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Abstract. We study a mechanical model known as Galton board
– a particle rolling on a tilted plane under gravitation and bounc-
ing off a periodic array of rigid pegs. Incidentally, this model is
identical to a periodic Lorentz gas where an electron is driven by a
uniform electric field. Previous heuristic and experimental studies
have suggested that the particle’s speed v(t) should grow as t

1/3

and its coordinate x(t) as t
2/3. We find exact limit distributions

for the rescaled velocity t
−1/3

v(t) and position t
−2/3

x(t). In addi-
tion, we determine that the particle’s motion is recurrent, i.e. the
particle comes back to the top of the board with probability one.

1. Introduction

Galton board introduced in [1] is one of the simplest mechanical devices
where non-stationary transport occurs. It consists of a vertical (or
inclined) board with interleaved rows of pegs. A ball thrown into the
Galton board moves under gravitation and bounces off the pegs on its
way down.

Galton board has been extensively studied in various asymptotic
regimes, see [2, 3, 4] and references therein. In this letter we discuss an
idealized infinite Galton board; our ball is a point particle of unit mass
moving according to equations q̇ = v and v̇ = g = const and colliding
elastically with immobile convex obstacles of infinite mass (scatterers),
which are positioned periodically on the board. We assume that every
straight line intersects some obstacles, so that there are no collision-
free corridors, see Fig. 1 (this is a standard ‘finite horizon’ condition
that guarantees a diffusive behavior of the ball). We neglect friction
and the spin of the ball.
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Figure 1. A ball’s trajectory on a Galton board.

This model is identical to a 2D periodic Lorentz gas [5, 6, 7, 8],
which illustrates the transport of electrons in metals in a spatially
homogeneous electric field. Without external field (i.e., when g = 0),
the periodic Lorentz gas reduces to a billiard system on its fundamental
domain (a torus minus scatterers). This is known as a dispersing (or
Sinai) billiard [9]; it has a stationary Liouville measure and strong
statistical properties: the position q(t) of the Lorentz particle at time
t evolves as a 2D Brownian motion [10], in particular, q(t)/

√
t →

N (0,D), where D is a diffusion matrix determined by the geometry of
scatterers.

Under a constant external field in the x direction, i.e. g = (g, 0), the
moving particle is allowed to accelerate indefinitely, thus the system
does not have a stationary state; but it conserves the total energy

(1) E = 1
2
[v(t)]2 − gx(t) = const,

where v(t) is the particle’s speed and x(t) its displacement in the di-
rection of the field. Thus the farther the particle travels, the faster it
moves. On the other hand, higher speed leads to a stronger scatter-
ing effect, thus increasing the chances that the particle bounces back
and hence temporarily decelerates (this is similar to Fermi, or diffusive
shock acceleration [11, 12]).

The backscattering effect slows down the particle’s drift in the x
direction so much that its average displacement 〈x(t)〉 at time t will
only grow as ta with some a < 1. It was estimated [13, 14, 15, 16] by
heuristic and approximative arguments, as well as computer simulation,
that the displacement of the particle typically grows as t2/3. Due to
the conservation of energy, its speed then grows as t1/3.
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We derive these conjectures from the equations of motion and recent
results [7, 8], and we precisely describe the limit distributions for the
rescaled velocity t−1/3v(t) and the rescaled position t−2/3x(t). We also
show that this mechanical model, after a proper rescaling of space and
time, is governed by a certain set of stochastic differential equations.
This provides a complete solution to the classical Galton problem. In
addition we find, quite surprisingly, that the particle’s motion is re-
current; that is with probability one the particle must slow down and
return to the top of the board.

Our approach is quite general. It relies only on chaoticity of the dy-
namics (for large kinetic energies) and the Einstein relation for linear
response. Therefore it should be useful in other problems such as par-
ticles in plasma [17, 18], dynamics of electrons in antidot superlattice
[19], balls falling onto a moving plate [20], to mention just a few. In this
letter we apply our method to a relatively simple model, so that the
computations are very explicit and transparent. Still we only present
the core of our argument here, full proofs with mathematical details
will be published elsewhere [21].

2. Velocity distribution

We consider two types of Galton boards: an ‘open top’ board, where
the ball bouncing back to the top escapes, and a ‘closed lid’ board
where the ball hitting the closed lid reflects back down.

We assume that the ball starts on the line x = 0 with its initial
velocity v(0) pointing in the (general) x-direction, and its initial speed
v(0) must be high enough (then, in the closed board, it will stay high
at all times, due to the conservation of energy). The initial state of the
ball is chosen randomly via a smooth probability distribution.

We obtain two major facts:

(A) In the ‘open top’ board the ball escapes with probability one.
(B) In the ‘closed lid’ board, the limit distribution of c t−1/3v(t), for

some c > 0, has probability density

(2)
3z

Γ(2/3)
exp

[

−z3
]

, z ≥ 0.

Accordingly, the limit distribution of 2gc2t−2/3x(t) has density

(3)
3

2Γ(2/3)
exp

[

−z3/2
]

, z ≥ 0.

In addition, x(t) returns to zero infinitely many times with prob-
ability one.
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The last statement means that the Galton particle evolves in a re-
current manner – its excursions into the depth of the Galton board
alternate with retreats to the starting line x = 0. As time goes on,
the particle makes longer and longer excursions that extend farther
and farther into the board (because the average coordinate 〈x(t)〉 must
grow as t2/3), but every excursion is followed by a retreat of the particle
back onto the starting line.

To derive our results we approximate the dynamics of the Galton
particle (whose kinetic energy K = v2/2 may grow indefinitely) with
an isokinetic particle moving at fixed speed. To this end we rescale
time t → t/

√
ε, where ε ∼ K−1, which brings our system to the form

where the kinetic energy K̃ = εK is of order one, but the force is
weak g → εg. In other words, we get a so called slow-fast system,
with a slow variable K̃ and a pair of fast variables X = (q, ω), where
ω = v/v denotes the particle direction. In these variables, the rescaled
equations of motion read

(4) q̇ =
√

2K̃ω, ω̇ =
ε

√

2K̃

[

g − 〈g, ω〉ω

]

+ O(ε2)

˙̃K = ε
√

2K̃〈g, ω〉.
Now we approximate (4) by an isokinetic system

(5) q̇ =
√

2Kω, ω̇ =
ε√
2K

[

g − 〈g, ω〉ω

]

, K̇ = 0.

The advantage of this approximation is that the dynamics on any en-
ergy surfaces can be reduced to that on the unit speed surface. Namely,
the solution to (5) with initial condition (q0, ω0, K0) takes the form

K(t) = K0, (q, ω)(t, ε, q0, ω0, K0) = (q̂, ω̂)(t
√

2K0, ε/2K0, q0, ω0)

where (q̂, ω̂)(t, ε, q0, ω0) denotes the solution of

(6) ˙̂q = ω̂, ˙̂
ω = ε [g − 〈g, ω̂〉 ω̂] .

with initial condition (q0, ω0). Equations (6) describe a particle in a
periodic Lorentz gas under a constant external field εg moving at unit
speed due to a Gaussian thermostat; this model was introduced in [14]
and studied in [7, 8]. It is known that the dynamics (6) has a steady
state µε and satisfies Central Limit Theorem: for any observable A

(7)

∫ T

0

A(q̂(t), ω̂(t)) dt = Tµε(A) +
√

T σε(A)Z + o(
√

T )

where Z = N (0, 1) is a standard normal random variable and µε(A)
and σε(A) are asymptotic drift and diffusion (standard deviation). In
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addition, Ohm’s Law is derived in [7, 8]:

(8) µε(ω̂) = 1
2
εDg + o(ε)

where again D = σ2
0(ω̂). The analysis of [7, 8] relies heavily on the fact

that (6) is a small perturbation of the Sinai billiard, which corresponds
to ε = 0. In particular, the diffusion matrix depends continuously on
the force strength:

(9) σε(ω̂) = σ0(ω̂) + o(1).

Our facts (A) and (B) actually follow from a more general result:

(C) Let K̄ ≥ 0. Suppose the initial state (X(0), K̃(0)) of our par-
ticle (in the closed Galton board) is chosen randomly via a
probability distribution such that K̃(0) = K̄, then the rescaled

kinetic energy K̃(τε−2), where 0 < τ < 1 is a new slow time, is
approximated (for small ε) by an Itô diffusion process K(τ) ≥ 0
satisfying stochastic differential equation (SDE)

(10) dK =
σ2

2
√

2K
dτ + (2K)1/4σ dWτ , K(0) = K̄

where Wτ is the standard Brownian motion and σ2 = 〈g,Dg〉.
Eq. (10) has a notable singularity at 0, which can be eliminated

by changing variable Q = K3/2, after which standard facts [22, Sec-
tion IX.3] guarantee the existence and uniqueness of Q and K. Actu-
ally, Q is known as a square Bessel process of index −1/3, see [22]. For
the reader’s convenience, we derive (A) and (B) from (C) in Appendix.

A crucial property of Eq. (10) is its self-similarity: it remains in-
variant under the transformation t → ct, K → c2/3K. As a result, not
only the rescaled kinetic energy K̃, but the original one K as well, is
approximated by (10); in fact one can study the evolution of K(t) for
0 < t < T by substituting ε = T−2/3 in (C).

We now derive (C) from (4)–(9). Let T = δε−2 with a small δ > 0;
then approximations (4)–(6) give

K̃(T ) − K̃(0) ≈ ε
√

2K̄

∫ T

0

〈g, ω〉 dt ≈ ε

∫ T̂

0

〈g, ω̂〉 dt,

where T̂ = T
√

2K̄. Using (7), (8) and (9) we obtain

K̃(T ) − K̃(0) ≈ 〈g,Dg〉δ
2
√

2K̄
+ (2K̄)1/4

√
δ 〈g, σ0(ω̂)Z (2)〉,

where Z (2) denotes a normal 2-vector; also observe that 〈g, σ0(ω̂)Z (2)〉 =
〈g,Dg〉1/2Z. Likewise, if we divide a longer time interval (0, τε−2) into
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segments of size δε−2, we obtain

(11) K̃j+1 − K̃j ≈
σ2δ

2
√

2K̃j

+ (2K̃j)
1/4σ

√
δZj

where K̃j = K̃(jδε−2) and Zj are independent. Now (11) is just a
discrete approximation to (10).

3. Coordinate distribution

We also determine the limit distribution for the y coordinate of the
Galton particle. Let h be a unit vector in the y direction. For simplicity,
assume that the periodic array of pegs is symmetric about the x axis, so
that the Lorentz gas diffusion matrix D is diagonal, i.e. 〈h,Dg〉 = 0.
Let σ2

y = 〈h,Dh〉. For the rescaled system (4), we have dỹ/dt =

ε〈v,h〉, where ỹ =
√

εy. Now the same analysis as in the previous
section shows that ỹ can be approximated by the solution of SDE

(12) dY(τ) = (2K)1/4σy dW̃τ +
〈h,Dg〉
2
√

2K
dτ = (2K)1/4σy dW̃τ

with Y(0) = 0, here W̃τ stands for a standard 1D Brownian motion
independent from W (thus (10) naturally decouples from (12)).

For any fixed realization of K(τ) the conditional distribution of Y(τ)
is such that its increments are independent and normal:

Y(τ + ∆) − Y(τ) = N
(

0, σ2
y

√

2K(τ) ∆
)

+ o(∆),

therefore Y(τ) is (conditionally) a Gaussian random variable with zero

mean and variance σ2
y

∫ τ

0

√
2K(ζ) dζ. Thus Y(τ)/

(∫ τ

0

√

2K(ζ) dζ
)1/2

is

normal N (0, σ2
y) and independent of K(τ).

As a result, t−2/3y(t) is a product of two independent random vari-

ables Y1Y2, where Y1 = N (0, σ2
y) and Y2 =

(∫ 1

0

√

2K(ζ) dζ
)1/2

and K is

the solution of (10) starting at 0. We see that y(t) ∼ t2/3.
Lastly, we estimate the expected number of times the particle collides

with a given scatterer. In order to hit a scatterer during a time interval
[n, n+1], the particle needs to be at a distance O(1) from it at time n;
and this event has probability pn ∼ O(n−4/3), since the distributions of
both x and y coordinates have standard deviation of order n2/3. Since
∑

pn < ∞, the expected number of returns to any given scatterer is
finite. This indicates that the coordinate process is not recurrent.
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4. Three dimensional model

Our arguments should work in higher dimension; furthermore, in 3D
the analogues of (10) and (12) can be solved explicitly, so the results
are even easier to formulate. For simplicity we assume that the peri-
odic array of scatterers is symmetric about each coordinate plane, so
that the corresponding Lorentz gas diffusion matrix is again diagonal.
Let W1, W2, W3, and W4 be some independent 1D Brownian motion
processes. Then we our analysis show that

• The velocity process is recurrent.
• The coordinate process is not recurrent.
• There are constants c1, c2, c3 > 0 such that the rescaled coordi-

nate vector t−2/3(c1x(t), c2y(t), c3z(t)) converges in distribution
to

(

(W 2
1 (1) + W 2

2 (1))2/3, ΛW3(1), ΛW4(1)
)

where

Λ =
[

∫ 1

0

(

W 2
1 (s) + W 2

2 (s)
)1/3

ds
]1/2

.

Appendix

To derive (A) and (B) from (C) we use elements of Itô calculus [22].
An Itô diffusion process satisfies a SDE

(13) dX = a(X, t) dt + b(X, t) dWt, X(0) = X0,

where a(X, t) is the drift coefficient and b(X, t) is the diffusion coeffi-
cient (the solution of (13) is a time-homogeneous Markov process with
continuous paths). If a and b do not depend on t, the Fokker-Plank
equation for this process reads

(14)
∂ρ

∂t
=

1

2

[

∂

∂x

]2
(

b2ρ
)

− ∂

∂x
(aρ) .

Consider another process Y = λ(X, t), where λ is a smooth function.
The Itô formula asserts that

dY =
[

λ′a + 1
2
λ′′b2 + λ̇

]

dt + λ′b dWt,(15)

where the primes stand for space derivatives and the dots for time
derivatives (in particular, Y is also an Itô diffusion process).

Another useful tool is changing time variable: introducing new time
dt = κ(X, t) ds transforms (13) into dX = aκ ds + b

√
κdWs. Now

combining (10) and (15) shows that the process W =
√
K satisfies

dW = σ
23/4W1/2

dWξ, and changing time by dη = σ2

23/2W
dξ gives dW =
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dWη, i.e. W(η) is a standard Brownian Motion. The latter is a recurrent
process, hence so is our K, which implies the fact (A).

Next, the process R = ξ−2/3K satisfies SDE

dR =

[

1

2
√

2R
− 2R

3

]

dξ

ξ
− (2R)1/4

√
ξ

dWξ.

Changing time via dζ = dξ/ξ gives

dR =

[

1

2
√

2R
− 2R

3

]

dζ − (2R)1/4 dWζ.

The Fokker-Plank equation for R reads, see (14),

∂ρ

∂ζ
=

[

∂

∂r

]2
(√

2rρ
)

− ∂

∂r

([

1

2
√

2r
− 2r

3

]

ρ

)

.

It is clear that any time independent integrable solution of this equation
must satisfy

∂

∂r

(√
2rρ

)

=

[

1

2
√

2r
− 2r

3

]

ρ,

thus the asymptotic density of K is (3). Lastly, (2) follows from (1).
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