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Abstract

Let φt be a topologically mixing Anosov flow on a 3-D compact manifolds M .
Every unstable fiber (horocycle) of such a flow is dense in M . Sinai proved in
1992 that the one-dimensional SBR measures on long segments of unstable fibers
converge uniformly to the SBR measure of the flow. We establish an explicit bound
on the rate of convergence in terms of integrals of Hölder continuous functions on
M .

1 Introduction

Let φt : M → M be a C2 Anosov flow on a smooth compact 3-D Riemannian manifold
M . This means that φt has no fixed points, and at every x ∈ M there is a Dφt-invariant
splitting of the tangent space

TxM = Es
x ⊕ Eu

x ⊕ Eφ
x (1)

into stable, unstable and neutral (parallel to the direction of the flow) one-dimensional
subspaces. We assume that φt is topologically mixing.

Let µ be the Sinai-Bowen-Ruelle (SBR) measure for φt. For topologically mixing
flows, µ is the only invariant measure whose conditional distributions on unstable fibers
are absolutely continuous with respect to the Riemannian length [7]. Also [3], the SBR
measure is the weak limit of the measure φtµ0, as t →∞, for any smooth measure µ0 on
M . The SBR measure µ is a Gibbs measure [7] and Bernoulli [6].

The measure µ can be approximated by its conditional measures on one-dimensional
unstable fibers as follows [8]. Let x ∈ M and R > 0. Denote by W u

x,R the segment of the
unstable fiber through x of length R on which x is the central point (equidistant from
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the endpoints). Now, for any t > 0 we take the normalized Lebesgue measure on the
curve φ−tW u

x,R and pull this measure back onto W u
x,R under the action of φt. We get a

probability measure on W u
x,R denoted by νu

x,R,t. The weak limit

νu
x,R = lim

t→∞
νu

x,R,t (2)

exists and is a smooth probability measure on W u
x,R. It is the SBR measure µ conditioned

on the curve W u
x,R.

The measures νu
x,R are invariant under the flow φt in the following sense: if φtW u

x,R ⊂
W u

y,S for some y ∈ M and S > 0, then the measure νu
y,S conditioned on φtW u

x,R and
pulled back under φ−t will coincide with νu

x,R. In particular, if W u
x,R ⊂ W u

y,S, then νu
y,S

conditioned on W u
x,R coincides with νu

x,R. The density fx,R(y), y ∈ W u
x,R of the measure

νu
x,R with respect to the Riemannian length satisfies the Anosov-Sinai formula [1, 8, 4]

fx,R(y1)

fx,R(y2)
= lim

t→−∞

Λu
t (y1)

Λu
t (y2)

(3)

where Λu
t (y) is the Jacobian of the linear map Dφt : Eu

y → Eu
φty.

The topological mixing of φt means by definition that every global unstable fiber
Γu

x = ∪RW u
x,R is dense in M . The K-mixing property of µ implies [8] that the weak limit

of νu
x,R, as R →∞, exists and coincides with the SBR measure µ for a.e. point x. Sinai

has proved [8] that the weak convergence νu
x,R → µ, as R → ∞, occurs for every point

x ∈ M and is uniform in x in the following sense.

Theorem 1 (Sinai, [8]) For any continuous function F (x) on M and any ε > 0 there
is an Rε > 0 such that ∣∣∣∣∣

∫
W u

x,R

F dνu
x,R −

∫
M

F dµ

∣∣∣∣∣ ≤ ε (4)

for all x ∈ M and R > Rε.

Technically, Sinai proved (4) for geodesic flows on surfaces of negative curvature,
but his proof works for the all Anosov flows discussed here without any changes. Sinai
termed the property (4) the uniform distribution of horocycles (this is the name for
unstable and stable fibers of geodesic flows). As Sinai pointed out [8], for geodesic flows
on noncompact surfaces of finite area the property (4) fails – every such surface has a
finite number of families of closed (!) horocycles. Nonclosed horocycles are still dense and
uniformly distributed [8]. Sinai’s theorem was motivated by a remark made by Zagier [9],
according to which the Riemannian hypothesis for zeroes of ζ-function could be derived
from the properties of closed horocycles on the modular surface.

We are going to estimate the rate of the weak convergence νu
x,R → µ. Our main result

is the following.
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Theorem 2 Let φt : M → M be a topologically mixing C2 Anosov flow on a 3-D man-
ifold, under the UNF assumption stated below. Let F be a Hölder continuous function
with Hölder exponent α > 0 on M . Then for all x ∈ M and R > 1 we have∣∣∣∣∣

∫
W u

x,R

F dνu
x,R −

∫
M

F dµ

∣∣∣∣∣ ≤ Cφ,F · exp
[
−αdφ(ln R)1/2

]
(5)

where the factor dφ depends on the flow φt alone, and Cφ,F depends on both φt and F ,
but both factors are independent of R and x.

We now formulate the assumption we call UNF - uniform nonintegrability of foliations.
We denote by W u,s

x the (one-dimensional) local stable and unstable fibers through x ∈ M .
We denote by

Wwu,ws
x = φ[−ε,ε]W u,s

x

the weak local unstable and stable (two-dimensional) leaves through x.
Let U ⊂ M be an open set, small enough so that both families of local stable and

unstable fibers in U are orientable. Fix some orientations of those families in U . Let
y ∈ U and δ > 0 a small number. On the local unstable and stable fibers W u

y and W s
y we

take two positively oriented segments of length δ starting at y and terminating at some
points y1 ∈ W u

y and y2 ∈ W s
y , respectively. It is clear that the two points y′ = W s

y1
∩Wwu

y2

and y′′ = W u
y2
∩ Wws

y1
lie on the same orbit of the flow, i.e. y′ = φτy′′ for some small

number τ = τy(δ). We call this τ the temporal distance between the local fibers W s
y1

and
W u

y2
, see also [4].
The foliations by local stable and unstable fibers are said to be jointly integrable [5]

in U if τy(δ) = 0 for all y ∈ U and small δ > 0. In that case those are subfoliations
of the same C1 foliation of U by surfaces. Plante’s [5] results imply that the flow φt is
topologically mixing iff there is an open domain U ⊂ M where the stable and unstable
foliations are not jointly integrable. Motivated by this, we call the next assumption the
uniform nonitegrability of stable and unstable foliations.

Assumption UNF. There are δ0 > 0 and an open domain U ⊂ M where both families
of stable and unstable fibers are orientable, and for some orientation we have, at every
y ∈ U and all 0 < δ < δ0,

0 < d <
τy(δ)

δ2
< d < ∞ (6)

where d and d do not depend on y.

This assumption was first introduced in [4]. Based on it, a stretched exponential
bound on correlation functions for the flow φt was established. It was also shown there
that this assumption is always satisfied for 3-D contact Anosov flows and, in particular,
for all geodesic flows on compact surfaces of (constant or variable) negative curvature.

Corollary 3 Let φt : M → M be a 3-D contact Anosov flow. Then the statement of
Theorem 2 holds true. In particular, it holds for geodesic flows on compact surfaces of
negative curvature.
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2 Markov partitions into boxes

Our proof of Theorem 2 is based on Markov approximations to Anosov flows developed
in [4]. We will often refer to that paper, and for the reader’s convenience we use here the
same notations. One can thus consider this paper as a continuation of [4].

The main construction of the paper [4] is an increasing sequence of partitions of the
manifold M into small boxes, which enjoy special Markov properties. We describe those
partitions below, in a slightly modified form adjusted to our current needs.

First, let R = {R1, . . . , RI} be a Markov family of rectangles in M defined by Bowen
[2]. Every rectangle is a small C2 compact surface in M transversal to the flow φt. The
boundary of each rectangle consists of four curves, two lying on local unstable leaves of
φt and two others on local stable leaves. Rectangles need not be foliated by stable or
unstable fibers. However, local stable and unstable leaves intersect a rectangle in smooth
curves that we call induced stable and unstable fibers on the rectangle.

Let Ω = ∪Ri. The surface Ω is a cross-section for the flow φt, see [2]. Denote by
T : Ω → Ω the first return map and by l(x) > 0, x ∈ Ω, the first return time. The flow φt

is then isomorphic to a suspension flow built over the map T : Ω → Ω under the ceiling
function l(x).

The function l(x) is piecewise C2 smooth with discontinuities along a finite collection
of induced stable fibers in the rectangles of R. The function l(x) on Ω is bounded away
from 0 and ∞. The map T : Ω → Ω is piecewise C2 smooth and hyperbolic. The above
mentioned induced fibers on rectangles are just stable and unstable fibers for T . The
partition of Ω into rectangles Ri ∈ R is a Markov partition for T .

We fix the Markov family R, assuming its rectangles be small enough, see [2, 4]. In
what follows, we denote by ai, ci, di, for i = 1, 2, . . . and z, t0 various positive constants
determined only by the flow φt and the family R.

Now let m ≥ 0 be an integer-valued parameter. A refinement Am of the Markov
partition R was constructed in [4], with the following properties. First, Am is a Markov
partition itself, its atoms are small subrectangles in the rectangles Ri ∈ R. For every
rectangle A ∈ Am we can find two integers n+(A) > 0 and n−(A) > 0 such that the
images T n+(A)A and T−n−(A)A are subrectangles in some rectangles R ∈ R, stretching
across those rectangles completely (from one boundary curve to the opposite one). One
can call the numbers n±(A) the ranks of the rectangle A ∈ Am. In the constructions
made in [4], the ranks n±(A) depended on A ∈ Am, but they were bounded as follows:

d1m ≤ n±(A) ≤ d2m

with some constants 0 < d1 < d2 < ∞. Therefore, the sizes and measures of all rectangles
A ∈ Am decrease exponentially in m, see [4] for precise estimates.

Now, put δ = c1e
−a1m. For every rectangle A ∈ Am we take sets

Xi(A) = φ[iδ,(i+1)δ]A (7)

for all i = 0, 1, . . . , iA, where iA is the smallest positive integer such that XiA+1(A) ∩
(int Ω) 6= ∅. We call the sets (7) boxes. Every box is a domain bounded by two rectangles
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(top and bottom), two unstable leaves and two stable leaves. Boxes can only intersect
one another in boundary points. Denote by Âm the collection of all these boxes, and by
M̂m their union. The measure µ conditioned on M̂m is denoted by µ̂m. The complement
M \ M̂m is not empty, but it consists of tiny gaps between the rectangles Ri ∈ R and the
boxes facing those rectangles ‘from underneath’. The size (measured in the direction of
the flow) and the µ-measure of those gaps are exponentially small in m.

We now restrict the flow φt onto M̂m as follows. The new flow, φ̂t
m : M̂m → M̂m, will

act just like φt on the interior of M̂m. As a trajectory φ̂t
mx reaches ∂M̂m, i.e. is about

to enter a gap between two components of M̂m, it instantaneously jumps forward across
that gap, but stays on the same trajectory of the original flow φt, and then continues in
M̂m. Thus, for any x ∈ M̂m and t > 0 we have φ̂t

mx = φt′x for some t′ ≥ t. It was shown
in [4] that

|t′ − t| ≤ c2te
−a2m (8)

so that the points φ̂t
mx and φtx are close for relatively small t.

Obviously, the flow φ̂t
m preserves the measure µ̂m. It was shown in [4] that φ̂t

m is a
hyperbolic flow with singularities. Its stable and unstable fibers are time-shifts of stable
and unstable fibers of the map T , which we termed induced fibers.

The dynamics of the flow φ̂t
m has a clearly pronounced “discrete” or “quantum”

character. Let T̂m = φ̂δ
m (one can think of δ as a quantum of time). The map T̂m moves

every box forward onto the next one in Âm, except for the boxes whose top faces are on
the border of a component of M̂m. Those border boxes are moved by T̂m across the gaps
and their images will fill the boxes X ∈ Âm adjacent to the surface Ω on the other side
of the gap. Due to these properties of the dynamics φ̂t

m it can be well approximated by
a Markov chain, as it was shown in [4].

We now summarize some of the results of [4]. Take an arbitrary box X0 ∈ Âm, and let
t > 0. Consider the conditional distribution µ̂m(·/φ̂t

mX0) on the boxes X ∈ Âm defined
by

µ̂m(X/φ̂t
mX0) = µ̂m(X ∩ φ̂t

mX0) · [µ̂m(X0)]
−1

For a function F on M , we define the average of F with respect to the above distribution
by

〈F/φ̂t
mX0〉 =

∑
X∈Âm

F̄m(X) · µ̂m(X/φ̂t
mX0)

where
F̄m(X) = [µ̂m(X)]−1

∫
X

F (x) dµ̂m(x)

Theorem 4 There are constants z > 0 and t0 > 0 such that for every t > t0 one can
take m = [z

√
t] and then for any Hölder continuous function F on M one has∣∣∣∣∫

M̂m

F (x) dµ̂m(x)− 〈F/φ̂t
mX〉

∣∣∣∣ ≤ CF,1 · c3 · exp(−αa3m) (9)

for every box X ∈ Âm. Here α is the Hölder exponent of F , and the factor CF,1 > 0
depends on the function F alone.
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This theorem actually says that the image φ̂t
mX is pretty much uniformly distributed

over the space M̂m. In other words, the conditional measure on φ̂t
mX reproduces the

invariant measure µ̂m of the flow φ̂t
m very accurately, as specified by (9). We emphasize

the important relation m = [z
√

t] between m and t.
This theorem follows immediately from the results of [4], but we should give a warning.

The bounds on correlation functions developed in [4] required the above ‘uniformity’ of
the distribution of φ̂t

mX on the average over the boxes X ∈ Âm, rather than for every
single box X. So, all the main estimates in [4] are given by averaging over those boxes.
Fortunately, the paper [4] also contains a proof of the uniformity of the distribution of
φ̂t

mX for every box X ∈ Âm, see remarks in the end of Section 16 and Theorem 6.1 in
[4].

By using the smallness of µ(M \ M̂m) and (8) we get

Corollary 5 Under the conditions of Theorem 4 we have∣∣∣∣∫
M

F (x) dµ(x)− (µ(X))−1
∫

φtX
F (x) dµ(x)

∣∣∣∣ ≤ CF,2 · c4 · exp(−αa4m) (10)

for every box X ∈ Âm. Here α is the Hölder exponent of F , and the factor CF,2 > 0
depends on the function F alone.

Moreover, we can modify the box X here without harming the property (10) so that
the new box will be foliated by unstable fibers in the following way. Let x ∈ X and let
W s

x(X) be the smallest segment of the local stable fiber through x that terminates on
the local unstable leaves bounding the box X (of course, W s

x(X) may go out of the box
X and then terminate on the continuation of the unstable leaf which contains a face of
∂X). For every point y ∈ W s

x(X) we take a segment of the local unstable fiber W u
y (X)

that, in the same way as before, terminates on two local stable leaves bounding X (or
their continuation beyond ∂X). The surface

Bu
x(X) = ∪y∈W s

x (X)W
u
y (X)

is foliated by unstable fibers. Sinai [8] called such surfaces u-cells. We now take Yx =
φ[0,δ]Bu

x(X). This is a domain, bounded by two surfaces Bu
x(X), φδBu

x(X), two local stable
leaves, and two local unstable leaves. So we can call Yx a box. This is our modification
of the box X. The box Yx is obviously foliated by unstable fibers of the flow φt. There is
a natural one-to-one smooth correspondence S : X → Yx which preserves the measure,
leaves every point x ∈ X on its trajectory and moves points no farther than by c5e

−a5m.
The map S sends the bottom of the box X onto the surface Bu

x(X). We then immediately
obtain

Corollary 6 Under the conditions of Theorem 4 we have∣∣∣∣∫
M

F (x) dµ(x)− (µ(Yx))
−1

∫
φtYx

F (x) dµ(x)
∣∣∣∣ ≤ CF,3c6 · exp(−αa6m) (11)

for the modification Yx of every box X ∈ Âm. Here α is the Hölder exponent of F , and
the factor CF,3 > 0 depends on the function F alone.
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3 Proof of the main theorem

The proof of Theorem 2 is based on Corollary 6 and a few relatively simple arguments.
First, we recall the notion of the holonomy map. For any two close unstable fibers

W u
1 , W u

2 ∈ M the map H : W u
1 → W u

2 defined by H(y) = Wws
y ∩W u

2 is called canonical
isomorphism, or holonomy map [1, 4]. Its Jacobian, DH, with respect to the Riemannian
length on the curves W u

1 , W u
2 is bounded away from 0 and ∞. Moreover, it is close to

one if the fibers are close enough to each other [4]. This property is commonly known as
the absolute continuity of stable and unstable foliations [1, 4].

The following lemma gives a specific bound on the Jacobian DH:

Lemma 7 There are constants a, c > 0, determined by the flow φt, such that

exp(−cεa) ≤ DH ≤ exp(cεa) (12)

where ε = dist(y, H(y)).

Proof. Put y∗ = W s
y ∩Wwu

H(y). Denote by H∗ the holonomy map W u
1 → W u

y∗ . There
is a small τ∗ such that φτ∗W u

y∗ = W u
2 . Then we have DH(y) = DH∗(y) · Λu

τ∗(y∗). For
the Jacobian DH∗(y) an analog of Anosov-Sinai formula [1, 4] holds, which says that
DH∗(y) = limt→∞ Λu

t (y)/Λu
t (y∗). The existence of this limit and its closeness to one

required by (12) follows from the facts that y∗ ∈ W s
y and the function Λu

t (·) is Hölder
continuous on M for any t, see [4]. Lemma 7 is proved.

We now turn to the proof of Theorem 2. Let t > t0 and m = [z
√

t], as in Corollary 6.
Take an arbitrary box X ∈ Âm. For any x ∈ X the modified box Yx is foliated by
unstable fibers. Its image Yx,t = φtYx is also a domain foliated by unstable fibers. We
denote the partition of Yx,t into unstable fibers by ξu(Yx,t). Since t ∼ m2, the length of
unstable fibers W u ∈ ξu(Yx,t) grows exponentially in m2:

c7e
a7m2 ≤ length(W u) ≤ c8e

a8m2

(13)

It is easy to see that all the unstable fibers in the partition ξu(Yx,t) are canonically
isomorphic. For any two fibers W u

1 , W u
2 ∈ ξu(Yx,t) and any point y ∈ W u

1 we have

dist(y, H(y)) ≤ c9e
−a9m

Therefore, due to Lemma 7,

exp(−c10e
−a10m) ≤ DH ≤ exp(c10e

−a10m) (14)

We now condition the measure µ on the domain Yx,t with respect to the partition
ξu(Yx,t). It induces smooth probability measures on the fibers W u ∈ ξu(Yx,t), which we
denote by νu

W u . The density fW u(y), y ∈ W u, of the measure νu
W u with respect to the

Riemannian length satisfies the ratio formula (3):

fW u(y1)

fW u(y2)
= κW u(y1, y2) = lim

τ→−∞

Λu
τ (y1)

Λu
τ (y2)

(15)
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The function κ satisfies the rule κW u(y1, y2) ·κW u(y2, y3) = κW u(y1, y3). The density fW u

can be computed by

fW u(y) =
κW u(y, y0)∫

W u κW u(y, y0) dy
(16)

where y0 ∈ W u is any point, and the integration is performed with respect to the Rie-
mannian length on W u.

Let W u
1 , W u

2 ∈ ξ(Yx) be two unstable fibers, and y1, y2 ∈ W u
1 . We will show that

κW u
1
(y1, y2)

κW u
2
(H(y1), H(y2))

= eε (17)

for some |ε| ≤ c11e
−a11m. Indeed,

κW u
1
(y1, y2)

κW u
2
(H(y1), H(y2))

=
Λu
−t(y1)

Λu
−t(H(y1))

Λu
−t(H(y2))

Λu
−t(y2)

· eε′ (18)

for some |ε| ≤ c11e
−a11m, because all four points φ−tyi, φ

−tH(yi), i = 1, 2, lie in the small
box Yx whose size decrease exponentially in m. To estimate the two fractions on the
right-hand side of (18), it is enough to note that the points φ−ty1, φ

−tH(y1) belong in
one stable leaf in Yx, as well as the points φ−ty2, φ

−tH(y2), and use again the Hölder
continuity of the function Λu

s (·) for any s. So, we get (17).
Combining (14), (16) and (17) gives the bound

exp(−c12e
−a12m) ≤ D∗H ≤ exp(c12e

−a12m) (19)

where

D∗H(y) =
fW u

2
(H(y))

fW u
1
(y)

·DH

is the Jacobian of the holonomy map now measured with respect to the induced measures
νu

W u
1
, νu

W u
2

on the unstable fibers W u
1 , W u

2 ∈ ξu(Yx,t), rather than their Riemannian length.
Corollary 6 can be now reformulated:

Corollary 8 Under the conditions of Theorem 4, for any unstable fiber W u ∈ ξu(Yx,t)
we have ∣∣∣∣∫

M
F (x) dµ(x)−

∫
W u

F dνu
W u

∣∣∣∣ ≤ CF,4 · c13 · exp(−αa13m) (20)

Here α is the Hölder exponent of F , and the factor CF,4 > 0 depends on the function F
alone.

This corollary, along with the bounds (13) complete the proof of Theorem 2 provided
the unstable fiber W u

x,R entering that theorem belongs in ξu(Yx,t) for some box X ∈ Am

for some m ≥ 1.
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For a generic unstable fiber W u
x,R we first find a t > 0 such that the preimage φ−tW u

x,R

has a length of order one (independently of R) and is located some positive distance
apart from the rectangles of the Markov family R. Obviously,

d3 ln R ≤ t ≤ d4 ln R

Then we take m = [z
√

t], and the corresponding partition Âm of M̂m into boxes. The
stable leaves bounding those boxes will partition the curve φ−tW u

x,R into short unstable
fibers. Every short fiber, except for the two on both ends of φ−tW u

x,R, will belong in some
modified box defined in the end of the previous section. Its image under φt will then
satisfy the bound (20). These images constitute nonoverlapping parts of the given fiber
W u

x,R. The two short fibers at the ends of φ−tW u
x,R, which we left out, can be neglected

since their relative lengths are less than c14e
−a14m.

The proof of Theorem 2 is accomplished.

4 Concluding remarks

1. The definition of the uniformity of the distribution of unstable manifolds can be
extended to multidimensional Anosov flows as follows, see [8]. Let x ∈ M and Γu

x be a
(global) unstable manifold through x. Consider a sequence of open subsets Uj ⊂ Γu

x of
finite diameter (in the inner metric on Γu

x) such that
(a) U1 ⊂ U2 ⊂ · · · and ∪jUj = Γu

x;
(b) for any R > 0 let Uj(R) ⊂ Uj be the subset of points whose distance to ∂Uj is

greater than R; then
lim
j→∞

νu
Uj

(Uj(R)) = 1

where νu
Uj

is the induced probability measure on the manifold Uj defined in the same way
as in (2).

Definition [8]. The unstable manifold Γu
x is said to be uniformly distributed if for

any continuous function F (x) on M we have

lim
j→∞

∫
Uj

F dνu
Uj

=
∫

M
F dµ

for any sequence Uj ⊂ Γu
x specified above.

Sinai proved [8] that for geodesic flows on compact manifolds of negative sectional
curvature the horocycles (unstable manifolds) are uniformly distributed. The extension
of Theorem 2 to multidimensional Anosov (or geodesic) flows is likely to be true but not
available yet, because the results of [4] which we used here are completed only for 3-D
flows.

2. The rate of convergence established by Theorem 2 does not seem to be optimal.
It is natural to assume that the square root can be removed in (5), see remarks in the
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introduction to [4]. Then one gets an algebraic bound const·R−a, a > 0, which looks
more like an optimal one.
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