∈ A and the segment S(X) of length δ on the s axis. One
can think of M̂ as made of boxes, as of building blocks. They are piled up
over Ω lining up in nice columns, each consisting of identical boxes (in the
metric of M).

We call X ′ ∈ X a u-subbox (s-subbox) in a box X ∈ Â if X ′ = intX ′ and
X ′ is a connected union of some unstable (stable) leaves of X. Obviously, in
this case π1(X

′) is a u-subrectangle (s-subrectangle) of the rectangle A(X).
For any boxes X ′, X ′′ ∈ Â and n ≥ 1 the intersection T̂ nX ′ ∩X ′′ (with a

nonempty interior) consists of one or more u-subboxes inX ′′, and T̂−nX ′′∩X ′

will consist of s-subboxes in X ′. We refer to this as the Markov property of
the partition Â of M̂. One can restate the Markov property in this way: for
any stable leaf Wws

y (X) of any box X its image T̂ n(Wws
y (X)), n ≥ 1, lies

entirely in one atom of Â, and so does every preimage of any unstable leaf
of any box.

The ceiling function l(x) is C2 up to the singularity set ∂Ω ∪ T−1(∂Ω).
Due to Lemma 10.1 there is a constant b5 = b5(R) > 0 such that

osc (l, A) ≤ b5λ
rmin(Υ)
1 for any A ∈ A. (14.1)

Lemma 14.1 There is a constant b6 = b6(R) > 0 such that if δ ≥ b6λ
rmin(Υ)
1 ,

then every unstable leaf Wwu
y (X) of every box X ∈ Â will contain a full-size

unstable fiber. Likewise, every stable leaf in X must contain a full-size stable
fiber.

Proof. It is enough to establish the lemma for the bottom boxes X ∈ Â
only, i.e. those with S(X) = [0, δ], because the boxes in every column are
identical. Then the lemma readily follows from the transversality of the
cross-section Ω to the flow φt and from Lemma 10.1, which provides a bound
on diamA(X).
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Given a partition Υ, we fix

δ = max{b5, b6} · λrmin(Υ)
1 (14.2)

so that Lemma 14.1 will always apply. It also follows from (14.1) that

sup{|l(x)− l̂(x)| : x ∈ Ω} ≤ 3δ (14.3)

For δ small enough (� lmin) it is clear that the maps Φt and Φ̂t are close
to each other as long as |t| � δ−1. Precisely,

Lemma 14.2 Let y = (x, s) ∈M∩M̂ and yt = (xt, st) = Φty. Then either

min{st, l̂(xt)− st} ≤ 3δ(|t|/lmin + 2) (14.4)

or4

ρ(Φty, Φ̂ty) ≤ 3δ(|t|/lmin + 2) (14.5)

Proof. It is enough to do this for t > 0. The trajectory Φsy, 0 ≤ s ≤ t,
can cross the surface Ω not more than t/lmin + 1 times. Every time the
‘asynchronism’ between the two flows can grow by at most 3δ due to (14.3).
It may happen that the trajectories Φsy and Φ̂sy, 0 < s < t, cross Ω a
different number of times, and then we have (14.4). Otherwise we have
(14.5), and Lemma 14.2 is proved.

We now turn back to the constructions of Section 13, including the balls
B1, B0, the box Y and the quantities r2 � r1 � r0. By making all of these
smaller, if necessary, we can ensure two extra properties:

(B1) for any point y = (x, s) ∈ B0 we have s > r0 and l̂(x)− s > r0, so that
B0 is a way from the bottom and top of the manifold M̂.
(B2) for every y ∈ B1 we have S(Wu,s

y ∩ Y ) ⊂ [s1 + 2r1, s2 − 2r1].

Note that, in virtue of (B2), for every y ∈ B1 the fibers Wu,s
y (Y ) =

Wu,s
y ∩Y will be full-size in the box Y (crossing all the leaves of the opposite

foliation).

4the metric ρ defined in Sect. 2 is here simply the ‘distance in time’ along an orbit of
the flow.
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We will then consider only partitions Υ of ΣA into cylinders such that

rmin(Υ) ≥ max{|p0|, q0} and δ < r2/100 (14.6)

where δ is defined by (14.2). Let

0 < t ≤ lminr2/(20δ) (14.7)

and put n = [t/δ]. Let Xi ∈ Â. Consider closely the intersection T̂ nXi ∩ Y .
Pick a point y′ ∈ intXi with a full-size unstable fiber Wu

y′(Xi) (one exists
due to Lemma 14.1). Its image, Φt(Wu

y′(Xi)), may intersect the box Y in a

finite number of smooth curves. Denote by W̃ζ , ζ = 1, . . . , Zi, all of those
curves which (i) also intersect the smaller ball B1 and (ii) do not terminate
at the image of either endpoint of the original fiber Wu

y′(Xi). Due to (B2),

every curve W̃ζ in this collection crosses all the stable leaves of the box Y .
Next, for any ζ the set

Xζ
i = ∪y∈Φ−tW̃ζ

Wws
y (Xi)

is an s-subbox in Xi. We also put X̃ζ
i = T̂ n(Xζ

i ) = Φ̂nδ(Xζ
i ). Due to (B1),

(14.6), (14.7) and Lemma 14.2, the set X̃ζ
i lies in the εt-neighborhood of the

curve W̃ζ , with
εt = 3δt/lmin + 8δ < r2/4 (14.8)

In virtue of (B2), this set lies wholly in the box Y . According to the Markov
property of the partition Â, for every box Xl ⊂ Y the intersection X̃ζ

i ∩Xl

(if it has a nonempty interior) will be a u-subbox in Xl, which we denote by
X̃ζ
i [l]. Its projection π1(X̃

ζ
i [l]) ⊂ Ω will be a u-subrectangle in the rectangle

A(Xl) that covers the curve π1(W̃ζ) ∩A(Xl). The projection π1(X̃
ζ
i ) will be

then a long narrow u-subrectangle in the rectangle R0 = π1(Y ), completely
covering the curve π1(W̃ζ).

Summarizing, we may think of X̃ζ
i as a chain of u-subboxes in some

boxes Xl ⊂ Y . This chain stretches along the curve W̃ζ and stays in its
εt-neighborhood. For every rectangle A ∈ A in R0 that intersects the curve
π1(W̃ζ) there is exactly one box Xl in the column of boxes over A (i.e., one

with A(Xl) = A) which contains a nonempty u-subbox X̃ζ
i [l] of this chain.

A dual property, obviously, holds true for the set T̂−nXk ∩ Y for any box
Xk ∈ Â, under again the condition (14.7). That set contains the chains of
s-subboxes, X̃ζ

k , ζ = 1, . . . , Zk, lining up along stable fibers stretching across
the box Y . We also put X̃ζ

k [l] = X̃ζ
k ∩Xl.
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15 Synchronization

Here we construct a rich family of finite partitions of ΣA into cylinders that
enjoy a special property, which we call synchronization.

For any y ∈M and t > 0 denote by J(y, t) the number of times the reverse
trajectory φτy, −t < τ < 0, crosses the surface Ω. For any subset B ⊂M we
put J+(B, t) = max{J(y, t) : y ∈ B} and J−(B, t) = min{J(y, t) : y ∈ B}.
For any cylinder Cp,q ⊂ ΣA we put

M(Cp,q) = ψ−1(π−1
1 (π(Cp,q))) ⊂M

Next, for every large integer q̄ ≥ 1 we define an increasing sequence of
finite partitions, Υn,q̄, n ≥ 1, of ΣA into cylinders, such that for any atom
Cp,q ∈ Υn,q̄ we will have p ≤ −q̄ and q = q̄. Note first, that under these
conditions we will have rmin(Υn,q̄) = q̄ for all n ≥ 1, and so the value of
δ = δq̄ defined by (14.2) will not depend on n. We will also assume that q̄
is large enough, so that (14.6) holds. In particular, δ < lmin, so that we will
have J+(B, (n+ 1)δ) ≤ J+(B, nδ) + 1 for all n ≥ 1 and any B ⊂M .

Our definition of the sequence of partitions Υn,q̄ is recurrent in n. We put
Υ1,q̄ = Υq̄, a partition into cylinders C−q̄,q̄. For any n ≥ 2 and any atom Cp,q
of the partition Υn−1,q̄ we declare it an atom of Υn,q̄ if J+(M(Cp,q), nδ) ≤ |p|,
otherwise we subdivide it into ‘longer’ cylinders Cp−1,q ⊂ Cp,q declaring them
all atoms of Υn,q̄. Clearly, for every n ≥ 2 the cylinders Cp,q ∈ Υn,q̄ may have
different ‘lengths’ (different p’s but always q = q̄).

Note that for any n ≥ 1 and any Cp,q ∈ Υn,q̄ we have

J+(M(Cp,q), nδ) ≤ |p| (15.1)

and also
q̄ = rmin(Υn,q̄) ≤ rmax(Υn,q̄) ≤ max{q̄, J+(M,nδ)} (15.2)

Lemma 15.1 The partition Υn,q̄ satisfies the Markov condition (MC) for all
q̄ and n ≥ 1.

Proof. The proof is inductive on n. Obviously, Υ1,q̄ = Υq̄ satisfies (MC).
Suppose that (MC) is violated for Υn,q̄ but holds for Υn−1,q̄. This can only
happen if there are two cylinders C ′

p,q, C
′′
p−1,q ∈ Υn−1,q̄, σ(C ′

p,q) ⊃ C ′′
p−1,q, such

that J+(M(C ′
p,q), nδ) ≤ |p| and J+(M(C ′′

p−1,q), nδ) > |p − 1| = |p| + 1. In
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that case the cylinder C ′
p,q̄ is an atom of Υn,q̄, while C ′′

p−1,q̄ is not (it has to be
subdivided into C ′′′

p−2,q ⊂ C ′′
p−1,q). But this is impossible, since the inclusion

σ(C ′
p,q) ⊃ C ′′

p−1,q implies T (π(C ′
p,q)) ⊃ π(C ′′

p−1,q), so that J+(M(C ′′
p−1,q), nδ) ≤

J+(M(C ′
p,q), nδ) + 1. Lemma 15.1 is proved.

Now, for any n ≥ 1 we have a Markov partition A = π(Υn,q̄) of Ω and

δ = δq̄ defined by (14.2). They generate the space M̂, its partition Â into

boxes, and a map T̂ = Φ̂δ : M̂ → M̂.
We will always assume that n is bounded by

lmaxq̄/δ < n < lminr2/(20δ
2) (15.3)

Note that the lower bound implies J−(M,nδ) > q̄, and so p < −q̄ for every
atom Cp,q ∈ Υn,q̄. Consider an arbitrary Cp,q ∈ Υn,q̄ and A = π(Cp,q) ∈ A.

Let X ∈ Â be a box ‘over’ A, i.e. π1(X) = A. Pick a point y ∈ X with
a full-size stable fiber Ws

y(X) (one exists due to Lemma 14.1). The curve

W̃ = φ−nδ(Ws
y(X)) is a stable fiber in M . It may be cut by surfaces of Ω∪Ω1

into pieces, which correspond to the smooth components of ψ(W̃) ⊂M.
The crucial observation is that, since J+(Ws

y(X), nδ) ≤ |p|, which follows

from (15.1), then the above curve W̃ cannot cross any ‘side wall’ in Ω1. It can
only cross one or more times the ‘floor’ Ω. Hence, due to the transversality
of Ω and the flow φt, the length of the curve W̃ (in both metrics of M and
M) will be bounded by a constant C1 = C1(R) <∞. In particular, W̃ can
cross Ω not more than J1 times, where J1 = J1(R) ∈ ZZ+ is another constant.
Therefore, J+(Ws

y(X), nδ)− J−(Ws
y(X), nδ) ≤ J1, and so

J+(M(Cp,q), nδ)− J−(M(Cp,q), nδ) ≤ J2 = J1 + [lmax/lmin] + 3 (15.4)

Next, recall that |p| > q̄, so that Cp,q /∈ Υ1,q̄ = Υq̄. Put n1 = min{n′ ≤
n : Cp,q ∈ Υn′,q̄}. Let Cp+1,q be the atom of Υn1−1,q̄ that contains Cp,q. Then
J+(M(Cp+1,q), n1δ) > |p+ 1| = |p| − 1. Since (15.4) also holds for M(Cp+1,q)
(with n1 − 1 instead of n), we get J−(M(Cp+1,q), n1δ) ≥ |p| − J2 − 1. Since
M(Cp,q) ⊂M(Cp+1,q) and n1 ≤ n, we get

|p| − J2 − 1 ≤ J−(M(Cp,q), nδ) ≤ J+(M(Cp,q), nδ) ≤ |p| (15.5)

Now we impose the last condition on the box Y constructed in Section 13:

(B3) The rectangle π1(Y ) = R0 = π(Cp0,q0) is small enough, so that |p0| >
J2 + 1.
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We now turn back to the stable fiber W̃ = φ−nδ(Ws
y(X)). Let y1 and

y2 be its endpoints. Each of π1(y1) and π1(y2) belongs to T j(∂uΩ) for some
j ≥ 1. Due to (15.5) we have |p|−J2− 1 ≤ j ≤ |p|. Since T−|p|(∂uA) ⊂ ∂uΩ,
we have

π1(y1), π1(y2) ∈ T J2+1(∂uΩ) (15.6)

Assume now that W̃ ∩B1 6= ∅. Then (B3) and (15.6) imply that y1, y2 /∈
Y . By virtue of (B2), the fiber W̃ ∩ Y is full-size in Y .

Next, the set T̂−nX consists of s-subboxes in some boxes of Â. Those
subboxes lie in the εn,q̄-neighborhood of the curve W̃ , where

εn,q̄ = 3δ2n/lmin + 8δ ≤ r2/4

in view of (14.5), (14.6) and (15.3), unless they are separated from W̃ by Ω,
in which case (14.4) applies instead of (14.5). Therefore, the set T̂−nX ∩ Y
is a chain of s-subboxes lining up along the curve W̃ ∩ Y . We denote by X̃
the union of s-subboxes in this chain.

Lemma 15.2 In the above notations we have

µ̂(X̃)/µ̂(X) ≥ κ2 > 0

for some constant κ2 = κ2(Y,R) > 0, independent of X,n, q̄.

Proof. Let R0 = π1(Y ) ⊂ Ri0 ∈ R. Since J+(Ws
y(X), nδ) ≤ |p| and W̃

does not cross any side walls Ω1 ⊂M , there is a continuous function, s(y), on
W̃ such that φs(y)y ∈ Ri0 for all y ∈ W̃ and φs(y)y = π1(y) for all y ∈ W̃ ∩Y .
The curve W̃ = {φs(y)y : y ∈ W̃} ⊂ Ri0 is then a stable fiber for the map T .

Now, for any y ∈ T̂−nX we pick a zy ∈ W̃ such that dist (y, zy) ≤ εn,q̄
(if such a zy does not exist, we denote by zy the closest point on W̃ to y

in the metric of M). Let π∗1 : T̂−nX → Ri0 be a map defined by π∗1(y) =
π1(φ

s(zy)+lmin/2y). The image π∗1(T̂
−nX) is a rectangle RX ⊂ Ri0 , which covers

the curve W̃ . Clearly, π1(T̂
−nX ∩ Y ) = RX ∩ π1(Y ) is a u-subrectangle in

RX . The statement of Lemma 15.2 is now equivalent to

ν[RX ∩ π1(Y )]/ν(RX) ≥ κ2 (15.7)

Let νp0 = νp,u0 × νp,s0 be the product measure involved in Lemma 11.2, for the
rectangle Ri0 , with νp,u0 and νp,s0 defined on fibers W u

x0
(Ri0) and W s

x0
(Ri0),
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respectively, for some x0 ∈ π1(Y ), which we assume to be fixed (independent
of X,n, q̄). Then we have

νp0(RX ∩ π1(Y ))

νp0(RX)
=
νp,s0 (W s

x0
(Ri0) ∩ π1(Y ))

νp,s0 ([W s
x0

(Ri0), RX ])
≥
νp,s0 (W s

x0
(Ri0) ∩ π1(Y ))

νp,s0 (W s
x0

(Ri0))

where [W s
x0

(Ri0), RX ] = {W s
x0

(Ri0)∩W u
x′ : x′ ∈ RX}. Denote the last ratio by

κ′2 = κ′2(Y,R) > 0. Now, (15.7) readily follows from (11.1), with κ2 = e2b4κ′2.
Lemma 15.2 is proved.

Proposition 15.3 (Synchronization) There is m0(R) > 0 such that for
every m ≥ m0(R) there is a finite partition Υ(m) of ΣA into cylinders sat-
isfying both the Markov condition (MC) and the bound (11.5) with some
0 < d1(R) < d2(R) <∞ and enjoying the following property:

For every box Xk ∈ Â such that T̂−[m/δ]Xk ∩B1 6= ∅, there is exactly one
chain5 X̃1

k ⊂ T̂−[m/δ]Xk ∩ Y and

µ̂(X̃1
k) ≥ κ2µ̂(Xk) (15.8)

Proof. We put Υ(m) = Υn,q̄ with q̄ = [m/2lmax] + 1 and n = [m/δq̄]. Our
assumptions (14.6) on q̄ = rmin(Υ

(m)) and δ = δq̄ and (15.3) on n will hold
for all m ≥ m0(R) with some m0(R) > 0. The inequalities (15.2) imply the
bounds (11.5) with

d1 = (2lmax)
−1 and d2 = 2/lmin

The main property (15.8) follows from Lemma 15.2. Proposition 15.3 is
proved.

Remark. The key idea of this proposition is that all the boxes X ∈ Â are
stretched under the map T̂−[m/δ] substantially, so that they are transformed
into long chains of s-subboxes, but at the same time ‘not too much’ (every box
is transformed into a few chains of finite total ‘length’). Broadly speaking,
the map T̂−[m/δ] stretches all the boxes ‘synchronically’.

5Here we again use the terminology and notations of the previous section.
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16 A proof of Assumption F

In this section we prove Assumption F stated in Section 7, and thus complete
the proof of Theorem 1.1.

For any m ≥ m0(R) we take the partition Υ(m) of the symbolic space ΣA

into cylinders, which is provided by Proposition 15.3. It generates a Markov
partition A(m) = π(Υ(m)) of the base Ω, which verifies Assumption T due to
Corollary 11.5. The value of δ defined by (14.2) verifies (i) of Assumption F.
We put

K1 = [β1m/δ] with β1 = 4lmax/lmin and K2 = [m/δ]

so that β2 = 1 in Assumption F. We also put

η = 100β1l
−1
minm

Clearly, the parts (i)-(iii) of Assumption F will hold for all m ≥ m0(R).
In view of our choice of δ the bounds (14.6) and (14.7) with t = K1δ will

hold for all m ≥ m1(R) with some m1(R) > 0. Thus, for all t ≤ K1δ we get
(14.8) and a stronger bound

εt ≤ 3δ2K1/lmin + 8δ < ηδ/10 (16.1)

We now turn back to the equation (7.3). We consider only such quadru-
ples (l1, l2, l3, l4) that Xlr ⊂ Y for all r = 1, 2, 3, 4. The sets T̂K1Xi, T̂

K1Xj

and T̂−K2Xk admit the description in terms of chains of subboxes developed
in Sections 14-15. Let X̃ζ1

i , ζ1 = 1, . . . , Zi, be all the chains of u-subboxes
in (T̂K1Xi) ∩ Y , also X̃ζ2

j , ζ2 = 1, . . . , Zj, be all the chains of u-subboxes in

(T̂K1Xj) ∩ Y , and X̃1
k be the chain of s-subboxes in (T̂−K2Xk) ∩ Y , this one

is unique for a given k due to Proposition 15.3.
Consider any pair of chains X̃ζ1

i and X̃1
k . The sets π1(X̃

ζ1
i ) and π1(X̃

1
k)

are a u- and s-subrectangles in R0 = π1(Y ), respectively. Therefore, they
intersect each other inside some rectangle A′ ∈ A. Hence, there is exactly
one column of boxes in Â (the one over A′) in which both chains have ‘rep-
resentatives’, i.e. a u-subbox X̃ζ1

i [l1] ⊂ Xl1 and an s-subbox X̃1
k [l3] ⊂ Xl3 .

We put Γζ1i,k = 1 if |s(Xl1)− s(Xl3)| < η and Γζ1i,k = 0 otherwise6. Thus, every

6The difference |s(Xl1) − s(Xl3)| − 1 is the number of boxes between Xl1 and Xl3 in
the column of boxes over A′.
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pair of chains X̃ζ1
i and X̃1

k has at most one representative in (7.3), and it
does iff Γζ1i,k = 1, according to the “coupling” condition on l1, l3 in the setup
of equation (7.3). A similar conclusion is, of course, true for every pair of
chains X̃ζ2

j and X̃1
k .

Lemma 16.1 Consider an arbitrary pair of chains X̃ζ1
i and X̃1

k , and the
corresponding boxes Xl1, Xl3 described above. We have

µ̂(T̂K1Xi ∩Xl1) · µ̂(T̂−K2Xk ∩Xl3) ≥ e−6b4
µ̂(X̃ζ1

i )µ̂(X̃1
k)µ̂(Xl3)

cµ̂ν(R0)δ

Proof. First, it is enough to substitute µ̂(X̃ζ1
i [l1]) for µ̂(T̂K1Xi ∩ Xl1)

and µ̂(X̃1
k [l3]) for µ̂(T̂−K2Xk ∩ Xl3). Then the lemma is equivalent to the

inequality

ν(π1(X̃
ζ1
i [l1])) · ν(π1(X̃

1
k [l3])) ≥ e−6b4

ν(π1(X̃
ζ1
i ))ν(π1(X̃

1
k))ν(A(Xl3))

ν(R0)

Note that π1(X̃
ζ1
i [l1]) and π1(X̃

1
k [l3]) are u- and s-subrectangles of A(Xl3),

respectively. It is then a simple calculation that for the product measure νpR0

on R0 involved in Lemma 11.2 we have

νpR0
(π1(X̃

ζ1
i [l1])) · νpR0

(π1(X̃
1
k [l3])) =

νpR0
(π1(X̃

ζ1
i ))νpR0

(π1(X̃
1
k))ν

p
R0

(A(Xl3))

νpR0
(R0)

The bound (11.1) now implies the lemma.
A similar statement holds for any pair of chains X̃ζ2

j and X̃1
k . This lemma

will allow us to ‘uncouple’ the indices i, j, k from l1, l2, l3, l4 in (7.3). Com-
bining Lemma 16.1 and Proposition 15.3 gives

b̂i,j ≥
∑
k

∑
ζ1,ζ2

Γζ1i,kΓ
ζ2
j,k

e−12b4κ2

c2µ̂ν
2(R0)

µ̂(X̃ζ1
i )µ̂(X̃ζ2

j )µ̂(X̃1
k)

[(2η + 1)δ]2µ̂(Xi)µ̂(Xj)

≥ e−12b4κ2

c2µ̂ν
2(R0)

∑
ζ1,ζ2

(∑
k

Γζ1i,kΓ
ζ2
j,k

µ̂(X̃1
k)

[(2η + 1)δ]2

)
µ̂(X̃ζ1

i )µ̂(X̃ζ2
j )

µ̂(Xi)µ̂(Xj)
(16.2)

We now invoke the constructions of Sect. 13. It is enough to sum in (16.2)
over such ζ1, ζ2 and k that
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(i) the chain X̃ζ1
i intersects the tube U1

r2/2
and stretches completely across

the box Y ;
(ii) the chain X̃ζ2

j intersects the tube U2
r2/2

and stretches completely across
the box Y .

For any pair of ζ1, ζ2 just specified, there are two unstable fibers W̃u
ζ1
⊂

ΦK1δXi and W̃u
ζ2
⊂ ΦK1δXj whose εK1δ-neighborhoods contain the chains

X̃ζ1
i and X̃ζ2

j , respectively. These fibers lie, respectively, in the tubes U1
r2

and U2
r2

, due to (14.8). Then Proposition 13.2 says that there is a stable

fiber W̃s
ζ1ζ2

⊂ Y intersecting both W̃u
ζ1

and W̃u
ζ2

at some points y1 and y2,
respectively, so that these three fibers make an H-frame. Then every chain
X̃

(1)
k lying in the vicinity of the fiber W̃s

ζ1ζ2
∩ Y must be ‘coupled’ with

X̃ζ1
i and X̃ζ2

j in Eq. (16.2). Precisely, the union of all the chains X̃1
k with

Γζ1i,k = Γζ2j,k = 1 covers the stable ε-tube Vε = V ζ1ζ2
ε of the above H-frame with

ε = ηδ/4. This follows from Proposition 15.3 and the bound (16.1).

Remark. The necessity to take into account the asynchronism between the
flows Φt and Φ̂t, which is manifested in εt estimated by (14.8) and (16.1), was
the only reason why we introduced the parameter η and the corresponding
perturbed Markov chains in Section 5.

Now, Lemma 13.3 implies that

∑
k

Γζ1i,kΓ
ζ2
j,k

µ̂(X̃1
k)

[(2η + 1)δ]2
≥

µ̂(V ζ1ζ2
ηδ/4 )

[(2η + 1)δ]2
≥ κ1/100

This reduces (16.2) to

b̂i,j ≥
e−12b4κ1κ2

100c2µ̂ν
2(R0)

·
∑
ζ1 µ̂(X̃ζ1

i )

µ̂(Xi)
·
∑
ζ2 µ̂(X̃ζ2

j )

µ̂(Xj)
(16.3)

Next, Lemma 12.1 can be applied to any full-size unstable fiber in the
boxes Xi, Xj and the open sets U1 = int (U1

r2/4
∩Y ) and U2 = int (U2

r2/4
∩Y ),

respectively. In terms of Lemma 12.1, for any such fiber Wu we have

νut (U1) > β∗ and νut (U2) > β∗

for all t > lmaxd2m + t∗, where t∗ = max{tU1 , tU2} and β∗ = min{βU1 , βU2}.
Note that K1δ > lmaxd2m+t∗ for all m ≥ m2 for some m2 = m2(R, U1, U2) >
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0. Once again, invoking (14.8), we get∑
ζ1

µ̂(X̃ζ1
i ) ≥ β∗µ̂(Xi) and

∑
ζ2

µ̂(X̃ζ2
j ) ≥ β∗µ̂(Xj)

Finally, we obtain

b̂i,j ≥
e−12b4κ1κ2β

2
∗

100c2µ̂ν
2(R0)

The right hand side of this bound is the constant γ0 for Assumption F.
Thus, we obtain b̂i,j ≥ γ0 for all pairs i, j. For all H > 1 we set m′

H =
max{m0,m1,m2} (independently of H). Then Assumption F is proved, and,
moreover, we get Q̂(γ0) = 0. As it was promised, we did prove something
more than Assumption F.

17 Smooth perturbations of Anosov flows

Here we sketch a proof of Theorem 1.2. The following theorem [1] establishes
the so called structural stability of Anosov flows:

Theorem 17.1 Let φt : M → M be an Anosov flow. Then for any other
flow φt1 : M → M close to φt in C1 metric, there is a homeomorphism
Ψ : M → M , close to identity in C0 metric, which takes (directed) orbits of
φt to (directed) orbits of φt1.

Note that Ψ is not a conjugacy of the two flows, because it need not
preserve the parametrization of trajectories. The homeomorphism Ψ can be
chosen to be Hölder continuous [20].

Any flow φt1 close to an Anosov flow φt in C1 metric7 will be also an
Anosov flow [1], for which the constants λφ and Cφ in (A2) can be chosen
the same as for φt, see also [8]. Based on these general theorems and mere
definitions (A1)-(A2), it is easy to show that the Anosov splitting (8.1) and all
the local stable and unstable leaves and fibers depend uniformly continuously
on the flow φt (in C0 metric for fibers and C1 metric for flows).

7The distance between two flows is defined to be the distance in C1 metric between
their velocity vector fields.
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It is then easy to verify that all our constructions and parameters in
Sections 9-16 depend continuously on the flow φt. We only mention a few
crucial points.

The Markov family R can be built on the same disks D1, . . . , DI for
all flows C1 close to φt. The rectangles Ri ∈ R depend on the flow φt

continuously (in, say, the Hausdorff metric), and then the symbolic dynamics
σ : ΣA → ΣA will be the same for all flows close to φt, see also [7]. The space
M will then change continuously (in, again, the Hausdorff metric) with the
flow φt. The parameters of the suspension flow Φt : M → M, listed in
Theorem 4.1, will then depend continuously on φt.

The Gibbs measure νΣ = π−1 ◦ ν on ΣA depends continuously on φt in
the weak topology of measures [7]. The potential function g ◦ π and the
ceiling function l ◦ π on ΣA are uniformly continuous in φt, see [7]. Hence,
our parameters bi, λi, di and mg, bg in Sect. 10-15 depend continuously on φt.

Our constructions in Section 13 are performed in a small ball B0 ⊂ M ,
which is supposed to be independent of φt, see a footnote in Introduc-
tion. The parameters r0, r1, r2 are also independent of φt, and the domains
Y, U1

r2
, U2

r2
depend on φt continuously. Then κ1, κ2 will depend on φt contin-

uously.
The parameters βU and tU is Sect. 12 depend continuously on φt, but not

uniformly in U . However, Lemma 12.1 is only applied in Section 16 to just
two specific domains, U1 and U2, both depending on φt continuously. Thus,
the values of β∗ and t∗ in Sect. 16 will depend on φt continuously as well.

Summarizing, we conclude that all the parameters affecting the values of
a and c in Theorem 7.2 depend continuously on the flow φt. Theorem 1.2 is
proved.

Another interesting question is whether our assumptions (A1)-(A5) will
hold for any flow φt1 close to φt in C1 metric. As we already mentioned, φt1 has
to be an Anosov flow, so that (A1) and (A2) will hold. If φt is topologically
transitive, then so is φt1 due to Theorem 17.1.

Proposition 17.2 If the Anosov flow φt is of codimension one (i.e., dim Euy =
1 or dim Esy = 1) and topologically mixing, then so is any flow φt1 close to φt

in C1 metric.
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Proof. It follows from [24] that the (strongly) stable and unstable fo-
liations for the flow φt are not jointly integrable8, cf. Section 13. Hence,
τy(δ) 6= 0 for some y ∈ M and small δ > 0. Since local stable and unstable
fibers depend continuously on the flow φt (in C0 metric), so does the value
of τy(δ). Hence, τy(δ) 6= 0 for any flow φt1 close to φt, so that the stable and
unstable foliations of φt1 are not jointly integrable either. (If dimM > 3,
the argument is essentially the same.) It now follows from [24] that φt1 is
topologically mixing. Proposition 17.2 is proved.

Thus, our assumptions (A1)-(A4) are stable under smooth perturbations
of flows (for (A4), this is proved for codimension one flows). Assumption
(A5) apparently is not stable under perturbations.

18 Contact Anosov flows

Here we discuss an important class of Anosov flows, which includes geodesic
flows on compact surfaces of negative curvature.

Let φt : M → M be a C2 Anosov flow, dimM = 3. Assume that the
Anosov splitting (8.1) is C1 smooth. Then the family of tangent 2-planes
Euy ⊕ Esy in TM is C1 smooth (the converse is also true, see [20]).

In this case let ω be a C1 smooth φt-invariant 1-form in TM , such that
its kernel is Euy ⊕ Esy and ω(vy) = 1, where vy = dφt/dt. Denote by dω the
exterior derivative of ω, it is a continuous φt-invariant 2-form.

Definition. The flow φt is called an Anosov contact flow if the 3-form ω∧dω
is not degenerate. The form ω is then called the contact form of φt. The
bundle of planes Euy ⊕ Esy is then called a contact structure [4].

Theorem 18.1 Let φt be a C2 Anosov flow on a 3-D compact manifold with
C1 smooth Anosov splitting. Then
(i) φt is topologically transitive;
(ii) φt is topologically mixing iff it is contact.
In the second case the 3-form ω ∧ dω gives an absolutely continuous φt-
invariant measure, and our assumption (A5) holds true.

8This was also conjectured in [24] for all transitive Anosov flows. If this is true, Propo-
sition 17.2 will cover all those flows as well.

54



Proof. The part (i) was proved by Plante [24]. He also proved that φt

is topologically mixing iff the family of the tangent planes Euy ⊕ Esy is not
integrable, i.e. it is not a tangent bundle to a C1 foliation of M by surfaces.
By Hartman’s theorem [24], this is equivalent to ω ∧ dω 6= 0, thus we get
(ii). Plante also proved [24] that in this case ω∧dω determines a φt-invariant
measure equivalent to the Riemannian volume on M .

It remains to verify (A5). It is proved in [19] that for contact Anosov
flows we have

lim
δ→0

τy(δ)/δ
2 = ±dω(vuy , v

s
y) 6= 0 (18.1)

where vuy ∈ Euy and vsy ∈ Esy are unit vectors (± corresponds to the choice of
orientation). The value of dω(vuy , v

s
y) depends on y continuously, thus (A5)

follows. Theorem 18.1 is proved.
Therefore, in the case of C1 Anosov splitting, our (A3) holds automati-

cally, and (A4) is equivalent to (A5) and both are equivalent to the contact
property. Thus, for the flows with C1 Anosov splitting the correlations either
decay fast, as in (1.2), or do not decay at all.

For generic C2 Anosov flows, the limit in (18.1) need not exist. In that
case our (A5) generalizes contactness. It is perhaps reasonable to call Anosov
flows satisfying (A1)-(A5) generalized contact Anosov flows.

It is well known that geodesic flows on C∞ compact surfaces with nega-
tive curvature are contact Anosov flows. Indeed, they are Anosov [1], their
Anosov splittings are C1 [18], and they are topologically mixing by Arnold’s
theorem, see an extensive discussion in [1]. Thus, these flows satisfy our
assumptions (A1)-(A5), and Theorem 1.1 applies. Theorem 1.2 then covers
small perturbations of geodesic flows, which preserve their contact structure.

Appendix

Here we provide the proofs of Theorems 4.1, 5.1, 5.2 and 5.3.

A.1. We start with a lemma on generalized Hölder continuous functions.

Lemma A.1 Let M ′ be a metric space with a Borel probability measure µ′

and f(x) ∈ GHα(M
′). Let r(x) ≥ 0 be an integrable function on M ′ and

R =
∫
M ′ r(x) dµ′(x). Then∫

M ′
oscr(x)(f, x) dµ

′(x) ≤ varα(f) ·Rα/(α+1)
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Proof. For any ε > 0 we obviously have µ′{x ∈ M ′ : r(x) ≥ R/ε} ≤ ε.
Therefore,∫

M ′
oscr(x)(f, x) dµ

′(x) ≤
∫
M ′

oscR/ε(f, x) dµ
′(x) + ε · osc(f,M ′).

Setting ε = Rα/(α+1) and utilizing the definitions (2.2) and (2.3) accomplishes
the proof.

Since diamA(x) = d(x), we have |l(x)− l̄(x)| ≤ oscd(x)(l, x). Lemma A.1
and the definition (3.7) now imply that∫

Ω
|l(x)− l̄(x)| dν(x) ≤ varαl

(l) ·Dαl/(αl+1). (A.1)

Recall that |l̂(x)− l̄(x)| ≤ 2δ, and so∫
Ω
|l(x)− l̂(x)| dν(x) ≤ 2δ + varαl

(l) ·Dαl/(αl+1). (A.2)

As a result,

µ(M\ M̂) + µ̂(M̂ \M) ≤ (cµ + cµ̂) ·
∫
Ω
|l(x)− l̂(x)| dν(x)

≤ 3cµ
(
2δ + varαl

(l) ·Dαl/(αl+1)
)
. (A.3)

Fix a t > 0 and set N = [t/δ]. We will compare the maps Φt on M and
Φ̂δN on M̂. For any y = (x, s) ∈ M let Jt(y) be the number of times the
trajectory Φsy, 0 ≤ s ≤ t, crosses the base Ω. Assumption L2 ensures that

Jt(y) ≤ ([t/t0] + 1)m0 (A.4)

For any y = (x, s) ∈M let ∆l(y) = |l(x)− l̂(x)| and

∆tl(y) = ∆l(x) + ∆l(Tx) + · · ·+ ∆l(T Jt(y)−1x) + δ. (A.5)

Now denote the point Φty by yt = (xt, st) and define

∆̂tl(y) =

{
∆tl(y) if ∆tl(y) < min{st, l̂(xt)− st}
diamM otherwise

(A.6)
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A direct inspection shows that for any point y ∈M∩M̂ we have ρ(Φty, Φ̂δNy) ≤
∆̂tl(y), and so

|F (Φty)− F (Φ̂δNy)| ≤ osc∆̂tl(y)
(F,Φty)

Notice that the point Φ̂δNy may lie in M̂ \M, where the function F is set
to zero.

A.2. We are now in a position to prove Theorem 4.1. First, we have∫
M
F (Φty)G(y) dµ(y) =

∫
M∩M̂

F (Φty)G(y) dµ(y)

+
∫
M\M̂

F (Φty)G(y) dµ(y)

The latter integral does not exceed const·||F ||∞||G||∞ · (δ +Dαl/(αl+1)) with
const= 3cµ(2 + varαl

(l)), according to (A.3). Next,∫
M∩M̂

F (Φty)G(y) dµ(y) =
∫
M∩M̂

F (Φ̂δNy)G(y) dµ(y)

+
∫
M∩M̂

(F (Φty)− F (Φ̂δNy))G(y) dµ(y)(A.7)

The latter integral does not exceed

||G||∞
∫
M∩M̂

|F (Φty)− F (Φ̂δNy)| dµ(y) ≤ ||G||∞
∫
M

osc∆̂tl(y)
(F,Φty) dµ(y)

= ||G||∞
∫
M

osc∆̂tl(Φ−ty)(F, y) dµ(y) ≤ ||G||∞varα(F )
(∫

M
∆̂tl(y) dµ(y)

) α
α+1

(at the last step we use Lemma A.1 and the invariance of the measure µ
under the flow Φt). In order to estimate the integral in the last bound, we
will integrate the equation (A.5). First, for any i ≥ 0∫

M
∆l(T ix) dµ(y) = cµ

∫
Ω
l(x) ·∆l(T ix) dν(x)

≤ cµlmax

∫
Ω

∆l(T ix) dν(x)

where lmax = maxΩ l(x). Notice that cµlmax ≤ cµ(c
−1
µ + osc (l,Ω)) = 1 + cµ ·

osc (l,Ω). By virtue of (A.2) we get∫
M

∆l(T ix) dµ(y) ≤ [1 + cµ · varαl
(l)] ·

[
2δ + varαl

(l) ·Dαl/(αl+1)
]
.

57



We now integrate (A.5) by using the bound (A.4) and get∫
M

∆tl(y) dµ(y) ≤ const · t(δ +Dαl/(αl+1))

where const= 2m0t
−1
0 (2 + (1 + cµ)varαl

(l))2.

The definition of ∆̂tl(y) by (A.6) involves the function ut(y) := min{st, l̂(xt)−
st}. Let u+

t (y) := max{ut(y), 0}. Notice that ut(y) < 0 iff Φt(y) ∈ M \ M̂.
It is an easy calculation that µ{y ∈ M : u+

t (y) < r} ≤ 2cµr + µ(M\ M̂)
for all r > 0. It then follows that for any subset B ⊂ M such that
µ(B) > µ(M\ M̂) we have∫

B
u+
t (y) dµ(y) ≥ (4cµ)

−1[µ(B)− µ(M\ M̂)]2

Therefore, for any subset B ⊂M we have

µ(B) ≤ 2
[
cµ

∫
B
u+
t (y) dµ(y)

]1/2
+ µ(M\ M̂)

We now obtain that

µ{y ∈M : ∆̂tl(y) 6= ∆tl(y)} = µ{y ∈M : ∆tl(y) ≥ u+
t (y)}

≤ 2
(
cµ

∫
M

∆tl(y) dµ(y)
)1/2

+ µ(M\ M̂)

and so∫
M

∆̂tl(y) dµ(y) ≤
∫
M

∆tl(y) dµ(y) + diamM · µ{y : ∆̂tl(y) 6= ∆tl(y)}

≤ const · t(δ +Dαl/(αl+1))1/2

with const= 10m0t
−1
0 (1 + cµ)(1 + diamM)(2 + (1 + cµ)varαl

(l))2. Thus, the
last integral in (A.7) is properly bounded. The first integral in the RHS of
(A.7) equals

cµ
cµ̂

∫
M̂
F (Φ̂δNy)G(y) dµ̂(y)

It differs from ∫
M̂
F (Φ̂δNy)G(y) dµ̂(y)

by less than 2cµ||F ||∞||G||∞δ due to (4.2).
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Finally, observe that, since
∫
M F (y) dµ(y) = 0, we have∣∣∣∣∫

M̂
F (y) dµ̂(y)

∣∣∣∣ ≤ 2||F ||∞ · µ(M\ M̂)

A similar bound holds for G, and then (A.3) gives∣∣∣∣∫
M̂
F (y) dµ̂(y) ·

∫
M̂
G(y) dµ̂(y)

∣∣∣∣ ≤ ||F ||∞||G||∞·36c2µ(2+varαl
(l))2·

(
δ +Dαl/(αl+1)

)2

Theorem 4.1 is now proved.

A.3. We now turn to the proof of Theorem 5.1 and consider the quan-
tity (5.3). First, notice that if Xi0 is not a bottom atom, then both con-
ditional measures in (5.3) are either equal to one or not defined (in which
case we set them to zero, recall the remark after equation (3.3)). Hence,
non-bottom atoms Xi0 do not contribute to the value of χ̂N . Now consider
an arbitrary bottom atom, Xi0 = Aj0 × [0, δ). Both conditional measures in
(5.3) are now defined only if Xi−1 is a top atom. Let Aj−1 = A(Xi−1). Ob-

serve that now µ̂(Xi0/T̂Xi−1) = ν(Aj0/TAj−1). Furthermore, the intersection

T̂Xi−1∩· · ·∩T̂ nXi−n in (5.3) has a nonzero measure only if the chain of atoms
Xi−1 , . . . , Xi−n has the following structure. The top atom Xi−1 goes first, it
is followed by the whole column of atoms down to A(Xi−1)× [0, δ), then goes
another column of atoms over some Aj−2 (listed from top to bottom), etc.
The last atom in the chain, Xi−n , is not necessarily a top or bottom one,
but it must terminate a subcolumn of atoms going down from a top one.
We denote by Aj−1 , . . . , Aj−k

the atoms of A over which the above columns
(including the last subcolumn) are situated, listed in the above order. Now,
a direct inspection shows that

µ̂(Xi0/T̂Xi−1 ∩ · · · ∩ T̂ nXi−n) = ν(Aj0/TAj−1 ∩ · · · ∩ T kAj−k
)

and
µ̂(T̂Xi−1 ∩ · · · ∩ T̂ nXi−n) = cµ̂δν(TAj−1 ∩ · · · ∩ T kAj−k

)

Here the value of k depends on n and on atoms Aj−1 , Aj−2 , . . ., and it is
uniquely defined by the inequalities

k−1∑
m=1

l̂(Aj−m) < nδ ≤
k∑

m=1

l̂(Aj−m) (A.8)
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We now turn back to the equation (5.3) and rewrite it as follows:

χ̂N = sup
n≤N

∑
k,j0,j−1,...,j−k

|ν(Aj0/TAj−1 ∩ · · · ∩ T kAj−k
)− ν(Aj0/TAj−1)|

×cµ̂δν(TAj−1 ∩ · · · ∩ T kAj−k
) (A.9)

where the summation is taken over all the k,Aj0 , Aj−1 , . . . , Aj−k
that satisfy

the constraints (A.8). The summation in the RHS of (A.9) is performed in a
different way compared to that of (3.3), because k is variable in the former
and n is constant in the latter. We will eliminate this difference and reduce
(A.9) to (3.3). Observe that, in virtue of Assumption L2, for any x ∈ Ω and
all k ≥ 1 we have

k−1∑
m=1

l(T−mx) ≥
[
k − 1

m0 + 1

]
t0 ≥

[
k − 1

2m0

]
t0 (A.10)

The same bound with the function l̂ instead of l is not necessarily true. How-
ever, the following weaker bound involving the function l̂ will be established
on an ‘ample’ set of points x ∈ Ω:

Lemma A.2 For any k ≥ 1 we have

ν

{
x ∈ Ω :

k−1∑
m=1

l̂(T−mx) ≥
[
k − 1

4m0

]
t0

}
≥ 1− 8m0t

−1
0 varαl

(l) ·Dαl/(αl+1)

(A.11)

Proof. It is enough to prove (A.11) for the function l̄ instead of l̂ since
l̂(x) ≥ l̄(x) for every point x ∈ Ω. Due to (A.1) we have∫

Ω

∣∣∣∣∣
k−1∑
m=1

l̄(T−mx)−
k−1∑
m=1

l(T−mx)

∣∣∣∣∣ dν(x) ≤ (k − 1) · varαl
(l) ·Dαl/(αl+1)

Together with (A.10) this completes the proof of Lemma A.2.
Since the function l̂ is constant on the atoms of A, the sum

∑k−1
m=1 l̂(T

−mx)
is constant on any intersection TAj−1 ∩ · · · ∩ T kAj−k

. According to (A.11),
for an ample collection of such intersections we have

k−1∑
m=1

l̂(Aj−m) ≥
[
k − 1

4m0

]
t0
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Along with (A.8), this implies k ≤ [4m0t
−1
0 nδ] + 4m0, and thus

k ≤ K := [8m0t] (A.12)

(recall that t0 ≤ 1). Then (A.11) implies the following ‘tail bound’:∑
k>K,j0,j−1,...,j−k

ν(TAj−1 ∩ · · · ∩ T kAj−k
) ≤ 8m0t

−1
0 varαl

(l) ·Dαl/(αl+1) (A.13)

where the summation is taken, again, over k,Aj−1 , . . . , Aj−k
that satisfy (A.8),

with an additional restriction k > K. Therefore, the total contribution to
the value of χ̂N in (A.9) of all the ‘tail’ terms involved in (A.13), i.e. those
for which k > K, does not exceed the value of the RHS of (A.13) times cµ̂δ.
All the terms in (A.9) with k ≤ K make the following contribution to χ̂N :

χ̂
(main)
N := sup

n≤N

∑
k≤K,j0,j−1,...,j−k

|ν(Aj0/TAj−1 ∩ · · · ∩ T kAj−k
)− ν(Aj0/TAj−1)|

×cµ̂δν(TAj−1 ∩ · · · ∩ T kAj−k
)

≤ sup
n≤N

∑
j0,j−1,...,j−K

|ν(Aj0/TAj−1 ∩ · · · ∩ TKAj−K
)− ν(Aj0/TAj−1)|

×cµ̂δν(TAj−1 ∩ · · · ∩ TKAj−K
)

≤ cµ̂δχK (A.14)

Here the first sum is taken over all k ≤ K, j0, j−1, . . . , j−k that satisfy (A.8),
and the second sum is taken over all j0, j−1, . . . , j−K with the value of K
specified by (A.12). The first inequality allowing the transition from the first
sum, with a variable k, to the second one with a bigger but constant K, is
based on the following simple trick (valid for any Borel subsets B,C,D ⊂ Ω):

|ν(B/C ∩D)− ν(B/C)| · ν(C ∩D) = |ν(B ∩ C ∩D)− ν(B/C)ν(C ∩D)|

=

∣∣∣∣∣∑
i

ν(B ∩ C ∩D ∩ Ai)− ν(B/C)
∑
i

ν(C ∩D ∩ Ai)
∣∣∣∣∣

≤
∑
i

|ν(B ∩ C ∩D ∩ Ai)− ν(B/C)ν(C ∩D ∩ Ai)|

=
∑
i

|ν(B/C ∩D ∩ Ai)− ν(B/C)| · ν(C ∩D ∩ Ai)
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This trick allows us to ‘extend’ the conditions of the conditional measures
in the first sum of (A.14). Combining (A.13) with (A.14) gives the following
bound:

χ̂N ≤ cµ̂δχ[8m0t] + 8m0t
−1
0 cµ̂δ · varαl

(l) ·Dαl/(αl+1) (A.15)

The main statement of Theorem 5.1 is now proved.
In the case when the function l(x) has a positive lower bound, lmin > 0,

we obviously have l̂(x) ≥ l̄(x) ≥ lmin for every x ∈ Ω. Therefore, we can
set m0 = 1, t0 = lmin, and the bound (A.10) will also hold for the function
l̄(x) instead of l(x). Then (A.12) will be true uniformly (the ‘tail’ involved
in (A.13) will be empty). Thus, we get the second statement of Theorem 5.1
and complete its proof.

A.4. Next, we prove Theorem 5.2. The two middle integrals in the
expansion (5.5), combined, are bounded by

||G||∞ ·
∫
M̂
|∆F (y)| dµ̂(y) + ||F ||∞ ·

∫
M̂
|∆G(y)| dµ̂(y)

The last integral in (5.5) does not exceed either of the above two sum-
mands. Adopting again the notation y = (x, s) for points of M̂ and invoking
Lemma A.1, we obtain∫

M̂
|∆F (y)| dµ̂(y) ≤

∫
M̂

oscd(x)+δ(F, y) dµ̂(y)

≤ varα(F ) ·
(
δ +

∫
M̂
d(x) dµ̂(y)

)α/(α+1)

≤ varα(F ) · (δ + 2lmaxD)α/(α+1)

The same bound is true for the function G. Theorem 5.2 is proved.

A.5. We now turn to the proof of Theorem 5.3. Obviously,

Ĉ
(chain)
F,G (N)− C

(per)
F,G (N) =

∑
i

Ḡip̂i
∑
j

[
F̄jπ̂

(N)
ij − F̄jπ

(per)
ij

]
(A.16)

We now compare the expansions (5.10) and (5.11) carefully. We will call
the string i1, i2, . . . , iL, iL+1 = j entering (5.10) an interior one if

Lη < s(Xir) < l̂(A(Xir))/δ − Lη

for all r = 1, . . . , L + 1. This means that every atom Xir in some column
of atoms in Â is at least Lη atoms away from both top and bottom of that
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column. For any interior string we collect all the strings j1, l1, . . . , jL, lL, jL+1

entering (5.11) such that
(i) j1 = i1;
(ii) A(Xlr) = A(Xjr) and |s(Xlr)− s(Xjr)| ≤ η for all r = 1, . . . , L;
(iii) A(Xjr) = A(Xir) and

s(Xjr) = s(Xir) +
r−1∑
u=1

(
s(Xlu)− s(Xju)

)
for all r = 2, . . . , L+ 1.

For any string satisfying (i)-(iii) we have π̃ir−1ir = π̃lr−1jr for all r =

2, . . . , L and π̂
(K2+L0)
iLiL+1

= π̂
(K2+L0)
lLjL+1

, and also π∗jrlr = (2η + 1)−1 for all r =

1, . . . , L. The number of strings satisfying (i)-(iii) is equal to (2η + 1)L.
Besides, the last atoms, XiL+1

and XjL+1
, are in the same column of Â, and

dist (XiL+1
, XjL+1

) ≤ (Lη − 1)δ. Hence,

|F̄iL+1
− F̄jL+1

| ≤ oscd(x′)+(Lη+1)δ(F, y
′) (A.17)

for any point y′ = (x′, s′) ∈ XiL+1
.

We then substitute the expansions (5.10) and (5.11) into (A.16) and take
first the sum over the interior strings in (5.10) and their counterparts in
(5.11). Due to (A.17), the resulting sum will not exceed

||G||∞
∫
M̂

oscd(x)+(Lη+1)δ(F, y) dµ̂(y)

By virtue of Lemma A.1 this quantity is bounded by

||G||∞varα(F ) ·
(∫

M̂
[d(x) + (Lη + 1)δ] dµ̂(y)

)α/(α+1)

≤ ||G||∞varα(F ) · [2cµlmax(D + (Lη + 1)δ)]α/(α+1)

Lastly, the contribution to (A.16) of all the strings in (5.10) other than
interior and the remaining strings in (5.11), combined, does not exceed
4L2cµ||F ||∞||G||∞ηδ.

Theorem 5.3 is proved.
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