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Abstract

We describe rigorous mathematical results on the Kolmogorov-Sinai entropy for
Lorentz gases and hard ball systems (both finite and infinite). Exact formulas and
asymptotic estimates of the entropy are discussed for various models.

1 Entropy: general formulas

Entropy is an important numerical characteristic of dynamical systems. It, in a sense,
measures the amount of chaos, or complexity, in the system.

Two different versions of entropy are widely used in the study of dynamical systems.
The measure-theoretic entropy (called also Kolmogorov-Sinai entropy) is associated with a
measurable transformation T : X → X preserving a probability measure µ. By contrast,
the topological entropy is associated with a continuous transformation T : X → X of a
topological space X not equipped with any measure. Generally, the topological entropy
htop(T ) is greater than the Kolmogorov-Sinai entropy hµ(T ), and any invariant measure
µ with the property hµ(T ) = htop(T ) is called the measure of maximal entropy. For
continuous time dynamical systems (flows) the entropy is defined as that of the time-one
map. More detailed discussions of entropy, its definition, properties, and history of the
subject, can be found, for example, in [ME].

We will primarily work with the Kolmogorov-Sinai entropy (also referred to as KS
entropy). Throughout, we denote by h(T ) the KS entropy of the billiard map T : Ω → Ω
with respect to the smooth invariant measure ν and by h(Φt) the KS entropy of the flow
Φt with respect to the Liouville invariant measure µ.

There is a remarkable relation between the two entropies, h(T ) and h(Φt), that follows
from a more general Abramov’s formula for the entropy of suspension flows [Ab]:
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Proposition 1.1 We have
h(T ) = τ̄ h(Φt) (1.1)

where τ̄ is the mean value of the free path τ(x) on Ω:

τ̄ =
∫
Ω

τ(x) dν (1.2)

The value of the KS entropy is closely related to those of Lyapunov exponents:

Proposition 1.2 We have

h(T ) =
∫
Ω

∑+
χi(x) dν(x) (1.3)

where the sum
∑+ runs over all positive Lyapunov exponents χi(x) > 0 at every x ∈ Ω

(counting multiplicity). We also have

h(Φt) =
∫

M

∑+
χ∗

i (x) dµ(x) (1.4)

where the sum
∑+ runs over all positive Lyapunov exponents χ∗

i (x) > 0 of the flow Φt at
every x ∈ M (counting multiplicity).

The above formulas (1.3) and (1.4) are known as Pesin identities. They were originally
found by Ya. Pesin in the context of smooth hyperbolic systems with smooth invariant
measures [P]. Later these formulas were proved for smooth systems with singularities
(including billiards) [KS], assuming only partial hyperbolicity, and for invariant measures
that only have smooth conditional distributions on unstable manifolds. Such measures are
now called Sinai-Ruelle-Bowen measures (also, SRB measures). Ergodic SRB measures
in hyperbolic systems are the only physically observable measures, in the sense that
they characterize space distributions of typical phase trajectories. It is interesting that
SRB measures are the only measures for which the Pesin identity holds, so for all the
other measures the entropy is strictly less than the average sum of positive Lyapunov
exponents. For more discussion of this topic see an excellent survey [Y].

SRB measures correspond to nonequilibrium steady states in statistical mechanics. If
one perturbs a Hamiltonian system (that has a smooth invariant measure by the Liou-
ville theorem) by an external force or a boundary condition, then generally the perturbed
system does not have any smooth invariant measure. Then physically interesting invari-
ant measures are those that describe the evolution of typical phase points, and such
measures are, in many cases, SRB measures. More precisely, if the original system is hy-
perbolic and the perturbation is small, then an SRB measure is very likely to represent
a nonequilibrium steady state.

Various perturbations of hard ball gases and Lorentz gases under external fields or
boundary conditions have been studied in the literature. In many cases nonequilibrium
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steady states in the form of an SRB measures have been observed numerically and some-
times investigated mathematically [CELS, C4]. See also the surveys [Bu, CY] in this
volume for more details. In all those cases, Pesin’s identity for the entropy is very likely
to hold as well, but there is no mathematical proof of that fact in such a generality.

We now get back to our hard balls and Lorentz gases.
The relation of the entropy to Lypunov exponents may not be practically very use-

ful, because the Lyapunov exponents are not easy to compute. They characterize the
asymptotic rate of expansion of unstable vectors. One can simplify this relation noticing
that, due to the Birkhoff ergodic theorem, the average asymptotic rates of expansion are
equal to the average one-step rates of expansion. This is stated below.

Proposition 1.3 We have

h(T ) =
∫
Ω

ln |Ju(x)| dν(x) (1.5)

Here Ju(x) is the Jacobian of the differential map DT restricted to the unstable sub-
space Eu

x ⊂ TxΩ (the latter is spanned by all the tangent vectors with positive Lyapunov
exponents).

Note that Ju(x) is the factor of expansion of volume in the space Eu
x under the map

DT : Eu
x → Eu

Tx.
The advantage of the last entropy formula (1.5) over the previous one (1.3) is actually

quite deceptive. To find the unstable subspace Eu
x ⊂ TxΩ, one essentially needs an

asymptotic procedure practically equivalent to the computation of all positive Lyapunov
exponents.

There is, fortunately, an explicit characterization of the unstable subspace Eu
x and an

explicit formula for the entropy h(T ) in terms of the so called curvature operator Bx.
That operator was introduced by Ya. Sinai in the seventies [S1, S3], and it has been
the main tool in Sinai’s pioneering works on Lorentz gases and hard ball systems. The
operator Bx is given in terms of an infinite continued fraction defined below.

For any point x = (q, v) ∈ M we denote by dx = (dq, dv) tangent vectors in TxM ,
so that dq ∈ TqQ and dv ∈ TvS

d−1. Note that dv ⊥ v, because ||v|| = const. Denote
by Jx the hyperplane in TqQ orthogonal to the velocity vector v. It can be naturally
identified with TvS

d−1, since both are perpendicular to the vector v. We will define a
linear operator Bx : Jx → Jx = TvS

d−1, with the help of a few auxiliary linear operators.
Let xt = (qt, vt) = Φtx. If there is no reflections at ∂Q between x and xt, then the

velocity vectors v and vt are parallel, hence the spaces Jx and Jxt are parallel and can be
naturally identified by parallel translation.

Let t be a moment of reflection at ∂Q, i.e. assume qt ∈ ∂Q. We have an instantaneous
transformation of the velocity vector at time t given by

v+
t = v−t − 2(n(qt) · v−t )n(qt)
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Here v−t and v+
t are the velocity vectors before and after the reflection, respectively, and

n(qt) is the unit normal vector to ∂Q at the point qt pointing inward Q. We have two
hyperplanes in the tangent space TqtQ, perpendicular to v−t and v+

t , we call them J−
xt

and
J+

xt
, respectively.
Denote by U : TqtQ → TqtQ the reflector across the hyperplane Tqt(∂Q) tangent to

∂Q at the reflection point qt. The reflector U is obviously given by

U(w) = w − 2 (n(qt) · w) n(qt)

for all w ∈ TqtQ. It is easy to see that U(v−t ) = v+
t and U(J−

xt
) = J+

xt
, and U is an

isometry. The operator U may be used to identify J−
xt

with J+
xt

, and thus we can identify
the hyperplanes Jxt for all t, but we will not pursue this goal.

Denote by Θ : TqtQ → TqtQ the unique linear operator specified by two conditions:
(i) Θ(v−t ) = v+

t ;
(ii) for any vector w ∈ J−

xt
we have

Θ(w) = 2 (v+
t · n(qt)) V+KqtV−(w) ∈ J+

xt

Here V− is the projection of J−
xt

onto Tqt(∂Q) parallel to the incoming velocity vector v−t ,
and V+ is the projection of Tqt(∂Q) onto J+

xt
parallel to the normal vector n(qt). Also,

Kqt is the curvature operator of the boundary hypersurface ∂Q at the point qt defined,
as usual, by

n(qt + dq) = n(qt) + Kqt(dq) + o(||dq||)
for vectors dq ∈ Tqt(∂Q). Note: since Kqt is a self-adjoint positive-semidefinite operator,
then so is ΘU−1.

Assume now that the past trajectory of x is completely defined. Let 0 > t1 > t2 > · · ·
be all the past moments of reflection (note that ti → −∞ as i →∞). At each reflection
moment ti we denote by Ui and Θi the two linear operators introduced above. Let
τ0 = −t1 and τi = ti − ti+1 > 0, i ≥ 1, be the intercollision times. Then

Bx =
I

τ0I + I

Θ1U
−1
1 + U1

I

τ1I + I
···

U−1
1

(1.6)

where I
A

means A−1. Note that the terms ΘiUi and τiI alternate as the fraction continues
downward. In a sense, these two alternating terms describe the contribution of reflections
and free paths as they appear on the trajectory Φtx, t < 0.

Note that

Bxt =
I

tI + I
Bx

if there is no reflections between x and xt. At each moment of reflection ti, the operator
Bxt changes discontinuously, and we have

Bxti+
= ΘiU

−1
i + UiBxti−

U−1
i (1.7)
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Hence, the operators Bxt are naturally related to each other along the trajectory Φtx.
If x = (q, v) ∈ Ω, i.e. x is a reflection point, we define

B+
x = lim

t↓0
Bxt

Then it follows from (1.6) and (1.7) that

B+
x = Θ1U

−1
1 + U1

I

τ1I + I

Θ2U
−1
2 + U2

I

τ2I + I
···

U−1
2

U−1
1 (1.8)

Here 0 = t1 > t2 > · · · are the past moments of reflections.
One can easily check that Bx maps Jx into itself. In all that follows we restrict Bx

onto the hyperplane Jx.

Proposition 1.4 The operator-valued continued fraction (1.6) converges at every point
x ∈ Ω with an infinite past trajectory. Moreover, if Bx,n is a finite continued fraction
obtained from (1.6) by truncation at the n-th reflection, then

||Bx −Bx,n|| ≤
1

|tn|

The operator Bx is self-adjoint positive semi-definite.

The proof of the convergence is based on the fact that all the operators in (1.6) are
self-adjoint positive semi-definite, i.e. τi > 0 and Θi ≥ 0. The first proof was published
in [SC], see also [LW]. In a weaker form the statement was given without proof earlier
in [S4]. For 2-D Lorentz gases the convergence was proved earlier in [S1].

Remark. The past trajectory Φtx, and hence the operator Bx, is well defined unless the
following anomalies occur:
(i) The trajectory Φt, t < 0, hits a “corner point” in the configuration space. No such
points exist in the Lorentz gas model where all the scatterers are smooth. In the hard
ball model, corner points in the configuration space correspond to multiple collisions of
balls (where three or more balls collide simultaneously). The dynamics is discontinuous
at such points.
(ii) The trajectory is tangent to the boundary in the configuration space (this situation
is called a grazing collision, it is possible in both Lorentz gases and hard ball gases).
At such points the dynamics is continuous but not differentiable, i.e. these are singular
points for the dynamics.
(iii) The trajectory experiences infinitely many collisions within a finite interval of time.
This sort of disaster is possible for some billiard systems. However, as G. Galperin [Gal]
and L. Vaserstein [V] showed, this never happens in gases of hard balls or Lorentz gases
(more generally, this is impossible in any semidispersing billiards).
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As a result, the operator Bx is defined at all regular (nonsingular) phase points. Moreover,
it depends on x continuously.

The operator Bx explicitly describes the unstable subspace Eu
x at every point x ∈ M :

Proposition 1.5 If Lyapunov exponents exist at a point x ∈ M , then the unstable sub-
space Eu

x ⊂ TxM (the subspace spanned by all the tangent vectors with positive Lyapunov
exponents) satisfies

Eu
x = {(dq, dv) : dq ∈ Ju

x , dv = Bx(dq)}

Here Ju
x ⊂ Jx is the subspace spanned by the eigenvectors of Bx with positive eigenvalues.

We note that since Bx is self-adjoint and positive semi-definite, the space Jx is the
orthogonal sum Ju

x ⊕ J0
x of two Bx-invariant subspaces so that Bx is positive on Ju

x and
zero on J0

x . Note also that dim Eu
x = dim Ju

x .
The entropy can also be explicitly given in terms of the operator Bx:

Theorem 1.6 We have

h(T ) =
∫
Ω

ln det(I + τ(x)B+
x ) dν(x) (1.9)

and
h(Φt) =

∫
M

tr Bx dµ(x) (1.10)

The formula (1.10) has a long history. It was first established for 2-D dispersing
billiards by Sinai [S1] in 1970. Its multidimensional version for semi-dispersing billiards
appeared in 1979 in a preprint by Sinai [S3], with an outline of a proof. A complete proof
of both (1.9) and (1.10) for semi-dispersing billiards was provided by Chernov [C2] in
1991. He also extended both formulas to more general classes of billiard tables in [C2]
and later in [C3]. In fact, Chernov proved [C3] that (1.9) holds for every billiard table,
in any dimension, as long as unstable bundles of trajectories do not focus right on the
boundary. He also found a necessary and sufficient condition on a billiard table for the
formula (1.10) to hold. The condition is that unstable bundles of trajectories do not
focus between collisions [C3] (we note that if they do, the integral in (1.10) diverges).

The proof of the above theorem is based on the following ideas. The formula (1.9)
follows from (1.5) provided we can establish

Ju(x) = det(I + τ(x)B+
x ) (1.11)

This is not true in the Euclidean metric (dq)2 + (dv)2 on Ω, but there is the so called
pseudo-metric on Ω (also called the p-metric) in which Ju(x) is indeed given by (1.11). In
the p-metric, the distance on unstable manifolds in Ω is induced by the Euclidean metric
on the orthogonal cross-section of the corresponding outgoing bundles of trajectories in
the configuration space. This construction of a pseudo-metric goes back to Sinai [S1]
and is commonly used in other papers on billiard dynamics. The verification of (1.11) is
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then quite elementary, see, e.g., [C2]. One should also note that by changing metric in
Ω one changes the function Ju(x) but its integral entering (1.5) remains unchanged, as
it follows from the invariance of the measure ν. Lastly, the formula (1.10) follows from
(1.9) and (1.1) by rather standard and simple calculation, see [C2, C3].

2 Entropy of Lorentz gases: asymptotic estimates

Estimation of the entropy and Lyapunov exponents of Lorentz gases have been done by
physicists since early eighties. One motivation was to explore the quantitative charac-
teristics of chaotic dynamics and observe transition from a regular motion (on a torus
without scatterers) to chaos (starting when a small scatter is placed on the torus).

For a 2-D periodic Lorentz gas with a single circular scatterer of radius r > 0 on a
unit torus the entropy was estimated [FOK] by

h(T ) ≈ −2 ln r (2.1)

as r → 0. Since the mean free path was long estimated to be τ̄ ≈ (2r)−1, we have by
(1.1)

h(Φt) ≈ −r ln r (2.2)

Since h(Φt) → 0 as r → 0, one obtains an asymptotic behavior of the entropy near the
transition point (between the “regular motion” at r = 0 and “chaos” at r > 0). The
above estimates have been proved, see below.

It was also conjectured in [FOK] that for any d-dimensional periodic Lorentz gas with
a spherical scatterer of radius r > 0 one should have h(T ) ≈ −d ln r, which turned out
to be wrong, see below. In the analysis of h(T ), the following important quantity is
involved:

ln
∫
Ω

τ(x) dν(x) −
∫
Ω

ln τ(x) dν(x) (2.3)

It was numerically estimated [FOK] that this quantity remains bounded and has a positive
limit (≈ 0.44± 0.01) as r → 0. The first part of this conjecture (boundedness) was later
rigorously proved, see below. The convergence to a limit is still an open problem.

In the 2-D case, the only positive Lyapunov exponent coincides with the entropy.
For multi-dimensional periodic Lorentz gases with a single spherical scatterer of radius
r, individual positive Lyapunov exponents for the billiard ball map T have been studied
in [BD]. It was estimated that every positive Lyapunov exponent χi > 0, as a function
of r, increases like const·| ln r|, as r → 0. Moreover, every positive exponent but the
maximal one was conjectured to be ≈ −1/4 ln(r/2). The maximal Lyapunov exponent
was conjectured to be ≈ −(3d+2)/4 ln r. The last two conjectures turn out to be wrong,
see (2.9) and (2.10) below. The first one is correct, see (2.10) below.

P. Baldwin [B] gave a theoretical argument supporting the following sharpening of
the formula (2.1):

h(T ) = −2 ln r + const + O(r) (2.4)
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His argument is not a mathematical proof, and so his prediction still remains an open
problem.

The following theorem was rigorously proved by Chernov.

Theorem 2.1 ([C2]) The entropy of the d-dimensional periodic Lorentz gas (d ≥ 2)
with a single spherical scatterer of radius r > 0 in a unit torus is given by

h(T ) = −d(d− 1) ln r + O(1) (2.5)

and
h(Φt) = −d(d− 1) |Bd−1| rd−1 ln r + O(rd−1) (2.6)

as r → 0. The mean free path is given by

τ̄ =
1− |Bd| rd

|Bd−1| rd−1
=

1

|Bd−1 |rd−1
+ O(r) (2.7)

Here |Bk| is the volume of the k-dimensional unit ball, see (3.4) below. The difference
(2.3) is always positive and uniformly bounded in r for every d.

The proof in [C2] is based on the approximation of the operator B+
x in (1.9) by Θ1U

−1
1 ,

see (1.8). The norm of the error is bounded

||B+
x −Θ1U

−1
1 || ≤ 1/τ1 ≤ const

cf. Proposition 1.4. Therefore, the substitution of Θ1U
−1
1 for B+

x in (1.9) can only change
the integral in (1.9) by a uniformly bounded amount.

Next, for small r the operator Θ1 has eigenvalues of order r−1, which can be found
by an elementary calculation for spherical scatterers, details may be found in [C2]. As a
result, the integration in (1.9) gives

h(T ) = (d− 1)
(
− ln r +

∫
Ω

ln τ(x) dν(x)
)

+ H(d) + o(1) (2.8)

The term H(d) here comes from the substitution of Θ1U
−1
1 for B+

x in (1.9). Its value was
computed explicitly in [C2]: H(2) = 2, H(3) = ln 4, and for d ≥ 4 we have

H(d) = (d− 1) ln 2− (d− 3) |Sd−2|
∫ 1

0
td−2 ln

√
1− t2 dt

Here |Sk| is the k-dimensional volume of the unit sphere Sk in IRk+1, see (3.3) below.
Lastly, the boundedness of (2.3) that was proved in [C2] gives (2.5). The estimate

(2.6) then follows from (1.1) and (2.7). The formula (2.7) is quite elementary, see ???
below.

It also follows from (2.8) that the existence of the limit of the quantity (2.3) is
equivalent to the following asymptotic formula:

h(T ) = −d(d− 1) ln r + const + o(1)
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Both remain, however, open questions, as well as the more refined prediction (2.4).
All the open questions involving the entropy h(T ) can be equivalently restated for

the entropy h(Φt), in view of (1.1) and (2.7).
As for the Lyapunov exponents for T , it follows directly from (2.5) that the maximal

one is bounded by

−d ln r + O(1) ≤ χmax ≤ −d(d− 1) ln r + O(1) (2.9)

By using again the approximation of B+
x by Θ1U

−1
1 , and the asymptotic eigenvalues of

the latter, see [C2] for details, it is easy to estimate every positive Lyapunov exponent
from below: χi ≥ −d ln r + O(1). Together with (2.5) this gives an asymptotic formula

χi = −d ln r + O(1) (2.10)

for every positive Lyapunov exponent χi > 0.
Therefore, all positive Lyapunov exponents have the same asymptotics as r → 0. It

was also conjectured in [C2] that all the positive Lyapunov exponents should be actu-
ally equal. This conjecture is still open. However, it was shown recently [DP, LBD],
both analytically and numerically, that in a 3-D random Lorentz gas (with a random
configuration of scatterers) the two positive Lyapunov exponents are distinct!

Two more general results were proved in [C2].
Consider a periodic Lorentz gas with m disjoint spherical scatterers with radii r1, . . . , rm

in a unit torus. Put
Z0 = rd−1

1 + · · ·+ rd−1
m

and
Z1 = rd−1

1 ln r1 + · · ·+ rd−1
m ln rm

The entropy of such a Lorentz gas was proved [C2] to be

h(T ) = −(d− 1)[ln Z0 + Z1/Z0] + O(1) (2.11)

and
h(Φt) = −(d− 1) |Bd−1| [Z0 ln Z0 + Z1] + O(Z0)

as r1, . . . , rm → 0, while the distances between the scatterers remain bounded away from
0. The mean free path is

τ̄ =
1

|Bd−1|Z0

+ O(max ri)

Lastly, consider a periodic Lorentz gas with m disjoint convex scatterers in a unit
torus, which are homotetically shrinking with a common scaling factor ε > 0. Let S1 be
the total surface area and V1 the total volume of the scatterers when ε = 1. Then we
have [C2]

h(T ) = −d(d− 1) ln ε + O(1)

and
h(Φt) = −d(d− 1) |Bd−1| |Sd−1|−1S1ε

d−1 ln ε + O(εd−1)

as ε → 0.
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3 Mean free path

Recall that the mean free path

τ̄ =
∫
Ω

τ(x) dν (3.1)

relates the entropies of the map T and the flow Φt by (1.1). It is interesting that the
mean free path can be exactly computed in terms of the geometric characteristics of the
Lorentz gas:

τ̄ =
|Q| · |Sd−1|
|∂Q| · |Bd−1|

(3.2)

Here |Q| is the d-dimensional volume of the domain Q available to the moving particle,
|∂Q| is the (d− 1)-dimensional area of the boundary of Q. Also,

|Sd−1| = 2πd/2

Γ(d/2)
(3.3)

is the (d − 1)-dimensional volume of the unit sphere in IRd. Here Γ(x) is the gamma
function, Γ(n + 1) = n!, Γ(x + 1) = xΓ(x), and Γ(1/2) =

√
π. Lastly,

|Bd−1| = |Sd−2|/(d− 1) (3.4)

is the volume of the unit ball in IRd−1.
It is also interesting that the expression (3.2) holds for any billiard system, in any

dimension. In particular, for planar billiard tables, d = 2, we have

τ̄ =
π |Q|
|∂Q|

(3.5)

and for 3-D billiard tables we have

τ̄ =
4 |Q|
|∂Q|

(3.6)

The formula (3.2) follows by a simple calculation involving the invariant measure µ
of the flow Φt and the invariant measure ν of the map T , see [C3].

The formulas (3.2)-(3.6) are known in integral geometry and geometric probability,
see, e.g., Eq. (4-3-4) in [M]. Eq. (3.5) is often referred to as Santalo’s formula, since it
is given in Santalo’s book [Sa].

Next we discuss the free path in the system of hard balls. It is related to the mean
intercollision time, one of the basic characteristics of the gases of hard balls.

Consider a gas of hard balls in IRk of diameter σ and unit mass, mean number density
n (the average number of balls per unit volume) and the mean temperature T . The
temperature is related to the mean kinetic energy by the classical formulas

E = kBT (k = 2) and E =
3

2
kBT (k = 3)
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Instead of the mean number density, one can use the mean “volume density” (the fraction
of volume occupied by the balls):

ρ = |Bk| · σkn

In physics, the classical Boltzmann mean free time formulas [CC, EW]:

t̄Boltz(k = 2) =
π1/2 σ

8 E1/2 ρ
=

1

2σ n
√

πkBT
(3.7)

and

t̄Boltz(k = 3) =
π1/2 σ

8 (6E)1/2 ρ
=

1

(2σ)2 n
√

πkBT
(3.8)

give the mean free time t̄ between successive collisions for each ball, on the average. The
Boltzmann formulas hold in the so called dilute mode (or gas mode) when n → 0. For
larger densities (dense mode, or fluid mode), there is classical Enskog’s correction to the
Boltzmann formula, which we give only in the 2-D case:

t̄Enskog(k = 2) =
π1/2 σ

8 E1/2 ρ χ
=

1

2σ n χ
√

πkBT
(3.9)

see, e.g., [Gas], where χ is the Enskog scaling factor

χ ≈ 1 + 0.782 · 2ρ + 0.5327 · (2ρ)2

see, e.g., [CL].
It is remarkable that the Boltzmann equation can be derived mathematically from

the billiard free path formula (3.2). This was done in [C3] in the following setup.
Consider a system of N hard balls of diameter σ and unit mass in the k-dimensional

torus T| k
L whose linear dimension is L > 0. The k-dimensional volume of the torus T| k

L is
Lk. The number density is n = N/Lk, and the “volume density” is ρ = |Bk|σkn.

The balls move freely and collide with each other elastically. Let qi,1, . . . , qi,k and
pi,1, . . . , pi,k be the coordinates of the position and velocity vector, respectively, of the ith
ball. The configuration space Q of the system is a subset of the kN -dimensional torus
T| kN

L , which correspond to all feasible (nonoverlapping) positions of the balls. The total
kinetic energy of the system is preserved in time, and we fix it: p2

1,1 + · · ·+ p2
N,k = 2EN ,

where the constant E > 0 is the mean kinetic energy per particle. The phase space is
then M = Q×SkN−1

1 where SkN−1
1 is the (kN−1)-dimensional sphere of radius (2EN)1/2.

The dynamics of the hard balls with elastic collisions correspond to the billiard dy-
namics in the configuration space Q with specular reflections at the boundary ∂Q. The
billiard particle in Q will move at the speed (2EN)1/2 rather than the conventional unit
speed. The boundary ∂Q consists of N(N − 1)/2 cylindrical surfaces corresponding to
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the pairwise collisions of the balls. Denote by Ci,j the open solid cylinder corresponding
to overlapping positions of the balls i 6= j. It is given by the inequality

k∑
r=1

(qi,r − qj,r)
2 < σ2 (mod L)

The configuration space is then Q = T| kN
L \ ∪i6=jCi,j, and its boundary is ∂Q = Q ∩

(∪i6=j∂Ci,j).
In order to estimate the mean free path by using Eq. (3.2) one needs to compute

the volume |Q| of the space Q and the surface area |∂Q| of its boundary ∂Q. This is
a difficult problem, very hard to solve exactly, since the cylinders Ci,j have plenty of
pairwise and multiple intersections. However, one can find the asymptotic values of both
|Q| and |∂Q| at very low densities, as n → 0.

Some simple calculations [C3] yield

|Q| = LkN(1− o(1))

|∂Q| = N(N − 1)

2
· |∂C1,2| · (1− o(1))

A little trickier is the estimation of |∂C1.2|. Certain geometric considerations [C3] yield

|∂C1,2| =
√

2 σk−1 · |Sk−1| · LkN−k (1 + o(1))

This gives the following:

|∂Q| = N − 1√
2

· 2k kρ

σ
· LkN (1 + o(1))

Now, according to (3.2), the mean free path of the billiard particle in the domain Q is

τ̄ =
|Q| · |SkN−1| · (kN − 1)

|∂Q| · |SkN−2|

=

√
2 σ(kN − 1) · |SkN−1|

2k kρ(N − 1) · |SkN−2|
· (1 + o(1)) (3.10)

Now comes a somewhat surprizing observation. First, the billiard system in Q is not
ergodic. Indeed, the total momentum P = (P1, . . . , Pk), where Pr =

∑
i pi,r, is invariant

under the dynamics. Those phase trajectories whose total momentum P is large will
display slow relative motion of the balls, and thus the mean free path between reflections
in ∂Q along such trajectories will be larger than τ̄ in (3.10). On the contrary, the mean
free path along trajectories with zero or small P will be below τ̄ . The value of τ̄ in
(3.10) only gives the phase space average of the mean free paths taken over individual
trajectories.
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Physically interesting regime is the one at equilibrium, where the total momentum is
zero, P = 0. Let τ̄0 denote the mean free path on the surface P = 0 in the phase space.
A little more computation [C3] gives

τ̄0 =

√
2 σ (kN − k − 1) · |SkN−k−1|
2k k ρ (N − 1) · |SkN−k−2|

· (1 + o(1))

=

√
2π σ · Γ

(
kN−k+1

2

)
2k ρ · Γ

(
kN−k+2

2

) · (1 + o(1))

One can ‘translate’ this result into the physically sensible mean free time t̄ as follows.
The speed of the billiard particle in Q is (2EN)1/2, and so the mean intercollision time
(in the whole system) is t̄sys = τ̄0 (2EN)−1/2. The mean intercollision time for every
individual particle is simply t̄par = t̄sys ·N/2, since every collision involves two particles.
This gives

t̄par =
π1/2 · Γ

(
kN−k+1

2

)
·Nσ

2k+1 · Γ
(

kN−k+2
2

)
· (EN)1/2 ρ

· (1 + o(1)) (3.11)

Now taking the limit in (3.11) as N → ∞ and using a handy formula Γ(N)/Γ(N −
1/2) =

√
N(1 + o(1)) yields

t̄par(N →∞) =
π1/2 σ

2k+1 (Ek/2)1/2 ρ
· (1 + o(1))

In particular, for k = 2 and k = 3 we recover the Boltzmann mean free time for hard
disks and hard balls (3.7) and (3.8).

4 Entropy of infinite gases

Estimation of the entropy and Lyapunov exponents for systems of hard balls has been
always difficult, on both numerical and theoretical levels. Relatively little is proved
rigorously, and the issue is still pretty much open. For recent estimates based on kinetic
theory and numerical experiments we refer the reader to the survey [BZD].

One interesting theoretical estimate of the entropy for a system of two hard disks on
a torus was proved by Wojtkowski in 1988 [W]. He showed that as the disks are so large
that they always nearly contact each other the entropy of the flow approaches infinity.

Here we concentrate on the entropy of infinite systems of particles. We describe three
rare mathematically proven theorems in this direction. First we need to describe basic
facts about infinite systems. We avoid some technicalities here, a complete account of
the issue may be found in [SC].

Infinite particle systems. We will consider infinitely many particles in IRd interacting
via a pair potential U(||q − q′||) where q, q′ ∈ IRd are the centers of the interacting
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particles. The potential U has hard core, i.e. U(r) = ∞ for 0 < r ≤ r0 and finite
range, i.e. U(r) ≡ 0 for r ≥ r1. Here 0 < r0 ≤ r1 are some parameters. If r0 < r1,
then for r0 < r < r1 the potential U(r) must satisfy certain conditions of regularity
and smoothness [SC]. This model somewhat generalizes the model of hard balls, which
corresponds to the case r0 = r1.

The configuration space of an infinite system consists of countable subsets Q∞ ⊂ IRd

such that ||q − q′|| ≥ 2r0 for every q 6= q′ ∈ Q∞. The phase space M∞ consists of pairs
X = (Q∞, P∞) where Q∞ is a configuration and P∞ is a IRd-valued function on Q∞. The
value p = p(q) for q ∈ Q∞ is the momentum of the particle at q.

The definition of dynamics on M∞ is not a trivial task. For systems with potential,
one might run into unsolvable problems of integrating infinitely many coupled differential
equations. Even for hard balls, some weird developments may occur. For example, the
system may “collapse” when infinitely many balls with arbitrary large velocities are
coming down “from infinity” into a finite domain of IRd, where they experience infinitely
many collisions on a finite interval of time.

The formal definition of dynamics requires a special construction. Let Vn be a se-
quence of increasing cubes in IRd with a common center and parallel faces such that
∪nVn = IRd. For every X = (P∞, Q∞) ∈ M∞ and each Vn we define a special dynam-
ics Φt

Vn
(X) as follows. We freeze the particles outside Vn and those whose hard core

intersects ∂Vn. Hence, only the particles x = (q, v) with

q ∈ Vn \Br0(∂Vn)

can move. We regard the boundary ∂Vn as consisting of rigid walls at which the moving
particles inside Vn bounce off elastically, as hard balls of radius r0.

Observe that since the potential U has a finite range, the moving particles inside
Vn only feel the influence of finitely many frozen particles outside Vn. Therefore, the
dynamics Φt

Vn
(X) is well defined for every X ∈ M∞. The flow Φt

Vn
is called a partial

flow (or partial dynamics) in the cube Vn. For each x = (q, v) ∈ X denote by xn(t) the
trajectory of x in the partial dynamics Φt

Vn
.

Key assumption. Assume that for each x ∈ X and s > 0 there is an n0 = n0(x, s)
such that the trajectory xn(t) for |t| < s is the same for all n > n0.

If the Key Assumption holds, then the trajectory x(t) of every particle x ∈ X for all
t ∈ IR is well defined by simply taking the limit of xn(t) as n → ∞. We denote by Φt

the resulting dynamics on the part of M∞ where the Key Assumption is satisfied.

Gibbs measures. Next, we define a family of the so called Gibbs measures µλ,e on the
phase space M∞. Consider again the sequence of cubes Vn → IRd, and in each Vn a finite
system of Nn particles with the total energy En. Assume that the walls of the container
Vn are rigid again, so that the particles in Vn bounce off ∂Vn elastically. The dynamics in
Vn preserves the total energy En and the Liouville measure µn on the surface of constant
energy (this measure is called the microcanonical distribution).
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Consider a sequence of such finite systems so that Nn/Vn → λ > 0 and En/Nn →
e > 0 as n → ∞. The parameters λ and e characterize the mean number density and
the mean kinetic energy per particle, respectively. The limit as n → ∞ is called a
thermodynamic limit. The weak limit of the sequence of measures µn (if one exists) is a
measure µλ,e on M∞ called the Gibbs measure.

Theorem 4.1 (Sinai [S2]) If the potential U satisfies certain regularity and smoothness
assumptions and the mean number density λ is low enough, then
(a) the Gibbs measure µλ,e exists;
(b) the set of phase points X ∈ M∞ satisfying the Key Assumption has full µλ,e-measure,
i.e. the dynamics is µλ,e-almost everywhere defined;
(c) the measure µλ,e is preserved under the dynamics Φt. It is also preserved under the
d-dimensional group of space translations.

In addition, the Gibbs measures µλ,e are invariant under the partial dynamics Φt
Vn

for
each cube Vn.

The proof of the theorem is based on the construction of the so called cluster dynamics.
Let r > r1. For any configuration Q∞ consider the union of balls of radius r centered
at all the points q ∈ Q∞. A connected component of that union is called an r-cluster.
Sinai proved that with µλ,e-probability one, each particle x = (q, p) belongs in a finite
r-cluster that does not interact with any other cluster during a certain interval of time.
Of course, within a finite cluster the dynamics is well defined. This observation allows
the construction of the dynamics in the entire system.

For infinite systems of hard balls the above existence theorem was proved by Alexan-
der [Al], without restrictions on the density λ. In this case the Gibbs measure µλ,e can
be characterized more explicitly:

1. For µλ,e-almost every configuration Q∞ the conditional distribution on the space
of momenta p ∈ P∞ is a direct product of Gaussian distributions with density(

β

2π

)d/2

e−
1
2
β||vq ||2

where β = d/(2e).
2. The marginal distribution on the space of configurations is a d-dimensional Poisson

measure with density λ. This means that for any bounded set B ⊂ IRd the number of
points q ∈ Q∞ ∩B is a Poisson random variable with parameter λ·Vol(B).

The parameter β is related to the temperature T by β = (kBT )−1, where kB is
Boltzmann’s constant. The temperature is then related to the mean kinetic energy by
e = (d/2)kBT .

Space-time translation group. Consider the d-dimensional group Su, u ∈ IRd, of
space translations on M∞. The translation Su shifts all the particles by the vector u
and leaves their momenta unchanged. Space translations commute with the dynamics
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Φt and together they generate a (d + 1)-dimensional abelian group Γt,u = Φt ◦Su on M∞
of space-time translations.

The Gibbs measure µλ,e is invariant under the group Γt,u. Denote by hλ,e(Γ
t,u) the

measure-theoretic entropy of the group Γt,u with respect to the measure µλ,e. For the
definition and basic properties of the entropy of multidimensional groups of measure-
preserving transformations see Conze [Co]. One can consider hλ,e(Γ

t,u) as the natural
entropy characteristic of the Gibbs measure µλ,e, it is called the space-time entropy.

The following estimate for the space-time entropy was proved by Chernov.

Theorem 4.2 ([C1]) Assume that the density λ is low enough, i.e. λ < λ0(e) for some
λ0(e) > 0 (the system is in a dilute mode). Then the space-time entropy hλ,e(Γ

t,u) is
finite and satisfies the following estimate:

hλ,e(Γ
t,u) < λ · const(e)

The proof is based on Sinai’s construction of cluster dynamics.
We note that this theorem does not ensure that hλ,e(Γ

t,u) > 0, even though this seems
very likely. For now, this remains an open problem.

Lyapunov spectrum. The second theorem due to Sinai deals with the Lyapunov spec-
trum of infinite systems of particles. In order to state the result we need to describe an
algorithm for computation of Lyapunov exponents for finite systems.

Let M = MV,N be the phase space of a system of N particles in a cube V with rigid
walls (with no restrictions on the energy so far). Let TX(M) denote the tangent space
to M at a point X ∈ M . Denote the dynamics on M by Ψt

V . It generates the family of
Jacobi maps (derivatives of Ψt

V )

J t
X : T (1)

X (M) → T (1)

Ψt
V X(M)

Denote by T (k)
X (M) the kth exterior power of T (1)

X (M). It is the space of all exterior

products e1 ∧ e2 ∧ · · · ∧ ek where ei ∈ T (1)
X (M). The Jacobi maps J t

X genetare the maps

J t
X(k) : T (k)

X (M) → T (k)

Ψt
V X(M)

Now let us fix the total energy E. Then the dynamics Ψt
V restricted to the energy

surface MV,N,E ⊂ MV,N preserves the Liouville measure µV,N,E (the microcanonical dis-
tribution). This measure has m = 2dN − 1 Lyapunov exponents, which we write down
in the decreasing order

χ
(N)
1 ≥ χ

(N)
2 ≥ · · · ≥ χ(N)

m

A version of an idea of Benettin et al. [BGGS] implies that

lim
t→∞

1

t

∫
MV,N,E

ln tr J t
X(k) [J t

X(k)]∗ dµV,N,E(X) = 2
k∑

i=1

χ
(N)
i (4.1)
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Here ∗ denotes the adjoint transformation.
Now, consider the thermodynamic limit as N →∞, N/V → λ > 0 and E/N → e > 0.

The measure µV,N,E weakly converges to the Gibbs measure µλ,e on M∞. We would
like to characterize the Lyapunov spectrum of the Gibbs measure µλ,e by a function
ϕ(p) = ϕλ,e(p) for 0 < p < 2d such that

lim
N→∞

χ
(N)
[pN ] = ϕ(p) (4.2)

(here [pN ] is the integral part of pN). The function ϕ would describe the distribution
of Lyapunov exponents in many particle systems. Obviously, ϕ(p) must be a decreasing
function. Of course, the above formula (4.2) is just a conjecture at present.

In terms of the function ϕ(p), we can state another conjecture:

1

N

[pN ]∑
i=1

χ
(N)
i −→ h(p) :=

∫ p

0
ϕ(s) ds (4.3)

as N → ∞. We note that since ϕ(p) is a decreasing function, h(p) must be a concave
function.

Substituting (4.1), we can rewrite (4.3) as

lim
N→∞

1

N
lim
t→∞

1

t

∫
MV,N,E

ln tr J t
X([pN ]) (J t

X([pN ]))∗ dµV,N,E(X) = 2h(p) (4.4)

Instead of proving (4.4) as such, Sinai argues as follows. It is not really finite systems
that are physically interesting, but rather an infinite system of particles. So, the ther-
modynamic limit N → ∞ should be taken first, and then the time limit t → ∞. This
would better fit the concept of a Lyapunov spectrum of the Gibbs measure µλ,e. So, Sinai
changes the order in which the limits are taken and conjectures that

lim
t→∞

1

t
lim

N→∞

1

N

∫
MV,N,E

ln tr J t
X([pN ]) (J t

X([pN ]))∗ dµV,N,E(X) = 2h(p) (4.5)

Furthermore, since we now take the limit N →∞ first, we can as well replace the finite
dynamics Ψt

V in V by the partial dynamics Φt
V in the same cube V as defined earlier.

Accordingly, the maps J t
X(k) must be defined in terms of Φt

V , and X be a point in M∞.
This is yet another step closer to working directly with an infinite system.

Theorem 4.3 (Sinai [S5]) Let µλ,e be a Gibbs measure on M∞. Assume that the den-
sity λ is low enough and the temperature (i.e. the mean energy e) is high enough. Then
for every t > 0 and µλ,e-almost every point X ∈ M∞ there exists

lim
V→IRd

1

λ · Vol V
ln tr J t

X([pN ]) (J t
X([pN ]))∗ = 2ht(p)

where ht(p) is independent of X. Furthermore, there exists

lim
t→∞

1

t
ht(p) = h(p)

The function h(p) is continuous and concave.
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The proof of the theorem is based on the cluster dynamics constructed in the earlier
paper by Sinai [S2].

The entire function h(p) can be regarded as an entropy-like characteristic of the Gibbs
measure µλ,e. But particularly important is its maximum

hmax = max
p

h(p)

Note that hmax = h(p0) where p0 is selected so that ϕ(p0) = 0. Hence, hmax corresponds
to “the sum of all positive Lyapunov exponents”. The following generalization of Pesin’s
identity (1.4) was also proposed by Sinai [S5]:

Sinai’s conjecture. The value hmax coincides with the space-time entropy of the Gibbs
measure µλ,e:

hmax = hλ,e(Γ
t,u)

Another intriguing question is the asymptotic behavior of the largest Lyapunov ex-
ponent χ1 as V → IRd, either for the finite dynamics Ψt

V or the partial dynamics Φt
V .

Note that the value of the function ϕ(p) at p = 0 only gives a lower bound for χ1. Sinai
remarks in [S5] that the largest exponent χ1 either remains bounded or grows slowly
(e.g., logarithmically) with the volume of V . Numerical estimates of χ1 indicate a very
slow growth, but do not rule out the boundedness of χ1.

Entropy per particle. Now we turn to the third, earlier theorem by Sinai and Chernov
[SC]. It deals with another entropy-like characteristic of an infinite gas of hard balls.

Let µλ,e be a Gibbs measure on M∞. Pick a sequence of cubes Vn with a common
center and parallel faces and once again consider the partial dynamics Φt

Vn
. Note that

under Φt
Vn

the balls inside Vn move freely, collide with each other and bounce off the walls
of the cube Vn and the frozen balls sticking out of the walls (those balls act like bumps).

For each n the partial dynamics Φt
Vn

preserve the Gibbs measure µλ,e. It is not ergodic,
though, for the number of moving balls N , their total energy E, and the positions of the
frozen balls are all the obvious integrals of motion. Fixing N , E and the positions of the
frozen balls intersecting the walls (the balls outside Vn can be ignored altogether) yields
a finite hard ball system in a container, though with somewhat peculiar boundary. The
boundary is composed of the flat faces of Vn and the fragments of spherical surfaces of
the frozen balls sticking out.

Let hλ,e(Φ
t
Vn

) be the entropy of the flow Φt
Vn

with respect to the measure µλ,e. It
can be computed with the help of (1.10) as follows. For every cube Vn and phase point
X ∈ M∞ let BX,Vn be the operator defined in Section 1 for the trajectory of the phase
point X under the dynamics Φt

Vn
. Of course, only the coordinates and momenta of the

moving balls in Vn are included in the construction of BX,Vn , the frozen balls are either a
part of the boundary or ignored completely (if outside of Vn). Integrating the equation
(1.10) over the phase space M∞ gives

hλ,e(Φ
t
Vn

) =
∫

M∞
tr BX,Vn dµλ,e (4.6)
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Clearly, the entropy hλ,e increases as the cube Vn grows, because more and more
moving balls are captured in the cube Vn. We are interested in the entropy per unit
volume

1

Vol Vn

hλ,e(Φ
t
Vn

)

The related quantity (λ Vol Vn)−1hλ,e(Vn) can be called the entropy per particle.

Theorem 4.4 ([SC]) Let the cubes Vn have sides Ln = 2nL0, where L0 > 0 is a con-
stant. Assume that the density is low enough, i.e. λ < λ0(e) for some λ0(e) > 0 (the
system is in a dilute mode). Then there is an h = h(λ, e) > 0 such that
(a) We have

lim
n→∞

1

Vol Vn

hλ,e(Φ
t
Vn

) = h

(b) For µλ,e-almost every phase point X ∈ M∞

lim
n→∞

1

Vol Vn

tr BX,V = h

A weaker version of this theorem was obtained by Sinai in 1978 [S3], where he proved
that lim inf(Vol Vn)−1hλ,e(Φ

t
Vn

) > 0.
Sinai and Chernov conjectured that the quantity h = h(λ, e) actually coincides with

the space-time entropy:
h(λ, e) = hλ,e(Γ

t,u)

If this is true, it would imply that hλ,e(Γ
t,u) > 0 solving the open problem stated after

Theorem 4.2. If this is not true, then hλ,e can be regarded as yet another entropy-like
characteristic of the Gibbs measure µλ,e. It would be interesting to further investigate
its properties, in particular its asymptotics as λ → 0.
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