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1 Introduction

This paper is devoted to the methods of investigating statistical properties of chaotic
dynamical systems. By statistical properties we mean the rate of the decay of correlations,
the central limit theorem and other probabilistic limit theorems. Surveys of known results
in this area may be found in [3, 9, 8].

An effective method of proving these properties is based on Markov approximations to
dynamical systems. This approach is an alternative to the conventional Perron-Frobenius
operator techniques. It was Ya. Sinai and his school [14, 15, 4, 5, 6] who systematically
developed the methods of Markov partitions, Markov symbolic dynamics and measure-
theoretic Markov approximations to Anosov diffeomorphisms and billiards. Bowen [2]
extended these methods to Smale’s Axiom A diffeomorphisms.

A general construction of Markov chains approximating discrete-time dynamical sys-
tems was introduced by Bunimovich and Sinai in [4, 5] and later studied in [6, 8]. It
was shown that the chaotic behavior of the dynamical system ensures special conditions
on transition probabilities of the approximating Markov chain. In turn, under those
conditions one can prove probabilistic limit theorems and establish strong bounds on
correlation functions for the original dynamical system – some general results are dis-
played in [8].

Here we continue studying the techniques of Markov approximations to dynamical
systems. We explain how approximating Markov chains can be constructed for dynami-
cal systems with discrete and continuous time. We also introduce a brand new condition
on the transition probabilities of Markov chains that implies strong bounds on the cor-
relations. Our new condition is weaker than all those studied earlier in [4, 6, 8].
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2 Markov approximations for dynamical systems

A discrete-time dynamical system is a measurable transformation T : M → M of a
measurable space M preserving a probability measure µ.

LetA = {Ai} be a finite or countable measurable partition of the space M into subsets
of positive measure. By Markov approximation for the map T we mean a probabilistic
stationary Markov chain, whose transition probabilities are

πij = µ(T−1Aj/Ai) = µ(T−1Aj ∩ Ai)/µ(Ai) (1)

and whose stationary distribution is

pi = µ(Ai). (2)

This definition of Markov approximations for arbitrary measure-preserving transfor-
mations was introduced in [8]. It is one of possible implementations of the idea of ‘coarse-
graining’ of the phase space popular among physicists (see, e.g., [13]). This definition
is also very close to Ulam’s construction [16] of Markov chains approximating interval
maps.

The ‘discrepancy’ of the Markov approximation generated by the Markov chain (1)-
(2), within N iterates of the map T , is measured by the following quantity:

νN := sup
n≤N

∑
i0,...,in

|µ(T−nAin/T−(n−1)Ain−1 ∩ · · · ∩ Ai0)− µ(T−1Ain/Ain−1)|

×µ(T−(n−1)Ain−1 ∩ · · · ∩ Ai0) (3)

Here and further on µ(A/B) means the conditional measure, µ(A ∩ B)/µ(B), and we
always set it to zero whenever µ(B) = 0. The quantity νN measures how close (better to
say, how distant!) the ‘long-memory’ and ‘short-memory’ conditional distributions are
within the first N iterates of T .

Recall that given two probability distributions P = {pi} and Q = {qi} on the same
index set {i}, the distance in variation between P and Q is defined to be

Var (P, Q) =
1

2

∑
i

|pi − qi|. (4)

Now (3) estimates twice the mean distance in variation between the long- and short-
memory conditional distributions on {Ai}.

By means of (3) one can estimate how the finite dimensional distributions of the
Markov chain,

pi0i1···in = pi0πi0i1 · · ·πin−1in (5)

are close to those of the dynamical system in the variational metric (4). It is shown in
[8] that ∑

i0,...,in

|µ(T−nAin ∩ · · · ∩ Ai0)− pi0i1···in| ≤ (n− 1)νN (6)
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for any n ≤ N .
We now explain how Markov approximations with good properties can be constructed.

Let (M, T, µ) be an Anosov diffeomorphism and µ a smooth invariant measure. Let B
be a Markov partition of M into sufficiently small rectangles [2, 14]. Fix a large integer
K > 0 and take A = ∨K

−KT kB. Then A is another Markov partition, whose atoms are
exponentially (in K) small. Precisely, there are constants ci, ai > 0 depending on the
system (M, T, µ) such that for any A ∈ A we have c1e

−a1K ≤ diam A ≤ c2e
−a2K and

c3e
−a3K ≤ µ(A) ≤ c4e

−a4K . We do not go into detail, but it is a standard argument that
on any A ∈ A there is a product measure µp

A which approximates µ to the following
degree of accuracy: ∣∣∣∣∣dµp

A

dµ
(x)− 1

∣∣∣∣∣ ≤ c5e
−a5K (7)

for every x ∈ A. Now, for any n ≥ 0 and any atoms Ai0 , . . . , Ain ∈ A we have

µp
Ain−1

(T−nAin/T−(n−1)Ain−1 ∩ · · · ∩ Ai0) = µp
Ain−1

(T−1Ain/Ain−1)

which follows directly from the Markov property of the partition A. It is now an imme-
diate consequence of (7) that for the partition A we have νN ≤ 2c5e

−a5K for all N > 0.
This approximation has the following advantage: νN is exponentially (in K) small, so
that, according to (6), the finite-dimensional distributions of the Markov chain and those
of the dynamical system stay exponentially (in K) close on very long intervals of time,
(0, N), at least for N ≈ eaK with any a < a5.

If the dynamical system (M, T, µ) is a smooth hyperbolic system with singularities
and the measure µ is a Sinai-Bowen-Ruelle measure [15] (not necessarily absolutely con-
tinuous), the construction of partitions A with the above properties goes through, with
some technical modifications, see [6, 1].

Lastly, Markov approximations can be constructed for dynamical systems with con-
tinuous time (flows). It is common to study flows by their special representations, which
are called suspension flows or Kakutani flows, as defined below.

Let (M, T, µ) be a discrete time dynamical system and l(x) a positive integrable
function on M . A suspension flow build under the function l(x) (this is called the ceiling
function) is defined on the measurable space M = {(x, s) : x ∈ M, 0 ≤ s < l(x)} by the
rule

Φt(x, s) =

{
(x, s + t) for 0 ≤ t < l(x)− s
(Tx, s + t− l(x)) for l(x)− s ≤ t < l(Tx) + l(x)− s

(8)

This flow is measurable and preserves the probability measure µf on M defined by
dµf = c · dµ× ds, where c−1 =

∫
M l(x)dµ(x) is the normalizing factor.

Now let A be a partition of M generating a Markov approximation for T . Then we
can construct a Markov approximation to the flow Φt in the following way. First, let
l̂(x) be the ceiling function l conditioned on the partition A. Fix then a small δ > 0 (a
‘quantum of time’) and set

l̂(x) = l̂δ,A(x) := ([l̄(x)/δ] + 2)δ (9)
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where [a] stands for the integral part of a real number a. Now, consider another suspen-
sion flow, Φ̂t, over T , build under the function l̂. Its phase space, M̂ = {(x, s) : x ∈
M, 0 ≤ s < l̂(x)}, is naturally partitioned into the following blocks

X = A× [kδ, (k + 1)δ), A ∈ A, k = 0, 1, . . . l̂(A)/δ − 1

Denote this partition by Â. Now consider the map T̂ = Φ̂δ on M̂ . This map moves every
atom of Â exactly onto another atom above it, and the top atoms of this partition are
broken by T̂ to pieces and transformed down to the bottom of Â, according to the action
of T on M .

The Markov chain approximating the map T̂ = Φ̂δ is constructed by the same rules
as before: its transition probabilities are π̂ij = µ̂(Xj/T̂Xi) and its stationary distribution

is p̂i = µ̂(Xi), where Xi, Xj are atoms of Â and µ̂ stands for the invariant measure of

the suspension flow {Φ̂t}. Since the map T̂ acts very straightforwardly in the bulk of
the partition Â, this Markov chain provides very good approximation to the dynamical
system (M̂, T̂ , µ̂). In fact, if the function l is bounded away from zero and infinity,
0 < lmin ≤ l(x) ≤ lmax < ∞, then the quantity ν̂N defined by the rule (3) for the Markov
chain ||π̂ij||, ||p̂i||, satisfies

ν̂N ≤ const · δν[bNδ]

where ν is the quantity (3) for the Markov chain approximating the map T and generated
by A. Here b > 0 is a constant depending on the original flow {Φt} alone. We do not
prove the above bound here.

3 Mixing coefficients in Markov chains

In the previous section we have shown how Markov chains approximating dynamical
systems can be constructed.

Consider now an abstract homogeneous Markov chain with a finite number of states,
which approximates a dynamical system. We denote the sates by 1, 2, . . . , I, the matrix
of transition probabilities by Π = ||πij|| with 1 ≤ i, j ≤ I and the stationary distribution

by P = ||pi||. We denote by π
(m)
ij the m-step transition probabilities, i.e. ||π(m)

ij || = Πm.
We denote by J the set of indices {1, 2, . . . , I}.

In order to establish statistical properties for the underlying dynamical system, one
usually has to bound the following quantities, which we call the mixing coefficients. For
any m ≥ 1 let

V
(m)
i =

1

2

I∑
j=1

|π(m)
ij − pj|

and

V (m) =
I∑

i=1

piV
(m)
i (10)
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This last quantity is the mean distance in variation between the m-step transition prob-
abilities and the stationary distribution.

If the dynamical system is ergodic (mixing), then the approximating Markov chain
is irreducible (aperiodic). For such chains, the mixing coefficient (10) monotonically
decreases to zero as m →∞. The rate of the decay of this coefficient essentially represents
the mixing rates of the original dynamical system. Moreover, it is possible to prove various
statistical properties of the dynamical system based on available bounds on the mixing
coefficients (10). Such proofs were developed in [8].

A far more difficult problem is to establish any bounds on the mixing coefficients (10)
for Markov chains approximating dynamical systems. Dynamical properties of the system
(e.g., hyperbolicity) seldom can provide such bounds directly. However, there are certain
conditions on the transition probabilities of the Markov chain under which the coefficients
(10) can be effectively bounded. It is also possible to verify those conditions by using
the dynamical properties of the underlying system, such as hyperbolicity, the existence
of Markov partitions, etc. Several implementations of this strategy were described in [8].
The rest of this section is devoted to two conditions on the transition probabilities used
in [8].

One of them is the so called Doeblin condition:

d := 1−max
i,j

1

2

I∑
k=1

|π(s)
ik − π

(s)
jk | > 0 (11)

for some s ≥ 1. This condition is motivated by the classical D-condition [11] and Do-
brushin’s coefficient of ergodicity [10]. It was explicitly introduced by Bunimovich and
Sinai [4, 5] and later used in [1]. This condition implies the bound

V
(m)
i ≤ (1− d/2)[m/s]

for any m ≥ 1 and all i ∈ J , see proofs in [1, Lemma 15] and [8, Proposition 5.3].
The second condition is

r := min
i,j

π
(s)
ij

pj

> 0 (12)

for some s ≥ 1. It was motivated by Ibragimov’s regularity of stationary random pro-
cesses [12] and first explicitly introduced in [6]. It was later used in [7]. This condition
implies the bound

V
(m)
i ≤ (1− r)[m/s] (13)

for any m ≥ 1 and all i ∈ J , see proofs in [6, Lemma 4.3] and in Section 4 here.
The meaning of conditions (11) and (12) for the dynamics of the underlying system

is the following. According to (12), the s-th image of any atom Ai ∈ A intersects all
the atoms of A and the conditional distribution on atoms A ∈ A (conditioned on T sAi)
recovers a certain fraction of the invariant measure. This is a very stringent condition.
It is, however, possible to verify it for some uniformly hyperbolic maps with smooth
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invariant measure [6, 8]. The condition (11) means that the s-th images of any two
atoms Ai, Aj ∈ A are so close to each other that they intersect the same other atoms of
A and the conditional distributions (conditioned on T sAi and T sAj) are close to each
other in the variational metric. This is a weaker condition than (12) (it does not require
that T sAi or T sAj intersect all the atoms of A), but it is still pretty stringent. It is
verifiable for some hyperbolic attractors with Bowen-Ruelle-Sinai invariant measures [1].

4 A new condition on transition probabilities

In this section we introduce a new condition on the transition probabilities of the Markov
chain, which is weaker than the two discussed above and provides good bounds on the
mixing coefficients (10). Our new condition is designed to be verifiable in the case of
Markov approximations to hyperbolic flows, in particular, geodesic flows on surfaces of
negative curvature. A verification of this condition is, however, beyond the scopes of this
paper.

We use the notations of the previous section. Denote pmin = mini pi. For every
i, j ∈ J let

bi,j =
I∑

k=1

πikπjk

pk

Theorem 1 Suppose that the Markov chain satisfies the following condition:

b = min
i,j

bi,j > 0 (14)

Then for any m ≥ 1 and all i ∈ J we have

V
(m)
i ≤ 50b−1/2p−1

min · (1− b/2)m/3 (15)

and thus
V (m) ≤ 50b−1/2p−1

min · (1− b/2)m/3

Remark. If the condition (14) is satisfied for the s-step transition probabilities π
(s)
ij

instead of πij, then Theorem 1 remains true with the exponent m/3 replaced by [m/s]/3
in the above bounds.

We will first compare our condition (14) to the two conditions described in the pre-
vious section.

Lemma 2 The regularity (12) implies the Doeblin condition (11) with d ≥ r, and the
latter (with s = 1) implies our condition (14) with b ≥ d2.

6



Proof. Without loss of generality we set s = 1. The Doeblin condition (11) is
equivalent to

d = min
i,j

{
I∑

k=1

min{πik, πjk}
}

> 0 (16)

Clearly, (12) implies (16) with d ≥ r. We now show that (16) implies (14), with the help
of Schwarz’ inequality:

bi,j =
I∑

k=1

πikπjk

pk

≥
I∑

k=1

(
min{πik, πjk}

pk

)2

· pk

≥
(

I∑
k=1

min{πik, πjk}
pk

· pk

)2

≥ d2

The lemma is proved.
As Lemma 2 shows, our condition (14) is the weakest one among these three condi-

tions.
We now prove Theorem 1. First, we make an additional, simplifying assumption that

the stationary distribution P is uniform, i.e., pi = 1/I for all 1 ≤ i ≤ I. In this case
the matrix Π is a doubly stochastic one, i.e. its transpose ΠT is a stochastic matrix also.
Consider the matrix Π̃ = ΠΠT . It is a symmetric and doubly stochastic matrix with the
same uniform stationary distribution P . We denote its components by ||π̃ij||. Now we
can rewrite the condition (14) as follows:

b = min
i,j

π̃ij

pj

> 0 (17)

for any i, j ∈ I. Note that this is exactly the regularity condition (12) applied to the
stochastic matrix Π̃, with r replaced by b.

Due to (17) the operator Π̃ is a contraction on the simplex of the probability dis-
tributions equipped with the distance in variation (4), whose only ‘fixed point’ is the
distribution P , i.e.

Var (P ′Π̃, P ) ≤ (1− b)Var (P ′, P ). (18)

for any distribution P ′ = ||p′j||. To show this, we denote by Σ+
j the summation over such

j that (P ′Π̃)j > pj. Then

Var (P ′Π̃, P ) = Σ+
j (Σip

′
iπ̃ij − Σipiπ̃ij)

= Σi(p
′
i − pi)Σ

+
j π̃ij = Σi(p

′
i − pi)Σ

+
j (π̃ij − b/I).

Now denote by Σ+
i the summation over such i that p′i > pi. Since π̃ij − b/I ≥ 0 for all

i, j ∈ J (this follows from (17)) the RHS of the last equation is bounded above by

Σ+
i (p′i − pi)Σ

+
j (π̃ij − b/I) ≤ Σ+

i (p′i − pi)Σj(π̃ij − b/I) ≤ (1− b) · Var (P ′, P ).
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The bound (18) is proved.
Exploiting the estimate (18) m times in a row (in an obvious way) yields

Var (P ′Π̃m, P ) ≤ (1− b)mVar (P ′, P ) (19)

In particular, the bound (13) follows from (19) and the inequality 2−1∑
j |π̃ij−pj| ≤ 1−b,

which is a consequence of (17).
We now examine the spectrum of the matrix Π̃. Since it is a symmetric matrix, all

its eigenvalues are real and its eigenvectors are mutually orthogonal. P is an eigenvector
with eigenvalue one. Let V be an eigenvector of Π̃ different from P , with an eigenvalue
λ′. If ||V || is small enough, then P ′ := P + V is a probability distribution. Then
P ′Π̃m = P + V Π̃m = P + (λ′)mV . Applying the estimate (19) gives

|λ′|m ·
∑
|vi| ≤ 2Var (P ′, P )(1− b)m

and so |λ| ≤ 1 − b. Therefore, all the eigenvalues of the matrix Π̃ but one lie in the
interval [−1 + b, 1− b].

In all that follows we denote by U the uniform distribution, i.e. U = (1/I, . . . , 1/I).
(We assumed that P = U , but later we remove this assumption.) Denote the hyperplane
in IRI perpendicular to U by L0. It is parallel to the simplex made by probability
distributions, in which U is a center.

We now turn to the matrix Π. Fix an i ∈ J . The ith row of the matrix Πm is the
vector ||π(m)

ij ||, 1 ≤ j ≤ I. It equals EiΠ
m, where Ei = (0, . . . , 0, 1, 0, . . . , 0) is a unit row

vector with its ith component equal to 1. The vector Ei−P belongs to the subspace L0,
and this subspace is left invariant under both Π̃ and Π. As shown above, the restriction
of Π̃ on L0 is a contraction, with all the eigenvalues lying in [−1+b, 1−b]. Hence, for any
vector V ∈ L0 we have ||V Π̃|| ≤ (1− b)||V ||, where || · || is the Euclidean norm. Hence

||V Π||2 = (V Π) · (V Π) = V ΠΠT V T = (V Π̃) · V ≤ (1− b)||V ||2,

where the dot (·) stands for the scalar product of two row-vectors in IRI . Therefore,
||(Ei − P )Πm||2 ≤ (1− b)m||Ei − P || < (1− b)m. As a result,

V
(m)
i =

1

2

I∑
j=1

|π(m)
ij − pj| ≤

1

2

√
I · ||(Ei − P )Πm|| ≤ 2−1p

−1/2
min · (1− b)m/2 (20)

Hence, we get Theorem 1 under the additional assumption that P is uniform.

Remark. In our calculations we have never used the fact that the components of the
matrix Π were positive. So, the bound (20) is still true if the matrix Π in Theorem 1 is
a so-called quasi-stochastic one, i.e., the one whose components in each row sum to one
but are not necessarily nonnegative. (In other words, a matrix Π′ is quasistochastic iff
Π′UT = UT .) Of course, we have to assume, additionally, that the stationary distribution
P is uniform: P = U .
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We now extend the above simplified version of Theorem 1 to its full version. The
idea of the extension is to make the stationary distribution P uniform by an appropriate
refinement and approximation.

By a refinement of a Markov chain we mean the splitting of each state i ∈ J into a
number, Ii ≥ 1, of ‘equal’ fragments. Precisely, we replace each state i ∈ J by a collection
of Ii states labeled by ir, 1 ≤ r ≤ Ii. We then define a new Markov chain with the states
ir, 1 ≤ r ≤ Ii and 1 ≤ i ≤ I. The total number of states is now I ′ = I1 + · · · + II .
We denote the collection of new staes by J ′. The transition probabilities are defined by
π′irjs

= πij/Ij for every ir and js. These form a matrix Π′ = ||π′irjs
|| of size I ′ × I ′. The

stationary distribution is P ′ = ||p′ir || with p′ir = pi/Ii.
Clearly, for any ir and js we have

b′ir,js
:=

∑
kt∈J ′

π′irkt
π′jskt

p′kt

= bi,j (21)

so that b′ := minir,js b′ir,js
= b. By a direct inspection one can verify that for any m ≥ 1

the components of the matrix (Π′)m = ||π′(m)
irjs
|| satisfy the equation π

′(m)
irjs

= π
(m)
ij /Ij and

so

V
′(m)
ir :=

1

2

∑
js∈J ′

|π′(m)
irjs

− p′js
| = V

(m)
i (22)

for any ir ∈ J ′.
Let the stationary probabilities pi be rational numbers whose common denominator

is D. In this case we can make a refinement as described above so that the stationary
distribution will be uniform with probabilities = 1/D. Due to (21) we can utilize the
version of Theorem 1 just proved above. It gives, in virtue of (20) and (22), the following
bound:

V
(m)
i ≤ 2−1D1/2 · (1− b)m/2 (23)

We now turn to the proof of Theorem 1. The idea is to change the matrix Π and
the vector P slightly, so that the new stationary probabilities will be rational numbers
with sufficiently small common denominator. Let p > 0 be a small parameter, p � pmin.
We set D = [p−1] + 1. There is a probability distribution P̄ = (p̄1, . . . , p̄I) with rational
components whose common denominator is D such that

|p̄i − pi| ≤ 1/D < p (24)

for all i ∈ J . Note that
2Var (P, P̄ ) ≤ I/D < p/pmin (25)

Let Γ be an I × I matrix defined by two conditions: (i) it is left identical on the
subspace L0 defined above, i.e., V Γ = V for every V ∈ L0, and (ii) it moves P̄ to P , i.e.
P̄Γ = P . Since both P and P̄ are transversal to L0, the matrix Γ is well defined and
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invertible. Moreover, both Γ and Γ−1 are quasistochastic (see Remark above). Since Γ
and Γ−1 are left identical on L0, for any probability distribution Q we have

QΓ = (Q− P̄ + P̄ )Γ = (Q− P̄ )Γ + P = Q− P̄ + P. (26)

Similarly,
QΓ−1 = (Q− P + P )Γ−1 = Q− P + P̄ . (27)

We now consider the matrix Π̄ = ΓΠΓ−1. It is quasi-stochastic, although it need not
be a stochastic one, and its stationary vector is P̄ , because P̄ Π̄ = P̄ΓΠΓ−1 = P̄ .

When D is a very large number, the matrix Γ is very close to the identity matrix,
and so the matrix Π̄ is very close to Π. To make this precise, we employ the vectors Ei

defined above and, based on (26) and (27), obtain

EiΠ̄ = EiΓΠΓ−1 = EiΠ− P̄Π + P̄ .

Then, utilizing (25) gives

Var (EiΠ̄, EiΠ) = Var (P̄ , P̄Π) ≤ Var (P̄ , P ) + Var (PΠ, P̄Π) ≤ p/pmin (28)

(at the last step we used a classical estimate, Var (PΠ, QΠ) ≤Var (P, Q), valid for any
stochastic matrix Π and any probability distributions P, Q). We will need only the
following consequence of (28):

δ∗ := max
i,j
|π̄ij − πij| ≤ p/pmin (29)

where ||π̄ij|| are the components of Π̄. It is now a simple calculation based on (14), (24)
and (29) that for any i, j ∈ J we have

∑
k

π̄ikπ̄jk

p̄k

≥
∑
k

πikπjk − δ∗πik − δ∗πjk − δ2
∗

pk(1 + p/pmin)

≥
(
b− 2p/p2

min − p2/p3
min

)
·
(
1 + p/pmin

)−1
.

Now assume that p/p2
min < b/10. Then

∑
k

π̄ikπ̄jk

p̄k

≥ b/2

Therefore, the matrix Π̄ is quasi-stochastic and satisfies the condition (14) with b
replaced by b/2. Its stationary vector has rational components with the common denom-
inator D. The bound (23) then applies and and yields the following:

V̄
(m)
i :=

1

2

∑
j

|π̄(m)
ij − p̄j| ≤ 2−1D1/2 · (1− b/2)m/2 ≤ p−1/2 · (1− b/2)m/2 (30)
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The bound (28) has the following generalization:

Var (EiΠ̄
m, EiΠ

m) ≤ Var (P̄ , P̄Πm)

≤ Var (P̄ , P ) + Var (PΠm, P̄Πm)

≤ p/pmin (31)

for any m ≥ 1, which can be obtained by the same arguments as (28), now applied to
the matrix Π̄m = ΓΠmΓ−1. Based on (30), (31) and (25) we have

V
(m)
i =

1

2

∑
j

|π(m)
ij − pj| = Var (EiΠ

m, P )

≤ Var (EiΠ
m, EiΠ̄

m) + Var (EiΠ̄
m, P̄ ) + Var (P̄ , P )

≤ p−1/2 · (1− b/2)m/2 + 1.5p/pmin (32)

We now pick
p = 10−1bp2

min · (1− b/2)m/3

and obtain Theorem 1.

Remark. Notice that picking

p = 2−1p
2/3
min · (1− b/2)m/3

would yield a slightly better bound:

V
(m)
i ≤ 2p

−1/3
min (1− b/2)m/3

But this is only valid when our assumption p/p2
min < b/10 is satisfied, i.e. for

m ≥ | log p
4/3
min + log b− log 10| · | log(1− b/2)|−1

5 Relaxed condition on transition probabilities

In this section we relax the condition (14). Our point is that in the case of dynamical
systems with singularities some atoms of the partition A may be very ‘ugly’ and their
evolution may be totally out of control. In that case, it is enough to ensure a positive
lower bound on bi,j for an ‘overwhelming majority’ of pairs (i, j) rather than for every
single pair (i, j). Based on this we still can estimate V (m), as the following theorem
states.

Theorem 3 Suppose that there is a subset of pairs of indices, R ∈ J ×J , such that for
every pair (i, j) ∈ R we have bi,j ≥ b > 0 and

Q :=
∑

(i,j)/∈R
pipj < 1
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Then for any m ≥ 1 we have

V (m) ≤ const ·
[
b−1/2p−2

min(1− b/40)m/3 + m(pmin + Q)
]

(33)

where const is an absolute constant (one can set const = 50).

Note that Theorem 3 does not guarantee any convergence to equilibrium. It is useful
only when m(pmin + Q) � 1, i.e. for relatively small values of m.

The last theorem in this section shows that the hypotheses of Theorem 3 are stable
under certain perturbations. Consider two Markov chains with matrices of transition
probabilities Π = ||πij|| and Π′ = ||π′ij|| and with a common stationary distribution
P = ||pi||. Denote

b′i,j =
I∑

k=1

π′ikπ
′
jk

pk

.

Theorem 4 Let the Markov chain (Π, P ) satisfy the hypotheses of Theorem 3, and let

ν ′ :=
1

2

I∑
i,j=1

pi|πij − π′ij| < 1.

Then there is a subset R′ ⊂ J × J such that for every pair (i, j) ∈ R′ we have b′i,j ≥
b′ = b/2 and

Q′ :=
∑

(i,j)/∈R′

pipj < Q + 50b−1ν ′

We now prove Theorem 3. The key idea of the proof is to add some new states to
the Markov chain involved in this theorem so that the new, larger chain will meet the
assumptions of Theorem 1 and, in some sense, will be still close enough to the original
chain.

First, we notice that bi,j = bj,i, and so (i, j) ∈ R whenever (j, i) ∈ R. Besides,
(i, i) ∈ R for each i ∈ J , since bi,i ≥ 1 for every i.

We need some preparatory work to implement our plan. That work consists in ‘uni-
formization’ of both the stationary distribution P and the set of ‘bad’ pairs, (i, j) /∈ R.
First we make the stationary vector P ‘fairly uniform’, by which we mean that the ratio
maxi pi/pmin will not exceed 2. To this end, we employ the refinement techniques from
the proof of Theorem 1 and simply break every state in half as long as its probability
is larger than 2pmin. After such a refinement, we define R′ to be the union of all the
pairs (ir, js) (in the notations of Section 4) for which the pair of ‘predecessors’, (i, j),
was in R in the original chain. As it follows from (21), we have bir,js ≥ b for every pair
(ir, js) ∈ R′. It is also clear that∑

(ir,js)/∈R′

p′irp
′
js

=
∑

(i,j)/∈R
pipj = Q

12



The value of V (m) remains unchanged by virtue of (22), and, obviously, pmin will not be
altered by the above refinement.

Therefore, it is enough to prove Theorem 3 for the new, ‘refined’ chain. In other
words, we will simply assume, in addition to the hypotheses of Theorem 3 that

max
i

pi ≤ 2pmin (34)

Next, we make the set of ‘bad’ pairs, J 2 \ R, ‘fairly uniform’, as follows. Denote
Q′ = Q + pmin. For every i ∈ J let

q(i) :=
∑

j:(i,j)/∈R
pj

Then, for every i ∈ J such that q(i) < 2Q′ we remove from R one or more pairs (i, j)
with some arbitrary j 6= i, so that the value of q(i) will increase and satisfy

2Q′ ≤ q(i) < 4Q′

This is possible, since maxi pi ≤ 2pmin ≤ 2Q′. After that, for every pair (i, j) that we
have removed from R, we also remove its ‘transpose’ (j, i). After all that, the set R will
be still symmetric [i.e., (i, j) ∈ R ⇔ (j, i) ∈ R] and contain the diagonal {(i, i) : i ∈ J }.
It is then an easy calculation that the new value of Q, i.e.,

Q∗ :=
∑

(i,j)/∈R
pipj =

I∑
i=1

piq(i)

will satisfy the bound Q∗ ≤ Q + 8Q′. Hence, Q′
∗ = Q∗ + pmin ≤ 9Q′. In addition, for any

i ∈ J we now have

q(i) =
∑

j:(i,j)/∈R
pj ≥ 2Q′ >

1

5
Q′
∗ ≥

1

5
Q∗. (35)

We are now in a position to implement the plan mentioned in the beginning of the
proof. For each unordered pair (i, j) /∈ R we add a new state to our Markov chain, and
we label it by (ij) [notice that (ij)=(ji)]. Next we specify a new Markov chain with the
states {i : i ∈ J } ∪ {(ij) : (i, j) /∈ R}, which we call ‘old’ and ‘new’ states, respectively.
The matrix of transition probabilities is defined by

π̃ij =
πij

1 + q(i)

for any pair i, j ∈ J of old states,

π̃i(ij) =
pj

1 + q(i)
and π̃(ij)k =

pkq(k)

Q∗

for transitions between the old and new states and π̃(ij)(kl) = 0 for any pair of new states
(in particular, π̃(ij)(ij) = 0). We also set π̃k(ij) = 0 if k is different from i and j.

13



The new Markov chain has a stationary distribution with probabilities

p̃i = pi
1 + q(i)

1 + 2Q∗
and p̃(ij) =

2pipj

1 + 2Q∗
, (36)

for the old and new states, respectively.
We now show that the new Markov chain meets the assumptions of Theorem 1. For

any ‘good’ pair, (i, j) ∈ R, of the old states we have bi,j ≥ b, and so

∑
k∈J

π̃ikπ̃jk

p̃k

≥ 1

8
b

For any ‘bad’ pair of the old states, (i, j) /∈ R, we have

π̃i(ij)π̃j(ij)

p̃(ij)

≥ 1

8
.

For any pair of new states, (ij) and (lr), we have

∑
k∈J

π̃(ij)kπ̃(lr)k

p̃k

≥ 1,

which follows from the fact that π̃(ij)k = π̃(lr)k for all k = 1, . . . , I. Lastly, for any old
state, i, and any new state, (lj), we have

∑
k∈J

π̃ikπ̃(lj)k

p̃k

≥ 1

4

∑
k∈J

πikq(k)

Q∗
≥ 1

20
,

which follows from (35).
Therefore, the new Markov chain satisfies the hypotheses of Theorem 1 with b replaced

by b/20. (Note that since
∑

i,j pipjbi,j = 1, we always have b ≤ 1.) According to (36), the
minimum of the stationary probabilities in the new Markov chain satisfies pnew

min ≥ p2
min/2.

By virtue of Theorem 1, for any m ≥ 1 and every old state i ∈ J we have

1

2

I∑
j=1

|π̃(m)
ij − p̃j| ≤ 50b−1/2p−2

min(1− b/40)m/3 (37)

We now bound the LHS of (33) as follows:

I∑
i,j=1

|π(m)
ij − pj|pi ≤

I∑
i,j=1

|π(m)
ij − π̃

(m)
ij |pi

+
I∑

i,j=1

|π̃(m)
ij − p̃j|pi +

I∑
i,j=1

|p̃j − pj|pi (38)
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The middle term in the RHS is readily bounded by (37). The last term in the RHS of
(38) is, in view of (36), bounded by

I∑
i,j=1

|p̃j − pj|pi ≤ (1 + 2Q∗)
−1

I∑
i,j=1

(pjq(j) + 2Q∗pj)pi ≤ 3Q∗ ≤ 27Q′.

In order to bound the first term in the RHS of (38), we expand the transition proba-

bility π̃
(m)
ij as follows:

π̃
(m)
ij =

∑
k1,...,km−1

π̃ik1 π̃k1k2 · · · π̃km−1j.

where the variables k1, . . . , km−1 run over all the old and new states. We break this
sum into two subsums, Σ̃old

ij (m) and Σ̃new
ij (m), so that the former will be taken over the

old states only (i.e., when k1, . . . , km−1 ∈ J ) and the latter will be taken over strings
k1, . . . , km−1 which include at least one new state. Respectively,

π̃
(m)
ij = Σ̃old

ij (m) + Σ̃new
ij (m)

and
I∑

i,j=1

|π(m)
ij − π̃

(m)
ij |pi ≤

I∑
i,j=1

|π(m)
ij − Σ̃old

ij (m)|pi +
I∑

i,j=1

piΣ̃
new
ij (m) (39)

By using the stationarity of the distribution (36) it is a rather straightforward calculation
to bound the second term in the RHS of (39) as follows:

I∑
i,j=1

piΣ̃
new
ij (m) ≤ (1 + 2Q∗)

I∑
i,j=1

p̃iΣ̃
new
ij (m) ≤ (1 + 2Q∗)m

∑
(l,r)/∈R

p̃(lr) ≤ mQ∗ ≤ 9mQ′

We then rewrite the first term in the RHS of (39) as follows

I∑
i,j=1

|π(m)
ij − Σ̃old

ij (m)|pi

=
I∑

k0,...,km=1

|pk0πk0k1πk1k2 · · ·πkm−1km − pk0 π̃k0k1 π̃k1k2 · · · π̃km−1km|

=
I∑

k0,...,km=1

|
m−1∑
t=0

pk0πk0k1 · · ·πkt−1kt(πktkt+1 − π̃ktkt+1)π̃kt+1kt+2 · · · π̃km−1km|

Since the distribution {pk} is stationary for the matrix ||πkl||, the last sum is bounded
by

m−1∑
t=0

I∑
kt,kt+1=1

pkt|πktkt+1 − π̃ktkt+1| = m
I∑

i,j=1

pi|πij − π̃ij|.
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Lastly, since |πij − π̃ij| ≤ πijq(j) for any pair of old states (i, j) ∈ J 2, the above sum is
bounded by

m
I∑

i,j=1

piπijq(j) = mQ∗ ≤ 9mQ′

Combining the previous estimates of the three terms in the RHS of (38) gives

1

2

I∑
i,j=1

|π(m)
ij − pj|pi ≤ 50b−1/2p−2

min(1− b/40)m/3 + (9m + 14)Q′

Theorem 3 is proven.
We now prove Theorem 4. For any i, j ∈ J let dij = π′ij − πij. Then,

b′i,j =
∑
k

(πik + dik)(πjk + djk)

pk

=
∑
k

πikπjk

pk

+
∑
k

dikπjk

pk

+
∑
k

πikdjk

pk

+
∑
k

dikdjk

pk

Denote the last three sums by D
(1)
ij , D

(2)
ij and D

(3)
ij , respectively. Now, for each s = 1, 2, 3

let B(s) = {(i, j) : |D(s)
ij | > b/6}. Then, clearly for any pair (i, j) in the set

R′ := R \ ∪3
s=1B(s)

we have b′i,j ≥ b/2.
It remains to bound the quantity Q′. First,

∑
(i,j)∈B(1)

pipj <
6

b

∑
i,j

pipj|D(1)
ij | <

6

b

∑
i,j,k

p−1
k pipj|dik|πjk =

6

b

∑
i,k

pi|dik| = 12b−1ν ′

A similar estimate holds for B(2). Lastly,

∑
(i,j)∈B(3)

pipj <
6

b

∑
i,j

pipj|D(3)
ij | <

6

b

∑
i,j,k

p−1
k pipj|dik| · |djk| ≤

12

b

∑
i,k

pi|dik| = 24b−1ν ′

where we use the following bound:∑
j

pj|djk| ≤
∑
j

pjπ
′
jk +

∑
j

pjπjk = 2pk

Theorem 4 is proved.
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