
Invariant measures for
Anosov maps with small holes

N. Chernov01, R. Markarian02 and S. Troubetzkoy01

September 14, 2006

Abstract

We study Anosov diffeomorphisms on surfaces with small holes. The points
that are mapped into the holes disappear and never return. In our previous paper
[6] we proved the existence of a conditionally invariant measure µ+. Here we show
that the iterations of any initially smooth measure, after renormalization, converge
to µ+. We construct the related invariant measure on the repeller and prove that
it is ergodic and K-mixing. We prove the escape rate formula, relating the escape
rate to the positive Lyapunov exponent and the entropy.
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1 Introduction

A pictorial model of a chaotic dynamical system with holes (also known as open dynamical
systems) was proposed by Pianigiani and Yorke [14]. Imagine a Sinai billiard table (with
dispersing boundary) in which the dynamics of the ball is strongly chaotic. Let one or
more holes be cut in the table, so that the ball can fall through. One can also think of
these holes as ‘pockets’ at the corners of the table. Let the initial position of the ball
be chosen at random with some probability distribution. Denote by P (t) the probability
that the ball stays on the table for at least time t, and if it does, by ρ(t) its (normalized)
distribution on the table at time t. Some natural questions are: at what rate does P (t)
converge to zero as t → ∞, what is the limit probability distribution limt→∞ ρ(t), and
does it depend on the initial distribution ρ(0)? These questions remain open.
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Open billiards and other open Hamiltonian systems have become very popular in
physics under the name of chaotic scattering theory in the past ten years. They have
been studied numerically and heuristically, see the survey [9] and the references therein.
This has prompted mathematicians to study open systems as well. The first mathematical
results have dealt with the case when the underlying system is uniformly hyperbolic and
admits a finite Markov partition: expanding maps of the interval [14, 8], horseshoes [3],
open billiard tables with no eclipse [12], and Anosov diffeomorphisms with Markov holes
[4, 5]. In all these papers the holes are elements of a Markov partition.

This is a continuation of the paper [6] where we started the study of Anosov diffeo-
morphisms with small open holes. The relaxation of the Markov property of the holes is
our main objective of this article as well as [6]. The main result of [6] was the existence
and uniqueness of the conditionally invariant measure µ+ with smooth distributions on
unstable fibers. Here we prove that the iterations of any initially smooth measure, after
renormalization, converge to µ+. We also construct the related invariant measure, µ̄+, on
the repeller, which turned out to be ergodic and K-mixing. We then obtain an escape rate
formula, relating the escape rate to the Lyapunov exponent and the entropy. Thus, the
entire mathematical theory of open hyperbolic dynamical systems is here extended from
examples with clear-cut Markov (‘rectangular’) repellers to Anosov diffeomorphisms with
quite general small open holes. Our results have many promising physical applications
to, e.g., open Lorentz gases, billiard tables with holes and pockets, and other models in
the scattering theory.

This paper is closely connected to [6], even though the main ideas here are quite
different. We often refer to [6] for notations and technical results, but we provide all
necessary definitions here as well. We make an additional technical assumption on the
holes, see Sect. 3, but our principal theme is unchanged – we work with small open holes
of quite general nature (not even assuming the smoothness of their boundary).

2 Statements of main results

2.1 Let T̂ : M̂ → M̂ be a topologically transitive Anosov diffeomorphism of class C1+α

of a compact Riemannian surface M̂ . Let H ⊂ M̂ be an open set with a finite number
of connected components.

We denote M = M̂ \H. For any n ≥ 0 we put

Mn = ∩n
i=0T̂

iM and M−n = ∩n
i=0T̂

−iM, (2.1)

and also
M+ = ∩n≥1Mn, M− = ∩n≥1M−n, Ω = M+ ∩M− (2.2)

Observe that all these sets are closed, T̂−1M+ ⊂ M+, T̂M− ⊂ M− and T̂Ω = T̂−1Ω = Ω.
The set Ω is called a repeller.

We refer to the connected components of H as holes. We study the dynamics outside
the holes, i.e. the trajectories that fall into H disappear and never return. We denote
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by T the restriction of T̂ on M , which means that for any set A ⊂ M and n ≥ 1 we put
T nA = T̂ n(A ∩M−n) and T−nA = T̂−n(A ∩Mn).

Let W u
x and W s

x be local unstable and stable fibers through x ∈ M̂ . We denote by Ju
x

and Js
x the Jacobians of the map T̂ restricted to W u

x and W s
x , respectively, at the point

x. We put
Λmin = min

x∈M̂
{Ju

x , 1/Js
x} and Λmax = max

x∈M̂
{Ju

x , 1/Js
x}

For any two points x, y ∈ W s a holonomy map hx,y : W u
x → W u

y is defined by sliding
the points of W u

x along local stable fibers (symmetrically, hx,y : W s
x → W s

y is defined for
x, y ∈ W u).

A rectangle R ⊂ M̂ is a small subset such that for any x, y ∈ R we have W u
x ∩W s

y ∈ R.
We consider only closed connected rectangles. Those are bounded by two stable and two
unstable fibers (called stable and unstable sides of R). Segments of local unstable and
stable fibers inside R that terminate, respectively, on the stable and unstable sides of R
are called R-fibers. Any subrectangle R′ ⊂ R whose stable (unstable) sides are on the
stable (unstable) sides of R is called a u-subrectangle (s-subrectangle).

Denote by µSBR the unique Sinai-Bowen-Ruelle (SBR) measure of the diffeomorphism
T̂ , cf. [17, 1, 15]. Its conditional distributions on local unstable fibers are smooth (with
Hölder continuous densities). Motivated by this, we call the conditional distributions of
µSBR on unstable fibers u-SBR measures. Equivalently, for any local unstable fiber W u

its u-SBR measure is a probability measure, νW u , on W u whose density ρ(x) with respect
to the Riemannian length satisfies the equation

ρ(x)

ρ(y)
= lim

n→∞

Ju
T−1y · · · Ju

T−ny

Ju
T−1x · · · Ju

T−nx

(2.3)

The u-SBR measures are T̂ -invariant, i.e. T̂∗νW u = νT̂W u .
For any r > 0 we denote by D1(r) ≥ 1 the supremum of all ratios ρ(x)/ρ(y) in (2.3)

for all x, y ∈ W u on all fibers W u ⊂ M̂ of length r (length always means the Riemannian
length). Next, D2(r) denotes the supremum of all the Jacobians of holonomy maps
hx,y for points x, y ∈ W u,s at distance ≤ r (measured along W u,s). We put D(r) =
max{D1(r), D2(r)}. One can think of D(r) as a general upper bound on distortions
within the distance r in M̂ . Obviously, D(r) → 1 as r → 0.

2.2 We recall the assumptions on H made in [6]. First, there is a constant B0 > 0
such that for any local unstable fiber W u and any local stable fiber W s that intersect
only one hole H ′ (connected component of H) the sets W u \H ′ and W s \H ′ consist of
not more than B0 connected components.

Let NH be the number of holes. We denote by d0(H) the minimum distance between
the holes, if there is more than one hole. We also assume that d0(H) is smaller than a
quarter of the length of the shortest closed geodesic on M̂ . In the case NH = 1 this will
be the definition of d0(H).

Let d0 be any lower bound on d0(H), i.e. d0 ≤ d0(H).
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We fix D = D(2d0), which will be the only bound on distortions that we use. We
assumed in [6] that Λmin > 64D2, which was not a restrictive assumption, because it can
be always fulfilled by taking higher iterates of T̂ .

We denote by h the maximal size of holes defined as follows. For any hole H ′ ⊂ H
its size is

sup
x∈H′

{diam W u
x ∩H ′, diam W s

x ∩H ′}

where the diameter is measured along the fibers W u,s
x . We will need h to be small enough

compared to d0, i.e. h < h0 = h0(T̂ , d0, B0). In Sections 2 and 3 of [6], we have assumed
four specific upper bounds on h0, but here we will just assume that h0 is small enough
whenever necessary.

We note that the assumption dimM̂ = 2 is made mainly to simplify the proofs and
can be possibly relaxed along the lines of [7]. On the contrary, the smallness of the holes
is essential – for large holes the conditionally invariant measure may be not unique, and
the dynamics on the repeller may be not ergodic.

2.3 For any finite Borel measure µ on M we define its norm by ||µ|| = µ(M).
We denote by T∗ the adjoint operator on the class of Borel measures on M defined
by (T∗µ)(A) = µ(T−1(A ∩ M1)) for any A ⊂ M . Due to the holes, the operator T∗
does not preserve norm. We also denote by T+ the (nonlinear) operator on the space of
probability measures on M defined by T+µ = T∗µ/||T∗µ||, whenever ||T∗µ|| 6= 0.

Definition. A probability measure µ on M is said to be conditionally invariant under
T if T+µ = µ, i.e. if there is a λ > 0 such that T∗µ = λµ. The factor λ is the eigenvalue
of µ.

Obviously, any conditionally invariant measure µ is supported on M+, and we have
λ = ||T∗µ|| = µ(M−1).

We are interested in measures whose conditional distributions on unstable fibers co-
incide with u-SBR measures. In addition, we assume a certain natural balance between
long and short unstable fibers in terms of measures, see below.

First, for certain technical reasons it is convenient to limit the length of unstable
fibers in Mm and M+ by d0. This can be done as in [6], Sect. 2, by subdividing longer
unstable fibers into subfibers of length between d0/2 and d0. This can be accomplished
by making a finite number of cuts in M along some local stable fibers, whose choice is
not very important to us. Now, with these additional cuts, any maximal unstable fiber
W u ⊂ Mm, m ≥ 0, and W u ⊂ M+, has length ≤ d0. We denote by |W u| the length of
W u.

Now, for m ≥ 0, we denote by Wu
m the set of maximal unstable fibers W u ⊂ Mm.

For every unstable fiber W u and ε < |W u| we denote by W u(ε) ⊂ W u the union of two
subsegments of W u of length ε terminating at the endpoints of W u, and put W u(ε) = W u

if ε ≥ |W u|. In other words, W u(ε) is the ε-neighborhood of the endpoints of W u with
respect to the length on that curve. Let Um,ε = ∪W u∈Wu

m
W u(ε). Let Wu

m,ε = {W u ∈
Wu

m : |W u| < ε}. By replacing m with + in the above formulas, we define Wu
+, U+,ε and

Wu
+,ε.
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Let m ≥ 0. Denote by Mm the class of probability measures supported on Mm, such
that for any µ ∈Mm

(M1) its conditional measures on unstable fibers W u ∈ Wu
m coincide with u-SBR measures

on those fibers;
(M2) for any ε > 0 we have µ(Um,ε) ≤ C1ε.
Here C1 = 48D/d0 is the constant introduced in [6]. By replacing m with +, we define
the class of measures M+. We call the above measures SBR-like measures.

Claim. For all m ≥ 0 we have T+Mm ⊂Mm+1. Also, T+M+ ⊂M+.

Proof. The preservation of the property (M1) is obvious. That of (M2) follows from
Theorem 2.1 in [6], along with the second remark after it for measures supported on a
finite union of unstable fibers. Then taking weak limits of such measures automatically
extends this claim to all measures in Mm and M+. 2

The main result of [6] is the following.

Theorem 2.1 ([6]) There is a unique SBR-like conditionally invariant measure µ+ ∈
M+, i.e. the operator T+ : M+ →M+ has a unique fixed point, µ+.

The eigenvalue λ+ of the measure µ+ satisfies the bound λ+ ≥ 1 − C2h, where
C2 = C1D(Λmax/Λmin + 1). Technically, the uniqueness of µ+ was proved in [6] under
one extra assumption, but that one was proved there (in the statements 5.10 and 5.11)
based on the remaining assumptions, so we drop it here.

Convention. We will use here the constants C1, . . . , C4 and D1, D2 introduced in
[6]. Generally, we will denote by Ci and Di constants determined by the given Anosov
diffeomorphism T̂ and the parameters d0, D, B0, NH , which we call global parameters
(as opposed to the size h of the holes or any characteristics of the shape of the holes).
The same goes for other constants: ai, b, αi, βi, γi, l0, r0. All these constants will be
independent of the size h of the holes or the particular shape of the holes. We call such
constants global constants. (The only exception is g in Section 4, which is proportional
to h.)

2.4 The SBR-like conditionally invariant measure µ+ plays the same role in the theory
of open systems (= systems with holes) as SBR measures play in conservative systems:
they are the only physically observable measures. That means that taking a large N � 1
and a point x ∈ M−N at random (according to a smooth probability distribution), the
orbit T nx, 1 ≤ n ≤ N , will be asymptotically distributed according to µ+, as N →
∞. Equivalently, if µ0 is a smooth measure on M , then the sequence {T n

+µ0} weakly
converges, as n →∞, to the conditionally invariant measure µ+.

First of all, if the conditional measures of µ0 on unstable fibers W u ∈ W0 have smooth
densities, then the densities of the measure T n

+µ0 on fibers W u ∈ Wn approach those of
u-SBR measures exponentially fast in n, see [4]. Therefore, to find limit points of the
sequence {T n

+µ0} we can restrict ourselves to the measures µ0 ∈M0.
The weak convergence T n

+µ0 → µ+ was previously proved for various open systems
with Markov ‘rectangular’ holes, cf. [4, 5]. Here we prove it in our context.
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Theorem 2.2 For any measure µ0 ∈ M0 the sequence of measures T n
+µ0 weakly con-

verges, as n →∞, to the conditionally invariant measure µ+. Moreover, the sequence of
measures λ−n

+ ·T n
∗ µ0 weakly converges to ρ(µ0) ·µ+, where the function ρ(µ0) is uniformly

bounded on M0.

Observe that M0 contains any measure µ0 supported on a single unstable fiber W u ⊂
M of length ≥ d0/2, which coincides on it with the u-SBR measure νW u . The above
theorem also holds for measures supported on arbitrary short single fibers, provided they
are ‘eventually long’, see Corollary 7.4.

We also estimate the speed of convergence in this theorem. Let f be any continuous
function on M . Denote by δf (ε) = sup{|f(x) − f(y)| : dist(x, y) < ε} its modulus of
continuity. Since M is compact, f(x) is uniformly continuous on M , so δf (ε) → 0 as
ε → 0.

Theorem 2.3 Using the notation of the previous theorem, let µn = T n
+µ0. For any

continuous function f ∈ C(M)∣∣∣∣∫
M

f(x) dµn −
∫

M
f(x) dµ+

∣∣∣∣ ≤ const ·
[
δf

(
e−a1n1/2

)
+ ||f ||∞e−a2n1/2

]
(2.4)

for some global constants a1, a2 > 0 and const > 0.

In particular, if f(x) is a Hölder continuous function, then δf (ε) = O(εa) with some
a > 0, and we get the so-called stretched exponential convergence in the last theorem.

2.5 Next, since M+ is invariant under T−1, it makes sense to look for an invariant
measure for the transformation T : Ω → Ω by taking a weak limit of T−n

∗ µ+ as n →∞.
Due to the conditional invariance of µ+, T−n

∗ µ+ simply coincides with the measure µ+

conditioned on M−n defined by

µ+(A/M−n) = µ+(A ∩M−n)/µ+(M−n) = λ−n
+ · µ+(A ∩M−n)

Theorem 2.4 The sequence T−n
∗ µ+ weakly converges, as n → ∞, to a T -invariant

probability measure, called µ̄+, supported on the repeller Ω. The measure µ̄+ is ergodic
and K-mixing.

We also estimate the speed of convergence in this theorem.

Theorem 2.5 In the notations of the previous theorem, let µ+,n = T−n
∗ µ+. For any

continuous function f ∈ C(M)∣∣∣∣∫
M

f(x) dµ+,n −
∫

M
f(x) dµ̄+

∣∣∣∣ ≤ const ·
[
δf

(
e−a3n1/2

)
+ ||f ||∞e−a4n1/2

]
(2.5)

for some global constants a3, a4 > 0 and const > 0.
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We conjecture that our measure µ̄+ is Bernoulli and enjoys strong statistical properties
(fast decay of correlations and central limit theorem). It is quite clear, though, that µ̄+

is not (necessarily) a Gibbs measure, because of the lack of a local product structure in
its support.

The quantity γ+ = − ln λ+ is known as the escape rate. It characterizes the rate
of escape of the mass of any smooth measure µ0 through holes under the iterations of
T . Denote by χ+ the positive Lyapunov exponent of the ergodic measure µ̄+ and by
h(µ̄+) its Kolmogorov-Sinai entropy. The following escape rate formula relates these
three quantities: γ+ = χ+ − h(µ̄+). It was previously proved for open systems with
Markov rectangular holes, cf. [4, 5].

Theorem 2.6 γ+ = χ+ − h(µ̄+).

Next we prove that the measures µ+, µ̄+ and the values of γ+, h(µ̄+) depend contin-
uously on the open hole H. For any open sets H ′, H ′′ ⊂ M̂ consider the distance

d(H ′, H ′′) := min{ε > 0 : H ′ \H ′′ ⊂ H ′′
ε and H ′′ \H ′ ⊂ H ′

ε} (2.6)

where Hε is the ε-neighborhood of ∂H in M̂ \H.
Let Hn ⊂ M̂ be a sequence of open sets. Assume that each Hn satisfies our assump-

tions on H with the same values of d0, B0, NH , so for each Hn the measures µ+[Hn] and
µ̄+[Hn] and the quantities λ+[Hn] and γ+[Hn] are well defined.

Theorem 2.7 If d(Hn, H) → 0 as n →∞, then we have the weak convergence µ+[Hn] →
µ+ and µ̄+[Hn] → µ̄+ and the convergence γ+[Hn] → γ+ and h(µ̄+[Hn]) → h(µ̄+).

Corollary 2.8 Let H1 ⊃ H2 ⊃ · · · be a decreasing sequence of holes such that their
intersection ∩nHn consists of isolated curves or isolated points, or is just empty. Then
γ+[Hn] → 0, as n → ∞, and both measures µ+[Hn] and µ̄+[Hn] weakly converge to the
T̂ -invariant SBR measure µSBR.

Back to a single open set H. By reversing the time, we can define the conditionally
invariant measure µ− on M− for the map T−1, whose conditional distributions on stable
fibers W s ⊂ M− are smooth. It has an eigenvalue, λ−. We can then define the cor-
responding invariant measure µ̄− on the repeller Ω. Those also have all the properties
described in the above theorems. The measure µ̄− and the value of λ− are, generally,
different from µ̄+ and λ+, respectively. However, there are important exceptions:

Theorem 2.9 If for every periodic point x ∈ Ω, T kx = x, we have |det DT k(x)| = 1,
then µ̄+ = µ̄− and λ+ = λ−. In particular, this happens if the given Anosov diffeomor-
phism T̂ preserves an absolutely continuous measure.

The last theorem has potential applications to open Hamiltonian systems, including
billiards, which preserve smooth (Liouville) measures.
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3 Assumption on holes and preparatory lemmas

Definition. We say that an unstable fiber W u
1 ⊂ M̂ is d0-close to another fiber, W u

2 ⊂ M̂
if for any x ∈ W u

1 there is a local stable fiber W s
x of length ≤ d0 that meets W u

2 in
exactly one point. In this case denote by h̃ : W u

1 → W u
2 the holonomy map defined by

h̃(x) = W s
x ∩W u

2 .

We will say that a local unstable fiber W u is d0-close to a hole H ′ (a connected
component of H) if for any x ∈ H ′ there is a local stable fiber W s

x of length ≤ d0 that
meets W u in exactly one point. Then we define the holonomy projection of H ′ onto W u

by projW u(H ′) = {W s
x ∩W u : x ∈ H ′}. We put |H ′|u = supW u |projW u(H ′)|, where the

supremum is taken over all local unstable fibers d0-close to H ′. Now we put

|H|u =
∑
H′
|H ′|u (3.1)

Remember that our holes H ′ ⊂ H are assumed to be short (of size h) in stable and
unstable directions. The values |H ′|u and |H|u are not necessarily small, however. They
can be large, for example, if the holes stretch ‘diagonally’, i.e., transversally to stable
and unstable directions on M̂ . We additionally assume here that

Assumption H0. The diameter of every hole H ′ ⊂ H in the Riemannian metric on
M̂ does not exceed d0/2.

Under this assumption, for any hole H ′ there are local unstable fibers d0-close to it.
It also follows that |H ′|u ≤ 3d0 and |H|u ≤ 3NHd0.

Next, let W u
1 , W u

2 be two local unstable fibers d0-close to a hole H ′. We define

dH′(W u
1 , W u

2 ) = max{|(W u
1 ∩H ′) \ h̃−1(W u

2 ∩H ′)|1, |(W u
2 ∩H ′) \ h̃(W u

1 ∩H ′)|2}

where | · |1, | · |2 are the length measures on W u
1 and W u

2 , respectively. Clearly, dH′(·, ·)
is a pseudo-metric on the set of local unstable fibers d0-close to H ′. Now let

Varu(H
′) = sup

k,W u
1 ,···,W u

k

[
dH′(W u

1 , W u
2 ) + dH′(W u

2 , W u
3 ) + · · ·+ dH′(W u

k−1, W
u
k )
]

where the supremum is taken over all finite collections of local unstable fibers d0-close to
H ′ naturally ordered in the stable direction.

Now, recall that any local stable and unstable fiber intersects any hole H ′ in at most
B0 − 1 open intervals on that fiber. This implies the following.

Lemma 3.1 For any hole H ′ we have Varu(H
′) ≤ B0D|H ′|u, so that

∑
H′ Varu(H

′) ≤
B0D|H|u.

Next, we prove two technical lemmas to be used later. Let W u ⊂ M̂ be an unstable
fiber, and for any n ≥ 0 let W u

n,i be the connected components of T n(W u ∩ M−n).
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Remember that the lengths of W u and all W u
n,i are bounded by d0. Denote by ν the

u-SBR measure on W u and νn = T n
∗ ν for n ≥ 0.

Let B ≥ 1 be an integer. For every n ≥ 0 let W̃ u
n,i,r ⊂ W u

n,i for r = 1, . . . , B be some
disjoint subsegments of the fiber W u

n,i. We assume that their total measure is less than
1/4:

s̃n :=
∑

i

∑
r

νn(W̃ u
n,i,r) < 1/4 (3.2)

Lemma 3.2 Let 0 ≤ g < 1/3. Let W u be a fiber of length between d0/2 and d0. Then
for every n ≥ 0, every i, and any collection of subfibers W̃ u

n,i,r ⊂ W u
n,i we have

∑
i

∑
r

[
νn(W̃ u

n,i,r)
]1−g

≤ CgΛ
ng
maxs̃

1−g
n

(
log2 s̃−1

n

)g
(3.3)

where Cg = 200D1+gBg.

Proof. We start with the following obvious consequence of the Hölder inequality:

Sublemma 3.3 Let x1, . . . , xm be positive real numbers. Then x1−g
1 + · · · + x1−g

m ≤
(x1 + · · ·+ xm)1−gmg.

Let δ > 0. Observe that

#{i : δ < |W u
n,i| ≤ 2δ} ≤ C1Dd0Λ

n
maxν(W u ∩M−n) ≤ 48D2Λn

max (3.4)

Indeed, for any such i we have
∣∣∣T−nW u

n,i

∣∣∣ > δΛ−n
max. On the other hand, W u

n,i coincides with

the closure of W u
n,i(δ) since |W u

n,i| ≤ 2δ, and so the total length of the subfibers T−nW u
n,i,

i ≥ 1, of the fiber W u does not exceed D|W u|C1δν(W u ∩M−n) due to Theorem 2.1 in
[6]. Finally, recall that |W u| ≤ d0, and the first bound in (3.4) follows. In the second
bound we replaced C1 by its value, 48D/d0, and dropped ν(W u ∩M−n), since that one
was < 1.

We now prove Lemma 3.2. First of all, we bound the left hand side of (3.3) as follows:

∞∑
k=1

∑
i:

d0
2k <|W u

n,i|≤
d0

2k−1

∑
r

[
νn(W̃ u

n,i,r)
]1−g

≤
∞∑

k=1

 ∑
i:

d0
2k <|W u

n,i|≤
d0

2k−1

∑
r

νn(W̃ u
n,i,r)


1−g

×
(
B ×#

{
i :

d0

2k
< |W u

n,i| ≤
d0

2k−1

})g

≤
∞∑

k=1

 ∑
i:

d0
2k <|W u

n,i|≤
d0

2k−1

∑
r

νn(W̃ u
n,i,r)


1−g

×
[
48 BD2Λn

max

]g
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where we used Sublemma 3.3 and (3.4).
Now, let k0 ≥ 1. Then we have

k0∑
k=1

 ∑
i:

d0
2k <|W u

n,i|≤
d0

2k−1

∑
r

νn(W̃ u
n,i,r)


1−g

≤

 ∑
i:

d0

2k0
<|W u

n,i|

∑
r

νn(W̃ u
n,i,r)


1−g

× kg
0

≤ s̃1−g
n kg

0 (3.5)

where we again used Sublemma 3.3.
Theorem 2.1 in [6] implies that for any k ≥ k0 + 1∑

i:
d0
2k <|W u

n,i|≤
d0

2k−1

∑
r

νn(W̃ u
n,i,r) ≤

∑
i:

d0
2k <|W u

n,i|≤
d0

2k−1

νn(W u
n,i)

≤
∑

i

νn(W u
n,i(d0/2

k))

≤ 48 D/2k

Therefore,

∞∑
k=k0+1

 ∑
i:

d0
2k <|W u

n,i|≤
d0

2k−1

∑
r

νn(W̃ u
n,i,r)


1−g

≤ (48 D)1−g ·

 ∞∑
k=k0+1

2−k(1−g)


≤ (48 D)1−g · 2−k0(1−g) · (21−g − 1)−1

≤ (48 D)1−g · 2−k0(1−g) · 2 (3.6)

Here in the end we used the fact that (21−g − 1)−1 < 2 since g < 1/3.
We now fix k0 so that 2−k0−1 ≤ s̃n ≤ 2−k0 . Then k0 ≤ log2 s̃−1

n , which we substitute
in (3.5). Also,the right hand side of (3.6) does not exceed

(48 D)1−g 21−g s̃1−g
n · 2 ≤ (192 D)1−g s̃1−g

n ·
(
log2 s̃−1

n

)g

where we bounded the factor of 2g by (log2 s̃−1
n )

g
, because s̃n < 1/4. Now, combining all

the above estimates gives Lemma 3.2. 2

Lemma 3.4 Let R ⊂ M̂ be an arbitrary rectangle with at least one stable R-fiber of
length between d0/2 and d0. Let du

min(R) and du
max(R) be the minimum and maximum

length of unstable R-fibers, and suppose du
max(R) < d0. Then for any µ ∈M0 we have

C−1
5 du

max(R) ≤
(
T k1
∗ µ

)
(R) ≤ C5d

u
min(R)

with some global constant C5 > 0. Here k1 is the constant appearing in Theorem 3.6 of
[6].
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Proof. The upper bound follows from the requirement (M2) on the class of measures
M0, with any C5 ≥ C1D

2. The lower bound follows from Lemma 5.9 in [6], see also 5.10
and 5.11 there. 2

Remark. Examining the proof of Theorem 3.6 in [6] shows that the constant k1

depends only on T̂ , d0, and NH , so k1 is a global constant. Also, in this paper, for
technical reasons, we restrict the lengths of unstable fibers by d0 rather than by 2d0, as
we did in [6]. So, we need to replace d0 in Theorem 3.6 of [6] by d0/2, which is clearly
possible.

4 Measures on long unstable fibers

Denote by Wu(d0) the collection of all unstable fibers in M̂ of length between d0Λ
−1
max

and d0. This restriction is convenient since for any unstable fiber W u ⊂ M̂ there is an
n ∈ ZZ such that T̂ nW u ∈ Wu(d0).

Theorem 4.1 Let W u
1 , W u

2 ∈ Wu(d0), and let ν1, ν2 be their u-SBR measures, respec-
tively. Then for any n ≥ 0

0 < C−1
6 ≤ ν1(W

u
1 ∩M−n)

ν2(W u
2 ∩M−n)

≤ C6 < ∞ (4.1)

where C6 > 1 is a global constant.

Notations. Put λh = 1−C2h, as in Theorem 2.2 of [6]. Since h is small, we can write

λh = e−C′
2h (4.2)

with some C ′
2 > C2 which is certainly close to C2 for small h. Put also

g = C ′
2h/ ln Λmin (4.3)

Observe that C ′
2 and g are not global constants.

Remark. According to the above theorem, the sequence δn(W u) := νW u(W u ∩M−n)
has the same asymptotics for all W u ∈ Wu(d0). Below we will show that δn(W u) ∼ λn

+,
where λ+ is the eigenvalue of the conditionally invariant measure µ+. For now, we fix
a W u

0 ∈ Wu(d0) and set δn = νW u
0
(W u

0 ∩M−n). Theorem 2.2 in [6] implies that for all
n ≥ l ≥ 0

δn ≥ λn
h and δn−l ≤ λ−l

h δn (4.4)

The rest of this section is devoted to the proof of the above theorem. Readers in-
terested in getting quickly to the proofs of the main results of this article can skip it.
Only the last remark in this section will be actually used, just once, in the subsequent
sections.
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Proof. Due to an obvious symmetry, it is enough to prove the upper bound in (4.1).
There is an m0 ≥ 0 and depending only on d0 such that the fiber W̃ u

2 = T̂m0W u
2

is long enough so that any fiber W u ∈ Wu(d0) is d0-close to W̃ u
2 , as defined in the

previous section. Denote by h̃W u : W u → W̃ u
2 be the holonomy map, i.e. the sliding

along local stable fibers the distance ≤ d0. Since d0 is assumed to be less than a quarter
of the shortest closed geodesic in M̂ [6], the rectangle with the unstable sides W u and
h̃W u(W u) ⊂ W u

2 is well defined (without overlaps).
Applying Theorem 2.2 in [6] shows that it is enough to prove the upper bound in (4.1)

for W̃ u
2 instead of W u

2 , so we will simply assume that original fiber W u
2 is long enough,

so that any fiber W u ⊂ Wu(d0) is d0-close to W u
2 .

Note that dist(x, h̃W ux) ≤ d0 for any x ∈ W u. Therefore, the jacobian of the map
h̃W u with respect to the length on W u and W u

2 is bounded by D. For k ≥ 1 denote by
h̃W u,k = T̂ k ◦ h̃◦ T̂−k the induced holonomy map T̂ kW u → T̂ kW u

2 . Since T k makes stable
fibers shorter, the jacobian of h̃W u,k is also bounded by D.

Now, let W u
1 ∈ Wu(d0) and n ≥ 0. We will define the generation gen(x, n,W u

1 ) for
every point x ∈ W u

1 ∩M−n as follows. If h̃W u
1
(x) ∈ W u

2 ∩M−n, then gen(x, n,W u
1 ) = 0.

If not, we set k = k(x) = min{k′ ≥ 1 : T̂ k′(h̃W u
1
(x)) ∈ H} (obviously, k(x) ≤ n). Let H ′

be the particular hole (connected component of H) that contains the point T̂ k(h̃W u
1
(x)),

and let W u
2,k,x be the component of (T̂ kW u

2 ) ∩H ′ containing that point. We denote the

connected component of the set h̃−1
W u

1 ,k(W
u
2,k,x) \ H ′ containing the point T kx by W̃ u

1,k,x.

This entire segment will be our trouble, since its counterpart, h̃W u
1 ,k(W̃

u
1,k,x) falls through

the hole H ′.
Now, let l = l(x) = min{l′ > k = k(x) : T̂ l′−kW̃ u

1,k,x ∈ Wu(d0)}, and let Ŵ u
1,l,x =

T̂ l−kW̃ u
1,k,x. Observe that

l − k ≤
ln d0 − ln |W̃ u

1,k,x|
ln Λmin

(4.5)

(since |Ŵ u
1,l,x| ≤ d0) and

T̂ l−k(W̃ u
1,k,x ∩M−n+k) ⊂ Ŵ u

1,l,x ∩M−n+l (4.6)

Now, if l(x) ≥ n, we set gen(x, n,W u
1 ) = 1. Otherwise the equation

gen(x, n,W u
1 ) = 1 + gen(T lx, n− l, Ŵ u

1,l,x) (4.7)

defines gen(x, n,W u
1 ) inductively on n (for all fibers inWu(d0)). In particular, gen(x, n,W u

1 ) =
1 if h̃Ŵ u

1,l,x
(T̂ lx) ∈ W u

2 ∩M−n+l.

We now estimate ν1(W
u
1 ∩M−n). Let ν2,W u be the measure on W u

2 obtained by taking
νW u from W u under the holonomy map h̃W u to W u

2 . Clearly, dν2,W u/dν2 ≤ D3 for some
constant D3 = D3(d0) > 0. Therefore,

ν1{x : gen(x, n,W 1
u ) = 0} ≤ ν2,W u

1
(W u

2 ∩M−n) ≤ D3ν2(W
u
2 ∩M−n) (4.8)

12



We now consider the points x ∈ W u
1 ∩ M−n with gen(x, n,W 1

u ) = 1. For every
such point we have defined the segment W̃ u

1,k,x on the curve T̂ kW u
1 with k = k(x) ≤ n.

Obviously, for each k = 1, . . . , n there is only a finite number of distinct segments W̃ u
1,k,x

for points x with gen(x, n,W u
1 ) = 1. We denote these segments by W̃ u

1,k,j, j ≥ 1. Denote

by ν1,k the u-SBR measure on T̂ kW u
1 (the image of ν1 under T̂ k). Recall also that for every

segment W̃ u
1,k,j we previously defined an l = l(k, j) by l = min{l′ > k : T̂ l′−kW̃ u

1,k,j ∈
Wu(d0)}. Put also Ŵ u

1,l,j = T̂ l−kW̃ u
1,k,j, and we keep in mind that l = l(k, j).

Claim. We have

ν1{x : gen(x, n,W u
1 ) = 1} ≤

n∑
k=1

∑
j

ν1,k(W̃
u
1,k,j) ·D3 λ−l

h ν2(W
u
2 ∩M−n) (4.9)

Proof. First note that if l = l(k, j) ≥ n, then λ−l
h ν2(W

u
2 ∩ M−n) ≥ 1 in view of

Theorem 2.2 in [6]. For those k, j that l < n we have

ν1{x : gen(x, n,W u
1 ) = 1} ≤

n∑
k=1

∑
j

ν1,k

{
y ∈ W̃ u

1,k,j : h̃Ŵ u
1,l,j

(T̂ l−ky) ∈ W u
2 ∩M−n+l

}

≤
n∑

k=1

∑
j

ν1,k(W̃
u
1,k,j) · νŴ u

1,l,j

{
z ∈ Ŵ u

1,l,j : h̃Ŵ u
1,l,j

(z) ∈ W u
2 ∩M−n+l

}

≤
n∑

k=1

∑
j

ν1,k(W̃
u
1,k,j) ·D3 ν2(W

u
2 ∩M−n+l)

≤
n∑

k=1

∑
j

ν1,k(W̃
u
1,k,j) ·D3 λ−l

h ν2(W
u
2 ∩M−n)

In the last step we used the inequality

ν2(W
u
2 ∩M−n+l) ≤ λ−l

h ν2(W
u
2 ∩M−n) (4.10)

which follows from Theorem 2.2 in [6]. This proves the claim.

Due to (4.5) we have

λ−l
h ≤ λ−k

h · λ
ln |W̃u

1,k,j
|−ln d0

ln Λmin
h (4.11)

In order to estimate |W̃ u
1,k,j| here, we observe that

ν1,k(W̃
u
1,k,j) = ν1(T̂

−kW̃ u
1,k,j) ≤ D |T̂−kW̃ u

1,k,j|/|W u
1 |

≤ D |W̃ u
1,k,j|Λ−k

min/(Λ
−1
maxd0) (4.12)

Therefore, ln |W̃ u
1,k,j| ≥ ln ν1,k(W̃

u
1,k,j)− ln(Dd−1

0 Λmax) + k ln Λmin, and so (4.11) implies

λ−l
h ≤ λ

− ln(DΛmax)
ln Λmin

h · λ
ln(ν1,k(W̃u

1,k,j)
ln Λmin

h
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= exp

(
C ′

2h
ln(DΛmax)

ln Λmin

)
· exp

−C ′
2h

ln(ν1,k(W̃
u
1,k,j)

ln Λmin


= (DΛmax)

g ·
[
ν1,k(W̃

u
1,k,j)

]−g
(4.13)

where we used (4.3). The main bound (4.9) then yields

ν1{x : gen(x) = 1} ≤ D3 (DΛmax)
gν2(W

u
2 ∩M−n) ·

n∑
k=1

∑
j

[
ν1,k(W̃

u
1,k,j)

]1−g
(4.14)

In the spirit of notation in Lemma 3.2, we denote by W u
1,k,i the components of T kW u

1 .

Each curve W̃ u
1,k,j lies on some component W u

1,k,i, and we denote this fact by a short-
hand j ∈ i. Recall that the components W u

1,k,i have length ≤ 2d0, so that every curve

h̃W u
1 ,k(W

u
1,k,i) ⊂ T̂ kW u

2 has length ≤ 2Dd0 and thus can cross at most 2D + 1 holes. The
intersection of that curve with any hole consists of ≤ B0 − 1 segments. Therefore, every
curve W u

1,k,i contains no more than (2D + 1)(B0 − 1) ≤ 3DB0 subcurves W̃ u
1,k,j, i.e. for

any i we have
#{j : j ∈ i} ≤ 3DB0 (4.15)

In addition, the intersection of the curve h̃W u
1 ,k(W

u
1,k,i) with any hole has total length

≤ h. Therefore, |h̃W u
1 ,k(W̃

u
1,k,i)∩H| ≤ (2D + 1)h ≤ 3Dh. Mapping this intersection back

on W u
1,k,i gives

∑
j∈i |W̃ u

1,k,j| ≤ 3D2h, so that∑
j∈i

ν1,k(W̃
u
1,k,j) ≤ Dν1,k(W1,k,i(2D

2h))

where W1,k,i(ε) stands for the ε-neighborhood of the endpoints of W1,k,i within this curve.
Applying Theorem 2.1 in [6] gives∑

i

∑
j∈i

ν1,k(W̃
u
1,k,j) ≤ 2C1D

3h ≤ D̄h/d0 (4.16)

where D̄ = 2C1D
3d0 = 96D4. On the other hand, between any component W u

1,k,i ⊂ T kW u
1

and its counterpart h̃W u
1 ,k(W

u
1,k,i) ⊂ T̂ kW u

2 there is no other parts of T̂ kW u
1 or T̂ kW u

2 .
Therefore, Lemma 3.1 applies and gives∑

j

|W̃ u
1,k,j| ≤ B0D|H|u

so that using (4.12) ∑
j

ν1,k(W̃
u
1,k,j) ≤ B0D

2|H|ud−1
0 ΛmaxΛ

−k
min (4.17)

Now we fix k∗ so that Λ−k∗−1
min ≤ h/|H|u ≤ Λ−k∗

min , i.e.

k∗ ≈ ln(|H|u/h)/ ln Λmin

14



We will use (4.16) for k < k∗ and (4.17) for k ≥ k∗.
We can now apply Lemma 3.2 with B = 3DB0, cf. (4.15). But first, just to simplify

our calculations, we will assume that h (and hence, g) is small enough, so that, e.g.,

(D̄h/d0)
−g = 1 + o(1) ≤ 2 and

[
log2(D̄h/d0)

−1
]g

= 1 + o(1) ≤ 2, (BD)g = 1 + o(1) ≤ 2,

etc. Then Lemma 3.2 combined with (4.15) and (4.16) yields

k∗−1∑
k=1

∑
j

[
ν1,k(W̃

u
1,k,j)

]1−g
≤ 800 D

k∗−1∑
k=1

Λkg
max (D̄h/d0)

1−g
[
log2(D̄h/d0)

−1
]g

≤ 3200 DD̄ · h

d0

Λk∗g
max − 1

Λg
max − 1

Note that both g and k∗g approach zero as h → 0. Thus, if h is sufficiently small, we
have

Λk∗g
max − 1

Λg
max − 1

= k∗ + o(k∗) ≤ 2k∗

and hence
k∗−1∑
k=1

∑
j

[
ν1,k(W̃

u
1,k,j)

]1−g
≤ D′(h/d0) ln(|H|u/h) (4.18)

where D′ = 106D5/ ln Λmin.
Next, using Lemma 3.2 and (4.17) gives

∞∑
k=k∗

∑
j

[
ν1,k(W̃

u
1,k,j)

]1−g
≤ Cg

∞∑
k=k∗

Λkg
max

(
B0D

2Λmax|H|u
Λk

mind0

)1−g [
log2

(
Λk

mind0

B0D2Λmax|H|u

)]g

We again assume that h is small enough, then it is simple estimation that

∞∑
k=k∗

∑
j

[
ν1,k(W̃

u
1,k,j)

]1−g
≤ D′′(h/d0) ln(|H|u/h) (4.19)

where D′′ = 2000 D3B0Λmax. (A crucial point here is to observe that t = Λg
max/Λ

1−g
min < 1,

and
∑∞

k∗ kgtk <
∫∞
k∗ xtx dx < 2k∗t

k∗ ln t−1 with tk∗ ≤ 2h/|H|u.)
Combining (4.3), (4.14), (4.18) and (4.19) (and assuming h is small enough) gives

ν1{x : gen(x, n,W u
1 ) = 1} ≤ D3D4 ν2(W

u
2 ∩M−n) · (h/d0) ln(|H|u/h) (4.20)

with D4 = 2(D′ + D′′). We assume h is so small that

h1
def
= (h/d0) ln(|H|u/h) < D−1

4 /2 (4.21)

Next, observe that we actually proved that the right hand side of (4.9) was smaller
than that of (4.20), i.e.,

n∑
k=1

∑
j

ν1,k(W̃
u
1,k,j)λ

−l
h ≤ D4h1 < 1/2 (4.22)
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Observe also that this bound is uniform in n.
Now, due to (4.7), we can estimate the measure of points of the second generation as

follows:

ν1{x : gen(x, n,W u
1 ) = 2} ≤

n∑
k=1

∑
j

ν1,l{y ∈ Ŵ u
1,l,j : gen(y, n− l, Ŵ u

1,l,j) = 1}

≤
n∑

k=1

∑
j

ν1,k(W̃
u
1,k,j) · νŴ u

1,l,j
{y ∈ Ŵ u

1,l,j : gen(y, n− l, Ŵ u
1,l,j) = 1}

≤
n∑

k=1

∑
j

ν1,k(W̃
u
1,k,j) ·D3D4h1 ν2(W

u
2 ∩M−n+l)

≤
n∑

k=1

∑
j

ν1,k(W̃
u
1,k,j) ·D3D4h1λ

−l
h ν2(W

u
2 ∩M−n)

≤ D3D
2
4h

2
1 ν2(W

u
2 ∩M−n) (4.23)

Here we subsequently used (4.20), (4.10) and (4.22).
For higher generations, we obtain inductively that

ν1{x : gen(x, n,W u
1 ) = r} ≤ D3D

r
4h

r
1 ν2(W

u
2 ∩M−n) (4.24)

In particular, for r = 0 we recover (4.8).
Summing up over r ≥ 0 and using (4.21) completes the proof of Theorem 4.1 and

gives C6 = 2D3. 2

Remark. Summing (4.24) over all r ≥ 1 gives

ν1{x : gen(x, n,W u
1 ) ≥ 1} ≤ D3D4h1

1−D4h1

ν2(W
u
2 ∩M−n) (4.25)

Assuming that h, and hence h1, are small enough, we will have D3D4h1/(1 − D4h1) ≤
(2C6)

−1. Then, combining (4.25) and (4.1) gives

ν1{x : gen(x, n,W u
1 ) = 0} ≥ 1

2
ν1(W

u
1 ∩M−n)

In other words, assuming that the fiber W u
1 is d0-close to W u

2 , we have that ∀n ≥ 0, at
least 50% of the points in W u

1 ∩M−n can be connected by stable fibers of length ≤ d0

with points of W u
2 ∩M−n.

5 Measures on short unstable fibers

Theorem 5.1 Let W u ⊂ M̂ be an unstable fiber of length ≤ d0, and ν its u-SBR measure.
For any subfiber W u

1 ⊂ W u and any n ≥ 0 we have

ν(W u
1 ∩M−n) ≤ C7δn|W u

1 |1−g/|W u| (5.1)

where g is given by (4.3) and C7 = 4C6D
2.
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Proof. First, we assume that W u ∈ Wu(d0), i.e. |W u| ≥ d0/Λmax. Let l1 = min{l′ ≥
0 : T̂ l′W u

1 ∈ Wu(d0)}. Since |T̂ l1W u
1 | ≤ d0,

l1 ≤
ln d0 − ln |W u

1 |
ln Λmin

Consider the u-SBR measure νW u
1

on W u
1 . Observe that dνW u

1
/dν ≥ D−1|W u|/|W u

1 | on
W u

1 . Thus

ν(W u
1 ∩M−n) ≤ D |W u

1 | |W u|−1νW u
1
(W u

1 ∩M−n)

≤ D |W u
1 | |W u|−1νT̂ l1W u

1
(T̂ l1W u

1 ∩M−n+l1)

≤ D |W u
1 | |W u|−1C6νW u

0
(W u

0 ∩M−n+l1)

≤ Dδn|W u
1 | |W u|−1C6λ

−l1
h (5.2)

Here we subsequently used Theorem 4.1 and (4.4).
Using (4.2) and (4.3) gives

λ−l1
h ≤ e

C′
2h

ln d0−ln |Wu
1 |

ln Λmin = dg
0 |W u

1 |−g

For h small enough, dg
0 = 1 + o(1) ≤ 2. Combining the last bound with (5.2) yields

ν(W u
1 ∩M−n) ≤ 2C6Dδn|W u

1 |1−g/|W u| (5.3)

Next, let |W u| < d0/Λmax. Let l = min{l′ ≥ 0 : T̂ l′W u ∈ Wu(d0)}. Again, as above,

l ≤ ln d0 − ln |W u|
ln Λmin

and so

λ−l
h ≤ e

C′
2h

ln d0−ln |Wu|
ln Λmin = dg

0 |W u|−g (5.4)

We now have

ν(W u
1 ∩M−n) ≤ νT̂ lW u(T̂ lW u

1 ∩M−n+l)

≤ 2C6Dδn−l|T̂ lW u
1 |1−g/|T̂ lW u|

≤ 2C6Dδnλ
−l
h

(
|T̂ lW u

1 |/|T̂ lW u|
)1−g

|T̂ lW u|−g

≤ 2C6Dδnd
g
0|W u|−g (D|W u

1 |/|W u|)1−g (d0/Λmax)
−g

≤ 4C6D
2δn|W u

1 |1−g/|W u|

where we subsequently used (5.3), (4.4), (5.4) and the fact that Λg
max = 1 + o(1) ≤ 2 for

small h. Theorem 5.1 is now proved. 2

In particular, setting W u
1 = W u gives the following corollary:
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Corollary 5.2 Let W u ⊂ M̂ be an unstable fiber of length ≤ d0, and ν its u-SBR
measure. For any n ≥ 0 we have

ν(W u ∩M−n) ≤ C7δn|W u|−g (5.5)

Convention. In the rest of this section, we use the notations Mm, Wu
m, Wu

m,ε, Um,ε

with either m ≥ 0 and m = +, see Section 2.3.

Let B ≥ 1, ε > 0, and G ⊂ M be an arbitrary subset such that for every maximal
unstable fiber W u ∈ Wu

m the intersection W u∩G is a union of no more than 2B subfibers
of W u, and each of those subfibers has length ≤ ε. One can think of G = Um,ε, as an
example, in which B = 1. Loosely speaking, the set G is (2Bε)-thick in the unstable
direction.

Theorem 5.3 For any µ ∈Mm, B ≥ 1, ε > 0, and any set G described above, we have
for all n ≥ 0

µ(G ∩M−n) ≤ C8Bδnε
1−g (5.6)

where C8 = 2C1C7D.

Proof. Consider the factor measure µf induced by µ on the set of maximal unstable
fibers Wu

m. Then

µ(Um,Bε) =
∫
Wu

m

νW u(W u ∩ Um,Bε) dµf (W u)

≥ µ
(
∪W u : W u ∈ Wu

m,2Bε

)
+

∫
Wu\Wu

m,2Bε

D−1(2Bε/|W u|)dµf (W u) (5.7)

Now, let
Fµ(y) = µ

(
∪W u : W u ∈ Wu

m,y

)
(5.8)

The function Fµ(y) is a kind of distribution function of the length of maximal fibers
W u ∈ Wu

m with respect to the given measure µ ∈ Mm. Then (5.7) and the properties
(M1)-(M2) of µ imply that for any ε > 0 we have

Fµ(2Bε) +
∫ d0

2Bε
D−1(2Bε/y) dFµ(y) ≤ C1Bε (5.9)

In particular,

Fµ(y) ≤ 1

2
C1y (5.10)
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In the following estimate, we apply Theorem 5.1 to fibers of length > 2Bε and a
subfiber of length 2Bε, and Corollary 5.2 to fibers smaller than 2Bε:

µ(G ∩M−n) ≤
∫ d0

2Bε
2BC7δnε

1−g/y dFµ(y) +
∫ 2Bε

0
C7δny

−g dFµ(y)

= C7Dδnε
−g
∫ d0

2Bε
D−1(2Bε/y) dFµ(y) + C7δn(2Bε)−gFµ(2Bε)

+ C7gδn

∫ 2Bε

0
y−1−gFµ(y) dy (5.11)

Here we applied the integration by parts to the integral from 0 to 2Bε. Due to (5.10),
the last integral in (5.11) does not exceed C1Bε1−g/(1 − g). To the first two terms on
the right hand side of (5.11) we apply (5.9) and get

µ(G ∩M−n) ≤ C7Dδnε
−gC1Bε + C1C7Bgδnε

1−g/(1− g)

For h small enough, we have g/(1− g) < D, which completes the proof of Theorem 5.3.
2

In particular, if B = 1 and ε = d0/2, we can take G = Mm. Assuming g be sufficiently
small, we have

µ(M−n) ≤ C8d0 δn (5.12)

On the other hand,

µ(M−n) ≥ µ
(
∪(W u ∩M−n) : |W u| > d0Λ

−1
max

)
≥ C−1

6 δn µ
(
∪W u : |W u| > d0Λ

−1
max

)
(5.13)

Here we used Theorem 4.1 (recall that |W u| ≤ d0, ∀W u ∈ Wu). Using the property (M2)
with ε = (2C1)

−1 gives

µ
(
∪W u : |W u| > C−1

1

)
≥ 1/2

Since C1 = 48D/d0 and Λmax ≥ Λmin ≥ 64D2, cf. Section 2.2, then

µ
(
∪W u : |W u| > d0Λ

−1
max

)
≥ 1/2

so that (5.13) implies
µ(M−n) ≥ δn/(2C6) (5.14)

Lastly, recall that µ+(M−n) = ||T n
∗ µ+|| = λn

+. Combining (5.12) and (5.14) gives the
following:

Corollary 5.4 For any µ ∈Mm and n ≥ 0 we have

C−2
9 λn

+ ≤ µ(M−n) ≤ C2
9λ

n
+ (5.15)

and
C−1

9 λn
+ ≤ δn ≤ C9λ

n
+ (5.16)

with C9 = max{2C6, d0C8}. The last bound holds true for any δn(W u), W u ∈ Wu(d0).
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This also gives a corollary to Lemma 3.4:

Corollary 5.5 Using notation of Lemma 3.4, we have for any n ≥ k1

C−1
10 λn−k1

+ du
max(R) ≤ (T n

∗ µ) (R) ≤ C10λ
n−k1
+ du

min(R)

with C10 = C5C
2
9 .

Recall that for any ε > 0 we denote by Hε ⊂ M the ε-neighborhood of ∂H in M .

Theorem 5.6 Let ε > 0 and put

qε = ln(D−1d0/ε)/ ln Λmax

Then for any µ ∈Mm and q ≥ qε, n ≥ 0, we have

(T q
+µ) (Hε ∩M−n) ≤ C11ε

b(1−4g) (T q
+µ) (M−n) (5.17)

where b = ln Λmin/(2 ln Λmax) and C11 > 0 is a global constant.

Proof. Assume for a moment that ∂H consists of a finite number of smooth curves
transversal to the unstable direction. Then the set Hε is at most (B0ε)-thick in the
unstable direction, and a combination of Theorem 5.3 and (5.14) applied to the measure
T q

+µ imply (5.17) with b = 1/2 and all q ≥ 0. Similarly, if ∂H consists of curves which
either are transversal to the unstable direction or have curvature larger than that of
unstable fibers, the set Hε is (const·ε1/2)-thick in the unstable direction and we again get
(5.17) with b = 1/2 and all q ≥ 0.

There are, however, reasons why the theorem cannot always hold for all q ≥ 0. For
example, let a hole H ′ ⊂ H be a rectangle of size h in the unstable direction, and µ be
supported on a single unstable fiber of length d0 that is (ε/2)-close to an unstable side
of H ′, then µ(Hε) ≥ h/d0 independently of ε.

Now, in the general case, we consider maximal connected unstable fibers W u ⊂ Hε

and call them long if |W u| ≥ εb. To any long fiber W u ⊂ Hε we associate the rectangle
R = R(W u) such that (i) the fiber W u is an R-fiber [6] (i.e., it terminates on the stable
sides of R) and (ii) the minimal distance from W u to each unstable side of R(W u),
measured along stable fibers, is 2ε (the maximal distance is then < 2Dε). We now pick
any long fiber W u

1 ⊂ Hε, then any long fiber W u
2 ⊂ Hε \ R(W u

1 ), etc. In that way we
will find a finite collection of rectangle R(W u

r ), r = 1, . . . , r̄ such that the residual set
Hε \ (∪rR(W u

r )) consists of short fibers. That residual set is then at most (2B0ε
b)-thick

in the unstable direction, and the above argument applies giving the right estimate for
it. It remains to consider the set ∪rR(W u

r ).
The regularity of our holes H ′ ⊂ H (the fact that any local stable/unstable fiber

intersects any hole in no more than B0 intervals) implies that

r̄∑
r=1

|W u
r | ≤ B1|H|u
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with some B1 = const(B0) > 0, cf. (3.1). Therefore,

r̄ ≤ B1|H|uε−b (5.18)

For any r = 1, . . . , r̄ the rectangle R′
r = T̂−qεR(W u

r ) has length ≤ 4d0 in the stable
direction and ≤ |W u

r | · Λ
−qε

min ≤ |H|u(Dε/d0)
2b in the unstable direction. Let µ′ = T q−qε

+ µ
(note that µ′ ∈Mm+q−qε). Observe that

(T q
+µ) (R(W u

r )∩M−n) = (T qε
+ µ′) (R(W u

r )∩M−n) =
(T qε

∗ µ′) (R(W u
r ) ∩M−n)

||T qε
∗ µ′||

≤ µ′(R′
r ∩M−n−qε)

||T qε
∗ µ′||

Applying Theorem 5.3 with B = 1 to R′
r gives

µ′(R′
r ∩M−n−qε) ≤ C8δn+qε|H|1−g

u (Dε/d0)
2b(1−g) ≤ 2C8δn|H|u(Dε/d0)

2b(1−g)

According to (5.14), (4.4), (4.3), and (4.2), we have

||T qε
∗ µ′|| = µ′(M−qε) ≥ δqε/(2C6) ≥ (2C6)

−1e−C′
2hqε ≥ (2C6)

−1(Dε/d0)
2bg

Combining the above estimates gives

(T q
+µ) (R(W u

r ) ∩M−n) ≤ 4C6C8δn|H|u(Dε/d0)
2b(1−2g)

Together with (5.18) this yields

(T q
+µ) ([∪rR(W u

r )] ∩M−n) ≤ 4C6C8DB1δn|H|2uεb(1−4g)/d
2b(1−2g)
0

Theorem 5.6 is now proved. 2

Let W u ⊂ M̂ be an unstable fiber. For every n ≥ 0 and x ∈ W u ∩ M−n denote
by W u

n (x) the smooth component of T n(W u ∩M−n) containing T nx and by |W u
n (x)| its

length. For every x ∈ W u ∩M−n let ln(x) = min{l ∈ [0, n] : |W u
l (x)| ≥ d0/2}, and if

|W u
l (x)| < d0/2 for all l = 0, . . . , n, we set ln(x) = n + 1.

Lemma 5.7 There are global constants β1 ∈ (0, 1) and C13 > 0 such that for every
n ≥ m ≥ 0

νW u{x ∈ W u ∩M−n : ln(x) ≥ m} ≤ C13 βm
1 λn

+/|W u|

Proof. For each i = 0, . . . ,m let W u
i = {x ∈ W u ∩ M−i : li(x) = i}. The points

x ∈ W u
i have their first i−1 images under T in short components (of length < d0/2) in the

images of the curve W u. The proof of Lemma 3.3 in [6] can be easily modified to produce
the bound νW u(W u

i ) ≤ const · (B0/Λmin)
i/|W u|, where the constant is global. At the i-th

iteration, however, all the points x ∈ W u
i get into long (of length ≥ d0/2) components of

T i(W u ∩M−i). Due to (5.16) we have νW u(W u
i ∩M−n) ≤ const · (B0/Λmin)

iλn−i
+ /|W u|.

We can find a global constant β1 ∈ (0, 1) such that

β1 ≥ B0Λ
−1
min/λ+ (5.19)

cf. Assumption H2 in [6]. Hence, νW u(W u
i ∩M−n) ≤ const · βi

1λ
n
+/|W u|. Summing up

over i = m, . . . , n gives the lemma. 2

21



6 Iterations of SBR-like measures

In [6] we defined ‘rectangular’ holes H(k) approximating the given holes H as follows. We
fixed an arbitrary Markov partition R, refined it in a standard way, R(k) = ∨k

i=−kT
iR,

and defined H(k) to be the union of the interiors of all rectangles R ∈ R(k) that intersected
H. In other words, H(k) consisted of ‘rectangular holes’ approximating H ‘from outside’.
We proved that for all sufficiently large k, k ≥ k0, the map T (k) (the restriction of T̂ to

the set M (k) = M̂ \ H(k)) had a unique conditionally invariant SBR-like measure, µ
(k)
+ ,

with an eigenvalue λ
(k)
+ and a unique invariant measure µ̄

(k)
+ on the repeller Ω(k). We also

showed that λ
(k)
+ → λ+ and µ

(k)
+ weakly converged to µ+ as k →∞.

The rectangular holes H(k), for sufficiently large k, are very close to H. So, they
satisfy all the assumptions we have made in [6] and in the present paper, hence we can
assume that the values of the parameters d0, B0, NH are the same for all the holes H(k),
k ≥ k0.

Observe that
H(k) \H ⊂ Hεk/2 (6.1)

where
εk = 2D5Λ

−k
min (6.2)

and D5 stands for the maximal diameter of the atoms R ∈ R of the Markov partition R.
In all that follows, unless specified otherwise, we will use rectangular holes H(k) defined

in a more flexible way.

Definition. Let k ≥ k0 and H(k) be the union of interiors of some R ∈ R(k). We say
that H(k) properly approximates the given hole H if
(i) d(H(k), H) ≤ εk in the sense of (2.6),
(ii) the holes H(k) satisfy all our assumptions on H with the same values of d0, B0, NH .

The results of [6] and this paper apply to the map T (k) on M (k) = M̂ \H(k) if H(k)

properly approximates H. But remember, the convergence λ
(k)
+ → λ+ and µ

(k)
+ → µ+ is

proved in [6] only for the approximation ‘from outside’ as described in the first paragraph
of this section.

Let µ0 ∈M0. Let k ≥ k0 and q ≥ 1 to be specified later. Assume that H(k) properly
approximate H. This will be a standing assumption for the rest of the paper. For any
n ≥ 1 denote µn = T n

+µ0. For n ≥ q we can write this as

µn = T n−q
+ µq =

T n−q
∗ µq

||T n−q
∗ µq||

=
T n−q
∗ µq

µq(M−n+q)
(6.3)

Consider also the measure

µ(k)
n = [T

(k)
+ ]n−qµq =

[T
(k)
∗ ]n−qµq

|| [T (k)
∗ ]n−qµq||

=
[T

(k)
∗ ]n−qµq

µq(M
(k)
−n+q)

(6.4)
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The superscript (k) is always the index of the Markov approximation T (k) to the map T .
For k ≥ k0 we set q to be q = q(k) = k + l0, where l0 = [ln(d0/DD5)/ ln Λmax] + 1.

Observe that
q = q(k) ≥ ln(D−1d0/εk)/ ln Λmax (6.5)

so that we can apply Theorem 5.6. Suppose n > q. Since

M−n+q \M
(k)
−n+q = ∪n−q

i=0 T̂−i(H(k) \H) ⊂ ∪n−q
i=0 T̂−iHεk

we have the following estimate:

µq

(
M−n+q \M

(k)
−n+q

)
≤

n−q∑
i=0

µq(M−n+q ∩ T̂−iHεk
)

≤
n−q∑
i=0

C11ε
b(1−4g)
k µq(M−n+q)

= C11(n− q + 1)ε
b(1−4g)
k µq(M−n+q) (6.6)

Here we used the following estimate, based on (6.5) and Theorem 5.6:

µq

(
M−n+q ∩ T̂−iHεk

)
= µq

[
T̂−i (M−n+q+i ∩Hεk

) ∩M−i

]
=

(
T i
∗µq

)
(M−n+q+i ∩Hεk

)

=
(
T i

+µq

)
(M−n+q+i ∩Hεk

) · ||T i
∗µq||

≤ C11ε
b(1−4g)
k

(
T i

+µq

)
(M−n+q+i) · ||T i

∗µq||

= C11ε
b(1−4g)
k ·

(
T i
∗µq

)
(M−n+q+i)

= C11ε
b(1−g)
k µq(M−n+q)

for any i = 0, 1, . . . , n−q. The following bound is symmetric to (6.6), its proof is similar:

µ(k)
q

(
M

(k)
−n+q \M−n+q

)
≤ C11(n− q + 1)ε

b(1−4g)
k µ(k)

q (M
(k)
−n+q) (6.7)

Observe that the measure µn is supported on Mn−q and the measure µ(k)
n is supported

on M
(k)
n−q. On the common part of their supports, Mn−q ∩M

(k)
n−q, these two measures are

proportional, so their conditional measures on that common part coincide, we call that
conditional measure µ̂

(k)
+ . Therefore,

µn = (1− σn)µ̂(k)
n + σnµ

′ (6.8)

and
µ(k)

n = (1− σ(k)
n )µ̂(k)

n + σ(k)
n µ′′ (6.9)
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for some σn, σ
(k)
n > 0 and some probability measures µ′, µ′′ supported on Mn−q \M

(k)
n−q

and M
(k)
n−q \Mn−q, respectively. Moreover, it follows from (6.6) and (6.7) that

σn + σ(k)
n ≤ 2C11nε

b(1−4g)
k ≤ C12nαk

1 (6.10)

with C12 = 2C11D
b/2
5 and α1 = Λ

−b/2
min < 1 (recall that g, as well as h, are very small, so

we can assume that g < 1/8). Therefore, for any bounded function f(x) on M we have∣∣∣∣∫
M

f(x) dµn −
∫

M
f(x) dµ(k)

n

∣∣∣∣ ≤ 2||f ||∞(σn + σ(k)
n ) ≤ 2||f ||∞C12nαk

1 (6.11)

Definition. We say that two sequences of probability measures, {µ′n} and {µ′′n} on M
are (asymptotically) equivalent (denoted by µ′n ∼ µ′′n) if for any continuous function f(x)
on M

lim
n→∞

∣∣∣∣∫
M

f(x) dµ′n −
∫

M
f(x) dµ′′n

∣∣∣∣ = 0

Note that if µ′n ∼ µ′′n and µ′n converges weakly to a limit measure, µ∞, then µ′′n also
converges weakly to µ∞.

Proposition 6.1 Let k = kn be a sequence that grows faster than any logarithmic func-
tion but slower than any linear function: kn = o(n) and 1/kn = o(1/ ln n) as n → ∞.
Then µn ∼ µ(kn)

n .

Proof. For large n we have n > q = kn + l0, so that (6.8)-(6.11) hold, and nαkn
1 → 0

as n →∞. 2

Our next goal is to show that there is a sequence kn → ∞ such that kn = o(n) and

1/kn = o(1/ ln n), for which µ(kn)
n ∼ µ

(kn)
+ .

We say that a sequence of numbers {Lk}majorizes another sequence {Mk} if Lk ≥ Mk,
∀k ≥ 1. The above goal will be achieved if we show the following:

There is a sequence {Mk} such that for any majorizing sequence {Lk} the sequence

of measures µ
(k)
Lk

= [T
(k)
+ ]Lk−k−l0µk+l0 is equivalent to µ

(k)
+ , i.e.

lim
k→∞

∣∣∣∣∫
M

f(x) dµ
(k)
Lk
−
∫

M
f(x) dµ

(k)
+

∣∣∣∣ = 0 (6.12)

for every f ∈ C(M). The sequence {Mk} has to grow faster than any linear function Ak,
A > 0, and slower than any exponential function eak, a > 0.

The weak convergence of µ
(k)
L to µ

(k)
+ , as L → ∞, for all k ≥ k0 was proved in [6].

It implies that for any continuous function f ∈ C(M) there is a sequence Mk = Mk(f)
such that (6.12) holds for any majorizing sequence {Lk}. All we need to prove is that
one can choose Mk uniformly in f and so that Mk = o(eak), ∀a > 0.

Recall that the measures µ
(k)
L and µ

(k)
+ are supported on M

(k)
L−q ⊂ M (k) and M

(k)
+ ⊂

M (k), respectively. Recall that diamR ≤ εk = D5Λ
−k
min, ∀R ∈ R(k). The oscillation of

f(x) on any rectangle R ∈ R(k) does not exceed δf (εk), and δf (εk) → 0 as k →∞.
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For any two probability measures, µ′ and µ′′, on M (k) let

|µ′ − µ′′|k :=
∑

R∈R(k)

|µ′(R)− µ′′(R)|

It is then a simple calculation that∣∣∣∣∫
M

f(x) dµ
(k)
L −

∫
M

f(x) dµ
(k)
+

∣∣∣∣ ≤ 2δf (εk) + ||f ||∞ ·
∣∣∣µ(k)

L − µ
(k)
+

∣∣∣
k

(6.13)

Therefore, to establish (6.12) it is enough to prove the following:

Proposition 6.2 There is a sequence Mk → ∞ such that for any majorizing sequence
Lk

lim
k→∞

∣∣∣µ(k)
Lk
− µ

(k)
+

∣∣∣
k

= 0

The sequence {Mk} has to grow faster than any linear function Ak, A > 0, and slower
than any exponential function eak, a > 0.

We will also sharpen this proposition as follows:

Proposition 6.3 There are global constants r ≥ 1, C14 > 0 and α2 ∈ (0, 1) such that
for all k ≥ k0 and L ≥ rk2 + k + l0

|µ(k)
L − µ

(k)
+ | ≤ C14α

k
2

These two propositions are only concerned with properties of conditionally invariant
measures µ

(k)
+ for the Anosov maps T (k) with rectangular holes, H(k). So, we can apply

the finite-dimensional approximations and matrix techniques developed in [3, 4, 5]. A
complete proof of Proposition 6.3 is provided in Section 8, while 6.2 immediately follows
from 6.3.

7 Proofs of the main theorems

Proof of Theorem 2.2. To prove the weak convergence of T n
+µ0 to µ+, it is enough to

combine Proposition 6.1, (6.12) and the weak convergence of µ
(k)
+ to µ+ proved in [6]

for the specific rectangular holes H(k) described in the first paragraph of the previous
section. The second statement of the theorem will follow from Corollary 7.2 below. 2

Proof of Theorem 2.3. For any large n, i.e. n ≥ n0 := rk2
0 + k0 + l0, we take k = kn =

max{k : n ≥ rk2 + k + l0}. Then we combine (6.11) and (6.13) with Proposition 6.3, in
which we set L = n. As a result,∣∣∣∣∫

M
f(x) dµn −

∫
M

f(x) dµ
(kn)
+

∣∣∣∣ ≤ const ·
[
δf

(
e−a1n1/2

)
+ ||f ||∞e−a2n1/2

]
(7.1)
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with some global constants a1, a2 > 0 and const> 0. Since this bound holds for any
µ0 ∈M0, it holds, in particular, for the conditionally invariant measure µ+, for which we
have (µ+)n = T n

+µ+ = µ+. Now, we combine the above bound for µn = T n
+µ0 with that

same bound for µ+ = T n
+µ+ and use the triangle inequality. That concludes the proof of

Theorem 2.3 for n ≥ n0. To enforce that theorem for all n ≥ 0, it is enough to adjust
the constant coefficient in (2.4). 2

Remark. For each k ≥ k0 put n = rk2 + k + l0 in (7.1), and then combining it with
the just proved Theorem 2.3 yields∣∣∣∣∫

M
f(x) dµ

(k)
+ −

∫
M

f(x) dµ+

∣∣∣∣ ≤ const ·
[
δf

(
e−a1k

)
+ ||f ||∞e−a2k

]
(7.2)

Note that the measures µ
(k)
+ here correspond to any rectangular holes H(k) that properly

approximate H.

Let µ0 ∈M0 and µn = T n
+µ0. Recall that ||T∗µn|| = µn(M−1).

Lemma 7.1 There are global constants C15, a5 > 0 such that ∀n ≥ 0

exp(−C15e
−a5n1/2

) ≤ µn(M−1)/λ+ ≤ exp(C15e
−a5n1/2

)

Proof. Let again n ≥ n0 and k = kn = max{k : n ≥ rk2 + k + l0}. Then (6.8-6.10),
and Proposition 6.3 allow us to compare the measures µn and µ+ = (µ+)n with the

measure µ
(k)
+ and imply that |µn − µ+|k ≤ Ce−ak with some global constants C, a > 0.

Therefore, ∣∣∣∣∣∣
∑

R⊂M−1

µn(R)−
∑

R⊂M−1

µ+(R)

∣∣∣∣∣∣ ≤ Ce−ak

where the sums are taken over R ∈ R(k).
Furthermore, ∑

R∩∂M−1 6=∅
µn(R) ≤ [T∗µn](Hε′

k
) ≤ C11 (ε′k)

b(1−4g)

with ε′k = εkΛmax (observe that if R ∩ ∂M−1 6= ∅, then R lies in an εk-neighborhood of
T̂−1(∂H), and so T̂R ⊂ Hε′

k
). The second bound follows from (5.17), by setting n = 0

there. The above estimate also holds for µ+. Hence,

|µn(M−1)− µ+(M−1)| ≤ Ce−ak + 2C11 (ε′k)
b(1−4g)

for all n ≥ n0. Lemma 7.1 is then proven for n ≥ n0. To enforce it for all n ≥ 0, it is
enough to adjust the value of C15. 2

Now recall that ||T n
∗ µ0|| = µ0(M−n) =

∏n−1
i=0 µi(M−1).
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Corollary 7.2 For any measure µ0 ∈M0 there is a finite positive limit

lim
n→∞

µ0(M−n)/λn
+ := ρ(µ0) (7.3)

Furthermore,
0 < C−1

16 ≤ ρ(µ0) ≤ C16 < ∞, ∀µ0 ∈M0 (7.4)

with some global constant C16 > 0. In addition, ∀n ≥ 0

|µ0(M−n)/λn
+ − ρ(µ0)| ≤ γ′n := C15C16

∞∑
j=n

e−a5j1/2

(7.5)

Now, let W u ⊂ M̂ be an unstable fiber and ν its u-SBR measure. We will use the
functions ln(x), n ≥ 0, on W u introduced before Lemma 5.7. In terms of these functions,
the fiber W u is said to be eventually long, cf. Section 3 in [6], if ln(x) ≤ n for some n ≥ 0
and some x ∈ W u ∩M−n, otherwise the fiber W u is said to be forever short.

Theorem 7.3 For every local unstable fiber W u ⊂ M̂ there is a finite limit

lim
n→∞

ν(W u ∩M−n)/λn
+ := ρ(W u) (7.6)

which is positive if and only if the fiber W u is eventually long. In addition,

|ν(W u ∩M−n)/λn
+ − ρ(W u)| ≤ γ′′n/|W u| (7.7)

where

γ′′n := C17

n∑
j=0

γ′n−jβ
j
1 + C18

∞∑
j=n

βj
1 ≤ C19e

−a6n1/2

(7.8)

with some global constants a6, C17, C18, C19 > 0 and γ′n defined in (7.5).

Remark. Due to Corollaries 5.2 and 5.4, we have ν(W u ∩M−n)/λn
+ ≤ C20|W u|−g for

every n ≥ 0, and so ρ(W u) ≤ C20|W u|−g. Here C20 = C7C9

Remark. If W u ⊂ M+, then ρ(T−nW u) = λ−n
+ ρ(W u) for all n ≥ 0.

Proof. For fibers W u of length between d0/2 and d0, we have ν ∈ M0, thus the
theorem follows from Corollary 7.2, and we actually get a slightly better estimate: γ′′n =
d0γ

′
n. Assume now that |W u| < d0/2. For every j ≥ 0 let W̃ u

j = {x ∈ W u : lj(x) = j}.
Observe that the sets W̃ u

j , j ≥ 0, are pairwise disjoint, and for any j ≥ 0 the set

T jW̃ u
j is a finite union of unstable fibers of length ≥ d0/2, which we denote by W̃ u

j,s,
s = 1, 2, . . .. Denote by νj = T j

∗ ν the induced u-SBR measure on T j(W u ∩M−j). Put
κn = ν{x ∈ W u ∩M−n : ln(x) = n + 1}. Now, for any n ≥ 0

ν(W u ∩M−n) =
n∑

j=0

νj

(
T jW̃ u

j ∩M−n+j

)
+ κn

=
n∑

j=0

∑
s

νj

(
W̃ u

j,s ∩M−n+j

)
+ κn
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We will show that

ρ(W u) =
∞∑

j=0

∑
s

νj(W̃
u
j,s)ρ(W̃ u

j,s)λ
−j
+

Taking this as the definition of ρ(W u) yields

|ν(W u ∩M−n)/λn
+ − ρ(W u)| ≤

∞∑
j=n+1

∑
s

νj(W̃
u
j,s)ρ(W̃ u

j,s)λ
−j
+ + κnλ

−n
+

+
n∑

j=0

∑
s

νj(W̃
u
j,s)

∣∣∣∣νW̃ u
j,s

(W̃ u
j,s ∩M−n+j)/λ

n−j
+ − ρ(W̃ u

j,s)
∣∣∣∣λ−j

+

To each W̃ u
j,s, 0 ≤ j ≤ n, we apply the already proven bound (7.7) with γ′′n = d0γ

′
n, as

noted above. To each W̃ u
j,s, j ≥ n + 1, we use the bound ρ(W̃ u

j,s) ≤ C16, cf. (7.4). Then,

for every j ≥ 0 we have
∑

s νj(W̃
u
j,s) ≤ C13β

j
1λ

j
+/|W u| according to Lemma 5.7 (setting

m = n = j there). We also have κn ≤ C13β
n
1 λn

+/|W u|, due to the same lemma (setting
m = n there). The rest is direct substitution. Theorem 7.3 is proven. 2

Corollary 7.4 Let W u be an eventually long unstable fiber, and let µ0 be the measure
concentrated on W u and coinciding with the u-SBR measure on that fiber. Then the
sequence T n

+µ0 weakly converges to µ+.

Proof of Theorems 2.4 and 2.5. For every unstable fiber W u and n ≥ 0 denote
by νW u,n its u-SBR measure νW u conditioned on W u ∩ M−n. Recall that the measure
µ+,n := T−n

∗ µ+ coincides with the measure µ+ conditioned on M−n, cf. Sect. 2.5. Hence,
for every n ≥ 0 the measure µ+,n has conditional measure on W u ∈ Wu

+ which coincides

with νW u,n. Denote by µf
+ the factor measure on Wu

+ induced by µ+, and by µf
+,n the

factor measure on Wu
+ induced by µ+,n. It is an easy exercise that the measure µf

+,n is

absolutely continuous with respect to µf
+, and

dµf
+,n

dµf
+

(W u) =
νW u(W u ∩M−n)

λn
+

:= ρn(W u) ∀W u ∈ Wu
+ (7.9)

Next, we will define the measure µ̄+ by first introducing its conditional measures on
W u ∈ Wu

+.
For every eventually long unstable fiber W u ∈ Wu

+ define a probability measure ν̄W u

on it by
ν̄W u(W u

1 ) := νW u(W u
1 )ρ(W u

1 )/ρ(W u) (7.10)

for every subfiber W u
1 ⊂ W u. Theorem 7.3 implies that ν̄W u is a weak limit of νW u,n as

n → ∞. In particular, ν̄W u is a probability measure supported on W u ∩ Ω. For forever
short unstable fibers W u ∈ Wu

+, let ν̄W u be an arbitrary probability measure on W u.

Next, define a measure, µ̄f
+, on Wu

+ by

dµ̄f
+

dµf
+

(W u) = ρ(W u) (7.11)
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Lastly, let µ̄+ be a measure on M+ whose conditional measures on W u ⊂ Wu
+ coincide

with ν̄W u and whose factor measure on Wu
+ is µ̄f

+. Clearly, µ̄+ is supported on Ω.

First, we show that the measure µ̄f
+, and hence, µ̄+, are finite. We use the first remark

after Theorem 7.3 and the function Fµ+(y) defined in (5.8), and get a bound

∫
Wu

+

ρ(W u) dµf
+ ≤ C20

∫ d0

0
y−g dFµ+(y)

Integrating by parts and using (5.10) gives∫ d0

0
y−g dFµ+(y) ≤ d−g

0 + gC1d
1−g
0 < ∞ (7.12)

In the same way, ∀ε > 0∫
Wu

+,ε

ρ(W u) dµf
+ ≤ C20

∫ ε

0
y−g dFµ+(y) ≤ C20C1ε

1−g (7.13)

Observe that the above bound also holds if we substitute ρn(W u) for ρ(W u).
We now prove (2.5), which will imply the weak convergence of µ+,n to µ̄+. For

every n ≥ 1 we take ε = εn = e−a7n1/2
with a7 = a6/2. Then according to (7.8),

γ′′n/ε ≤ C19e
−a7n1/2

. We put, for brevity, Wu,c
+,ε = Wu

+ \Wu
+,ε. We have

∣∣∣∣∫
M

f dµ+,n −
∫

M
f dµ̄+

∣∣∣∣ =

∣∣∣∣∣
∫
Wu

+

dµf
+,n

∫
W u

f dνW u,n −
∫
Wu

+

dµ̄f
+

∫
W u

f dν̄W u

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Wu

+,ε

dµf
+,n

∫
W u

f dνW u,n

∣∣∣∣∣+
∣∣∣∣∣
∫
Wu

+,ε

dµ̄f
+

∫
W u

f dν̄W u

∣∣∣∣∣
+

∣∣∣∣∣
∫
Wu,c

+,ε

dµf
+,n

∫
W u

f dνW u,n −
∫
Wu,c

+,ε

dµ̄f
+

∫
W u

f dν̄W u

∣∣∣∣∣(7.14)

The first two integrals on the right hand side of (7.14) do not exceed

2||f ||∞C20

∫ ε

0
y−g dFµ+(y) ≤ 2||f ||∞C20C1ε

1/2

according to (7.13).
Using (7.9) and (7.11) we see that the last term on the right hand side of (7.14) does

not exceed I1 + I2, where

I1 =
∫
Wu,c

+,ε

∣∣∣∣∫
W u

f(x) dνW u,n −
∫

W u
f(x) dν̄W u

∣∣∣∣ ρ(W u) dµf
+

and

I2 =
∫
Wu,c

+,ε

∣∣∣∣∫
W u

f(x) dνW u,n

∣∣∣∣ · |ρn(W u)− ρ(W u)| dµf
+
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The bound (7.7) immediately implies that I2 ≤ ||f ||∞γ′′n/ε.
We now bound I1. Observe that ρ(W u) = 0 for forever short fibers, so they can be

ignored. Let W u ∈ Wu,c
+,ε be an eventually long fiber, |W u| > ε. Partition it into some

subfibers W u
i , i ≥ 1, of length between ε/2 and ε. On each W u

i , pick a point xi ∈ W u
i .

Then for any probability measure ν on W u we have∣∣∣∣∣
∫

W u
f(x) dν −

∑
i

f(xi)ν(Wi)

∣∣∣∣∣ ≤ δf (ε)

Therefore,∣∣∣∣∫
W u

f dνW u,n −
∫

W u
f dν̄W u

∣∣∣∣ ≤
∣∣∣∣∣∑

i

f(xi) (νW u,n(W u
i )− ν̄W u(W u

i ))

∣∣∣∣∣+ 2δf (ε)

≤ ||f ||∞
∑

i

|νW u,n(W u
i )− ν̄W u(W u

i )|+ 2δf (ε) (7.15)

For each subfiber W u
i , we have

νW u,n(W u
i ) =

νW u(W u
i ) νW u

i
(W u

i ∩M−n)

νW u(W u ∩M−n)

Using (7.9) and (7.10) yield

|νW u,n(W u
i )− ν̄W u(W u

i )| =

∣∣∣∣∣νW u(W u
i )

ρn(W u
i )

ρn(W u)
− νW u(W u

i )
ρ(W u

i )

ρ(W u)

∣∣∣∣∣
= νW u(W u

i )

∣∣∣∣∣ρn(W u
i )ρ(W u)− ρn(W u)ρ(W u

i )

ρn(W u)ρ(W u)

∣∣∣∣∣
Now, using (7.7)

|ρn(W u
i )ρ(W u)− ρn(W u)ρ(W u

i )| = |ρn(W u
i )(ρ(W u)− ρn(W u)) + ρn(W u)(ρn(W u

i )− ρ(W u
i ))|

≤ ρn(W u
i )γ′′n/|W u|+ 2ρn(W u)γ′′n/ε

Hence,

|νW u,n(W u
i )− ν̄W u(W u

i )| ≤ νW u(W u
i ) · ρn(W u

i )γ′′n
ρn(W u)ρ(W u)ε

+ νW u(W u
i ) · 2γ′′n

ερ(W u)

Note that ∑
i

νW u(W u
i ) = νW u(W u) = 1

and ∑
i

νW u(W u
i )ρn(W u

i )/ρn(W u) = νW u,n(W u) = 1
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Therefore, ∑
i

|νW u,n(W u
i )− ν̄W u(W u

i )| ≤ 3γ′′n
ερ(W u)

Combining this with (7.15) and substituting in the integral formula for I1 give the bound

I1 ≤ 3||f ||∞γ′′n/ε + 2δf (ε)
∫
Wu,c

+,ε

ρ(W u) dµf
+

≤ 3||f ||∞γ′′n/ε + 2δf (ε)
(
d−g

0 + gC1d
1−g
0

)
where we used (7.12).

The proof of Theorem 2.5 is completed. This implies the weak convergence of the
measures µ+,n to µ̄+. In particular, µ̄+, and hence, µ̄f

+, are probability measures.
We now continue the proof of Theorem 2.4. The invariance of the measure µ̄+ follows

from the above weak convergence.
To prove the ergodicity of µ̄+ we employ the classical Hopf technique of connecting

any two generic points of Ω by a finite chain of stable and unstable fibers, see, e.g., [2]
for a self contained introduction to the Hopf technique in Hopf’s original setting. The
crucial step in this technique is to ensure some analogue of the absolute continuity of the
foliations of Ω by stable and unstable fibers. Precisely, we need to show that for any two
nearby parallel unstable fibers W u

1 , W u
2 ⊂ M+ the holonomy map (sliding along stable

fibers) is not completely singular with respect to the conditional measures ν̄W u
1
, ν̄W u

2
.

Let W u
1 , W u

2 ⊂ M+ be two unstable fibers of lengths ≥ d0/4, and let ν1, ν2 be their
u-SBR measures, respectively. Assume that W u

1 is d0-close to W u
2 , see Sect. 3. By

shortening W u
2 , if necessary, we can make it d0-close to W u

1 , too. In particular, the
holonomy map h̃ (sliding along stable fibers of length ≤ d0) will be then a bijection
of W u

1 to W u
2 . For any n ≥ 0 let W̃ u

1,n = {x ∈ W u
1 ∩ M−n : h̃(x) ∈ W u

2 ∩ M−n}, and

W̃ u
2,n := h̃(W̃ u

1,n) ⊂ W u
2 ∩M−n. The sets W̃ u

1,n and W̃ u
2,n are finite unions of closed subfibers

in W u
1 , W u

2 , respectively, and the jacobian of h̃ : W̃ u
1,n → W̃ u

2,n is uniformly bounded away
from zero and infinity (by D−1 and D). The remark in the end of Section 4 shows that
νi(W̃

u
i,n) ≥ νi(W

u
i ∩M−n)/2, i.e.

νi,n(W̃ u
i,n) = νi(W̃

u
i,n/M−n) ≥ 1/2 (7.16)

for i = 1, 2 and all n ≥ 0.

Claim. The holonomy map h̃ : W u
1 → W u

2 is not singular with respect to the measures
ν̄W u

i
, i = 1, 2.

Proof. By way of contradiction, assume that ∃A ⊂ W u
1 such that ν̄W u

1
(A) = 0 and

ν̄W u
2
(h̃(A)) = 1. Then ∀δ > 0 there is a countable union of disjoint open subintervals

Ii ⊂ W u
1 such that A ⊂ ∪Ii and ν̄W u

1
(∪Ii) < δ. Since ν̄W u

2
(h̃(∪Ii)) = 1, we can find a

finite subunion Gj = ∪j
i=1Ii for some j < ∞ such that ν̄W u

2
(h̃(Gj)) ≥ 0.99. Recall that

νi,n weakly converge, as n → ∞, to ν̄W u
i

for i = 1, 2. Since h̃(Gj) is an open subset of
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W u
2 , there is an n0 ≥ 1 such that ν2,n(h̃(Gj)) ≥ 0.98 for all n ≥ n0. Due to (7.16), we

have
ν2,n(h̃(Gj ∩ W̃ u

1,n)) = ν2,n(h̃(Gj) ∩ W̃ u
2,n) ≥ 0.48

for all n ≥ n0. Hence, ν1,n(Gj ∩ W̃ u
1,n) ≥ 0.48 (C6D)−1 > 0, where we used Theorem 4.1.

Hence, ν1,n(Gj) ≥ 0.48 (C6D)−1 for all n ≥ n0. Consider the closure Ḡj of Gj. The
weak convergence ν1,n → ν̄W u

1
implies that ν̄W u

1
(Ḡj) ≥ 0.48 (C6D)−1. Note that ν̄W u

1

is a nonatomic measure, cf. (7.10) and the first remark after Theorem 7.3. Hence,
ν̄W u

1
(Gj) ≥ 0.48 (C6D)−1, a contradiction that proves the claim.

This allows us to link W u
1 and W u

2 by stable fibers and make one Hopf chain that
contains both W u

1 and W u
2 .

Next, the unstable fibers W u ⊂ M+ of length ≥ d0/4 are rather dense in M̂ . As it was
shown in [6] (Lemma 3.4), any stable fiber W s ⊂ M̂ of length d2 (with d2 ∼ h) crosses at
least one unstable fiber W u ⊂ M+ whose endpoints are the distance ≥ d0/3 away from
the point of intersection, W s ∩W u. Therefore, any two unstable fibers W u

1 , W u
2 ⊂ M+

of length ≥ d0/4 can be connected by one finite Hopf chain of stable and unstable fibers,
so they all belong (mod 0) in one ergodic component of the measure µ̄+.

Consider now short unstable fibers W u ⊂ M+. If W u is forever short then ρ(W u) = 0,
and hence the union of such fibers has zero µ̄+ measure. If W u is eventually long, then, in
the same way, only its parts that become long under the iterations of T can carry positive
mass of µ̄+. Those parts, however, belong (mod 0) to the same ergodic component as
above, since that component is T -invariant. The ergodicity of µ̄+ is proved.

It is standard that the K-property on each ergodic component follows from the ex-
istence of stable and unstable fibers at a.e. point, see, e.g., [10] and [11] (Theorem B).
Since our measure µ̄+ is ergodic, it is K-mixing. 2

Remark. Due to (5.17),

µ+,n(Hε) ≤ C11ε
b/2 ∀ε > 0 and n ≥ 0 (7.17)

Hence, µ̄+(Hε) ≤ C11ε
b/2. It is then a standard application of Borel-Cantelli lemma

to show that at µ̄+-a.e. point x ∈ Ω there are fibers W u
x ⊂ M+ and W s

x ⊂ M− of
nonzero length. Furthermore, for any ε > 0 the set of points whose fibers W u

x ⊂ M+ and
W s

x ⊂ M− are shorter than ε has µ̄+-measure ≤ const · εb/2.

Next, the estimates on convergence in Theorem 2.5 are independent of h and the shape
of the holes. Therefore, the weak convergence of the measures µ

(k)
+,n := [T (k)]−n

∗ µ
(k)
+ to µ̄

(k)
+ ,

proved in [4],[5] is actually uniform in k for all k ≥ k0. Hence, for any sequence nk →∞
as k → ∞ the sequences of measures {µ(k)

+,nk
} is equivalent to µ̄

(k)
+ , i.e. µ

(k)
+,nk

∼ µ̄
(k)
+ as

defined in the previous section.
Recall that the sequence µ

(k)
+ converges, as k → ∞, to µ+, cf. [6]. Since T−1 acts

smoothly on M1, the measures µ
(k)
+,n = T−n

∗ µ
(k)
+ remain close to µ+,n = T−n

∗ µ+ in the
weak topology for sufficiently small n (compared to k). It is, however, clear, that n may
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be taken larger as k grows, i.e. there is a sequence nk → ∞ such that µ
(k)
+,nk

∼ µ+,nk
as

k →∞.
Combining the above observations with Theorem 2.4 gives

Corollary 7.5 The sequence of measures µ̄
(k)
+ supported on the repellers Ω(k) ⊂ Ω weakly

converges, as k → ∞, to the measure µ̄+ supported on Ω. Note that all these measures
are T̂ -invariant, ergodic and K-mixing.

Proof of Theorem 2.6. We start with a formula for the Kolmogorov-Sinai entropy of
smooth hyperbolic maps on surfaces:

h(µ) = χ+(µ) · lim
ε→0

log µu(Bu(x, ε))

log ε
(7.18)

where µ is an ergodic invariant measure, χ+(µ) is its positive Lyapunov exponent, x
is a µ-generic point, µu is the conditional measure induced by µ on the local unstable
fiber W u

x , and Bu(x, ε) is the ε-ball in W u
x centered at x (i.e., the interval on W u

x of
length 2ε centered at x). This formula was proved by Ledrappier and Young, even in the
nonuniformly hyperbolic case, see pp. 545, 559 in Part II of [11].

For any µ̄+-generic point x ∈ Ω there is a sequence ni → ∞ such that the points
xi := T nix have long unstable fibers in M+, i.e. the distance from xi to the endpoints
of W u

xi
⊂ M+ is at least d0/8. For every sufficiently large i we find an εi > 0 such

that W u
i := T niBu(x, εi) is a subsegment of W u

xi
of length ≥ d/8. Due to the standard

distortion estimates,

(8D)−1 ≤ d0/εi

Ju
x Ju

Tx · · · Ju
T ni−1x

≤ 8D

Next, let W u ⊂ M+ be the maximal unstable fiber containing x. Then

ν̄W u(Bu(x, εi)) = νW u(Bu(x, εi)) ρ(Bu(x, εi))/ρ(W u)

= νW u(Bu(x, εi)) λ−ni
+ ρ(T niBu(x, εi))/ρ(W u)

where we used (7.10) and the second remark after Theorem 7.3. Observe that νW u(Bu(x, εi)) ∼
εi/|W u|, and ρ(T niBu(x, εi)) ∼ 1. Therefore,

h(µ̄+) = χ+ · lim
i→∞

log εi − log λni
+

log εi

= χ+ ·
(

1− lim
i→∞

log λ+

n−1
i log εi

)

= χ+ ·
(

1− lim
i→∞

γ+

n−1
i log Ju

x · · · Ju
T ni−1x

)

= χ+ ·
(

1− γ+

χ+

)

Theorem 2.6 is proved. 2
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Corollary 7.6 (see [13]) Let Gµ̄+ ⊂ Ω be the set of µ̄+-generic points x ∈ Ω. Then the
Hausdorff dimension, denoted by δu, of Gµ̄+ ∩W u(x) is independent of x ∈ Ω, and

δu = h(µ̄+)/χ+ = lim
ε→0

log µu(Bu(x, ε))

log ε

Proof of Theorem 2.7. Let now, for a moment, H(k) be rectangular holes approx-
imating H ‘from outside’ as described in the first paragraph of Section 6. They sat-
isfy d(H(k), H) ≤ εk/2, see (6.1). Hence, d(H(k), Hn) ≤ d(Hn, H) + εk/2. Let k =
kn = max{k ≥ k0 : εk ≥ 2d(Hn, H)}. Obviously, kn → ∞ as n → ∞. Then
d(H(kn), Hn) ≤ εkn , so the rectangular holes H(kn) properly approximate Hn. Hence,
we can apply (7.2) with µ+ replaced by µ+[Hn] and k = kn. This proves the weak
convergence µ+[Hn] → µ+. The convergence µ̄+[Hn] → µ̄+ is proved exactly as Corol-
lary 7.5.

Now, λ+[Hn] = 1 − µ+[Hn](T̂−1Hn). The weak convergence µ+[Hn] → µ+, the
assumption d(Hn, H) → 0, and the bound (7.17), in which one sets n = 0, imply that
λ+[Hn] → λ+, and hence γ+[Hn] → γ+. The escape rate formula holds for all measures
µ̄+[Hn] and implies the convergence of the entropies h(µ̄+[Hn]) → h(µ̄+). Observe that,
generally, the entropy h(µ) in not (!) a continuous function of the invariant measure µ
for T . 2

Proof of Theorem 2.9. That theorem was proved in [4] for Anosov diffeomorphisms
with rectangular holes. We can apply it to T (k), because Ω(k) ⊂ Ω, so the necessary
assumptions are fulfilled on Ω(k). Thus, we get µ̄

(k)
+ = µ̄

(k)
− and λ

(k)
+ = λ

(k)
− for all k ≥ k0.

Taking the limit as k →∞ proves Theorem 2.9. 2

8 Proof of Proposition 6.3

The matrix techniques for proving the weak convergence of measures is based on the
following. Let ξ(1) < ξ(2) < · · · be an increasing sequence of finite partitions of the under-
lying space, ξ(k) = {A(k)

1 , . . . , A(k)
mk
}, that converges to a partition into single points. Then

one can represent any measure µ by a sequence of (row) vectors p(k) with components

p
(k)
i = µ(A

(k)
i ), 1 ≤ i ≤ mk. The norm of the measure is given by |µ| = |p(k)| =

∑
i p

(k)
i .

Then, under certain regularity conditions, the weak convergence of a sequence of mea-
sures, µn → µ∞, is equivalent to the componentwise convergence of the sequence of
vectors p(k)(µn) → p(k)(µ∞), as n → ∞, for all k ≥ 1. Similarly, the transformation
of measures µ′ = T∗µ is equivalent to the right multiplication by matrices, p(k)(µ′) =
p(k)(µ)Π(k)(µ), with components

Π
(k)
ij (µ) = µ

(
A

(k)
i ∩ T−1A

(k)
j

)
/µ(A

(k)
i )

which is a nonnegative substochastic matrix for every k. More details of our techniques
can be found in [4, 5, 16].
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Fix a k ≥ k0. We represent any measure µ on M (k) by the row vector p(µ) with
components {µ(R) : R ∈ R(k)}. We always assume, for simplicity, that µ(∪R∂R) = 0,
so that |µ| = |p(µ)|.

For n ≥ q denote by pn = {pn(R)} the vector representing the measure [T
(k)
∗ ]n−qµq,

q = k+ l0 (this is not a probability measure for n > q, of course). The normalized vector,
pn/|pn|, will then represent the measure µ(k)

n .
Recall that the conditional distributions of µn on unstable R-fibers, R ∈ R(k), coincide

with u-SRB measures on those fibers. Then the sequence of vectors pn can be well
approximated by the product of the vector pn0 (representing µn0) for some n0 ≥ q and
certain substochastic matrices defined as follows. In every rectangle R ∈ R(k) pick an
arbitrary unstable R-fiber U(R). For any m ≥ 1 define the substochastic matrix Πm

with components

Πm(R′, R′′) = νU(R′)

(
U(R′) ∩ [T (k)]−m(R′′ ∩M (k)

m )
)

(8.1)

where νU(R′) is the u-SBR measure on U(R′).
Since the rectangles in R(k) are exponentially small (in k), then for any n ≥ m + q

and R′′

e−Cαk ≤
∑

R′ pn−m(R′) Πm(R′, R′′)

pn(R′′)
≤ eCαk

and for any R′, R′′ and m1, m2 ≥ 1

e−Cαk ≤
∑

R′′′ Πm1(R
′, R′′′) Πm2(R

′′′, R′′)

Πm1+m2(R
′, R′′)

≤ eCαk

for some global constants C > 0 and α ∈ (0, 1). Let m̄ = m1 + · · ·+ mt ≤ n− q and put

p̂n = pn−m̄Πm1 · · ·Πmt

Then, for any R ∈ R(k)

e−Ctαk ≤ p̂n(R)

pn(R)
≤ eCtαk

As a result, e−Ctαk ≤ |p̂n|/|pn| ≤ eCtαk
, so that the normalized vectors p̂n/|p̂n| and pn/|pn|

are close as well:

e−2Ctαk ≤ p̂n(R)/|p̂n|
pn(R)/|pn|

≤ e2Ctαk

(8.2)

According to (8.2), the vectors p̂n/|p̂n| approximately represent the measure µ(k)
n as

long as t � α−k. In our further considerations, t will be actually equal to k, so p̂n will
always approximate pn well enough. In fact, we will find an integer r ≥ 1 such that such
that the matrix Πrk has good mixing properties uniformly in k, see below. Then for any
n ≥ rk2 + q we approximate µ(k)

n by

p̂n := pn−rk2Πk
rk (8.3)
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Due to (8.2), for any n ≥ rk2 + q

∑
R∈R(k)

∣∣∣∣∣pn(R)

|pn|
− p̂n(R)

|p̂n|

∣∣∣∣∣ ≤ e2Ckαk − 1 = O(kαk) (8.4)

Remark. The vector pn/|pn| represents the measure µ(k)
n . According to (8.4), the

vector p̂n/|p̂n| approximately represents the same measure. The vector p̂n/|p̂n| will not
change if we normalize the vector pn−rk2 in (8.3), i.e. if we assume that pn−rk2 represents

the measure µ
(k)
n−rk2 rather than [T

(k)
∗ ]n−rk2−qµq.

We will need certain matrix estimates similar to those in [16]. Denote by A,B, C
nonnegative N × N matrices and X, Y nonnegative row vectors of length N with the
norm |X| = ∑

xi, the distance |X − Y | = ∑ |xi − yi|, and the normed distance

||X − Y || =
N∑

i=1

∣∣∣∣∣ xi

|X|
− yi

|Y |

∣∣∣∣∣
Let X̃ = X + X ′ and Ỹ = Y + Y ′, where X̃, X ′, Ỹ , Y ′ are some nonnegative vectors.
Denote εX = |X ′|/|X̃| and εY = |Y ′|/|Ỹ |. The following estimate is a result of direct
calculations:

||X̃ − Ỹ || ≤ ||X − Y ||+ 2(εX + εY ) (8.5)

Let 1 ≤ J ≤ N . Assume that xj > 0 iff j ≤ J and yj > 0 iff j ≤ J . Let

d(X, Y ) = ln

(
max1≤i≤J(xi/yi)

min1≤i≤J(xi/yi)

)
= max

1≤i,j≤J
ln

(
xiyj

xjyi

)

be the projective distance between vectors, based on their first J components. Obviously,
xi/xj ≤ ed(X,Y )yi/yj for all 1 ≤ i, j ≤ J . Summing over i = 1, . . . , J gives yj/|Y | ≤
ed(X,Y )xj/|X|, hence

||X − Y || ≤ ed(X,Y ) − 1 (8.6)

Note that d(X, Y ) = 0 (hence, ||X − Y || = 0) iff X = λY for some λ > 0.
Now, let 1 ≤ I ≤ J . Let A = B + C, where B and C are nonnegative matrices. For

the matrix B, assume that
(B) bij > 0 iff i ∈ {1, . . . , I} ∪ I ′ and j ∈ {1, . . . , J},
where I ′ ⊂ {J + 1, . . . , N} is an arbitrary subset of indices. Denote by B∗n the J × J
principal minor of the matrix Bn, n ≥ 1. Observe that B∗n = (B∗1)n.

For any nonnegative vector X̃ = {x̃i} we put X̃n = X̃An, Xn = X̃Bn and X ′
n =

X̃n −Xn. We say that X̃ is admissible if x̃i > 0 for at least one i ∈ {1, . . . , I} ∪ I ′. In

that case x
(1)
j > 0, ∀j ≤ J , where x

(1)
j are the components of X1 = X̃B. Therefore, for

any two admissible vectors X̃, Ỹ we have d(Xn, Yn) < ∞, ∀n ≥ 1.
It is known that d(Xn, Yn) ≤ d(Xn−1, Yn−1), cf. [16]. Let

τ(B) = sup
X 6=λY

d(XB, Y B)

d(X, Y )
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where the supremum is taken over vectors X, Y whose components xj, yj are positive
if and only if j ≤ J . τ(B) is called Birkhoff contraction coefficient. It is known that
τ(Bn) ≤ [τ(B)]n, cf. [16]. There is an explicit formula for τ(B), see [16], pp. 101–106:

τ(B) =
1− ϕ1/2

1 + ϕ1/2
, ϕ = ϕ(B) = min

i,j≤I, k,l≤J

bikbjl

bjkbil

In particular, τ(B) = 0 iff the J × J principal minor of B coincides with that of the
matrix UT V , where U and V are some nonnegative row vectors such that ui > 0 iff i ≤ I
and vj > 0 iff j ≤ J , and UT is the transpose of U .

Assume that ∃β0 > 0 such that

0 < β0 ≤
bikbjl

bjkbil

≤ β−1
0 (8.7)

for all i, j ≤ I and k, l ≤ J . Then τ(B) ≤ β := (1−
√

β0)/(1 +
√

β0) < 1, and hence

d(Xn, Yn) ≤ d(X2, Y2) · βn−2

It is also a direct calculation that

d(X2, Y2) ≤ d(X1B, Y1B) ≤ 2 ln β−1
0

for any two admissible vectors X̃, Ỹ . Summarizing (8.5), (8.6) and (8.7) gives

||X̃n − Ỹn|| ≤
(
β−2βn−2

0 − 1
)

+ 2(εXn + εYn)

≤ const(β0) · βn + 2(εXn + εYn) (8.8)

To prove (8.7), it is enough to show that there exist two nonnegative vectors U and
V such that ui > 0 iff i ≤ I and vj > 0 iff j ≤ J and the components bij of the matrix B
admit the decoupling bij ∼ uivj, i.e. for some γ0 > 0

0 < γ0 <
bij

uivj

≤ γ−1
0 (8.9)

for all i ≤ I, j ≤ J . Then (8.7) follows with β0 = γ4
0 .

Next, we will define the matrices A and B related to the transition matrix Πm in (8.1)
and show (8.9). For brevity, we will suppress the superscript (k) in R(k), T (k), and M (k).

Let R ∈ R and U be an unstable R-fiber. Consider the functions ln(x), n ≥ 0, on
the fiber U as defined before Lemma 5.7. Let S be a stable R-fiber. In a similar way,
define functions l−n (x), n ≥ 0, on S. For every n ≥ 0 and x ∈ S ∩Mn denote by Sn(x)
the smooth component of T−n(S ∩ Mn) containing T−nx. For every x ∈ S ∩ M−n let
l−n (x) = min{l ∈ [0, n] : |Sl(x)| ≥ d0/2} (if |Sl(x)| < d0/2 for all l = 0, . . . , n, we set
l−n (x) = n + 1).
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Let r > r0 > 1 to be specified below. We set A = Πrk, see (8.1), and will now define
B so that C = A − B will be a nonnegative matrix. For any two rectangles R′, R′′ ∈ R
we define B(R′, R′′) as follows. Let U(R′) be the unstable R′-fiber fixed in (8.1). Let
Ũ(R′) = {x ∈ U(R′) ∩ M−rk : lrk(x) ≤ r0k}. Now, let S(R′′) be an arbitrary stable
R′′-fiber. Let S̃(R′′) = {x ∈ S(R′′)∩Mrk : l−rk(x) ≤ r0k}. Now, let R̃′′ ⊂ R′′ be the union
of unstable R′′-fibers that cross S̃(R′′). Obviously, R̃′′ is a finite union of u-subrectangles
in R′′. Observe that T−rkR̃′′∩R′ consists of a finite number of s-subrectangles in R′. We
now define

B(R′, R′′) = νU(R′)[Ũ(R′) ∩ T−rk(R̃′′)] (8.10)

Comparing this to (8.1) shows that B(R′, R′′) ≤ Πrk(R
′, R′′) = A(R′, R′′), so that the

matrix C = A− B is, indeed, nonnegative.
We now prove (8.9). Let again R′, R′′ ∈ R. Denote by Ũi, i ≥ 1, all distinct curves

Ulrk(x)(x) for points x ∈ Ũ(R′). If Ũi = Ulrk(x)(x) for some x, we put li = lrk(x), the

iteration associated with Ũi. There are finitely many of those curves, and their lengths
are ≥ d0/2 and ≤ d0. Observe that T−liŨi, i ≥ 1, are disjoint subsegments of U(R′), and
their union covers Ũ(R′).

Similarly, we define stable fibers S̃j, j ≥ 1, and l−j ≤ r0k such that T l−j S̃j are disjoint

subsegments of S(R′′), their union covers S̃(R′′), and the length of every S̃j is between

d0/2 and d0. Denote by R̃′′
j the u-subrectangle in T−l−j R′′ that consists of unstable fibers

crossing the curve S̃j. Let du
j be the maximum length of unstable R̃′′

j -fibers.
Assume that r > 2r0, so that rk > 2r0k + k1 for all sufficiently large k. Denote by νi

the u-SBR measure on the fiber Ũi and put wi = νU(R′)(T
−liŨi). In the following, we use

Corollary 5.5:

B(R′, R′′) =
∑
i,j

wi ·
[
T

rk−li−l−j
∗ νi

]
(R̃′′

j )

∼
∑
i,j

wi · [λ(k)
+ ]rk−li−l−j −k1 · du

j

=

(∑
i

wi · [λ(k)
+ ]rk−li

)∑
j

[λ
(k)
+ ]−l−j −k1 · du

j


(8.11)

where a ∼ b means that the ratio a/b is bounded above and below by two positive global
constants, in this case the constants are C10 and C−1

10 . This proves (8.9) with γ0 = C−1
10 .

Remark. Observe that if Ũ(R′) = ∅ or S̃(R′′) = ∅, then B(R′, R′′) = 0. Otherwise
B(R′, R′′) > 0, as the above calculation shows. We can number the rectangles Ri ∈ R,
1 ≤ i ≤ N , so that S̃(Ri) 6= ∅ iff i ≤ J for some J ≤ N , and furthermore, for i ≤ J we
require Ũ(Ri) 6= ∅ iff i ≤ I for some I ≤ J . Then the matrix B will satisfy our early
assumption (B), if only I ≥ 1, i.e. if there is at least one rectangle R with Ũ(R) 6= ∅ and
S̃(R) 6= ∅ simultaneously. This will be ensured by our choice of r0 and r below. Here we
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just observe that if I = 0, nonetheless, then B2 = 0, so Xn = X̃Bn will be zero vectors
for all n ≥ 2.

We now turn to the proof og Proposition 6.3. Let L ≥ rk2 + q. Let X̃ represent the
measure µ

(k)
L−rk2 (cf. the remark after (8.4)), and let X̃k = X̃Πk

rk. Then the vector X̃k/|X̃k|
approximately represents the measure µ

(k)
L , according to (8.4). Also, let Ỹ represent the

measure µ
(k)
+ . Then Ỹk/|Ỹk| approximates the same measure µ

(k)
+ . Therefore, due to (8.4)∣∣∣µ(k)

L − µ
(k)
+

∣∣∣
k

= ||X̃k − Ỹk||+ O(kαk)

Here and further on, ak = O(bk) means that ak ≤ Cbk, with some global constant C > 0.
Next, we use (8.8) with n = k. If I ≥ 1, then the just proven bound (8.9) ensures

that the first term on the right hand side of (8.8) is exponentially small in k, i.e.∣∣∣µ(k)
L − µ

(k)
+

∣∣∣
k
≤ 2(εXk

+ εYk
) + O(βk) + O(kαk)

with β = (1− γ2
0)/(1 + γ2

0) < 1. If I = 0, however, then Xk = Yk = 0, and the first term
in (8.8) can be simply omitted, but then εXk

= εYk
= 1.

Therefore, it remains to estimate the quantities εXk
, εYk

. We will show that they are
exponentially small in k by choosing r0 and r properly. In particular, that will imply
that I ≥ 1, i.e. the matrix B will be nontrivial (B2 6= 0).

Again, for brevity we will suppress the superscript (k) in R(k), T (k) and M (k). Let
R ∈ R and U be an unstable R-fiber. Denote by νU the u-SBR measure on U .

Lemma 8.1 There is a global constant C21 > 0 such that for every n ≥ m ≥ 0

νU{x ∈ U ∩M−n : ln(x) ≥ m} ≤ C13 βm
1 [λ

(k)
+ ]n/|U | ≤ C21 βm

1 [λ
(k)
+ ]nΛk

max

Proof. The first bound is claimed in Lemma 5.7 for the original holes H, so, it applies
here provided

β1 > B0Λ
−1
min/λ

(k)
+

for all sufficiently large k, which is true, see (5.19). The second inequality in the lemma
follows from the obvious bound |U | ≥ const · Λ−k

max. 2

Corollary 8.2 By setting m = 0 we get νU(U∩M−n) ≤ C13 [λ
(k)
+ ]n/|U | ≤ C21 [λ

(k)
+ ]nΛk

max.

Now, let R ∈ R and S be a stable R-fiber. Let m ≥ 1 and Sm = {x ∈ S ∩ Mm :
l−m(x) = m + 1}. These are points in S whose first m backward images (under T−1) are
in short components (of length < d0/2) in the backward images of the curve S. Denote
by Rm the union of unstable R-fibers that cross Sm. Let Gm = ∪R∈RRm.
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Lemma 8.3 Let µ ∈M0 and n,m ≥ 0. Then for some global constant C22 > 0

(Tm
∗ µ) (Gm ∩M−n) ≤ C22 βm

1 [λ
(k)
+ ]n+mΛ2k

max

Proof. Let R ∈ R and du(R), ds(R) be the maximum lengths of unstable and stable
R-fibers, respectively. The set T−mRm consists of at most Bm

0 connected rectangles,
denote them by Rm,i, 1 ≤ i ≤ Bm

0 . Each Rm,i has length in the stable direction < d0/2
(measured along the stable fiber Rm,i ∩ T−mSm). The length of unstable fibers in Rm,i

does not exceed Λ−m
min du(R). Therefore, µ(Rm,i) ≤ C1DΛ−m

min du(R), and so (Tm
∗ µ)(Rm) ≤

C1DBm
0 Λ−m

min du(R). Observe that
∑

R∈R du(R)ds(R) ≤ const · Area(M̂). Also, ds(R) ≥
const · Λ−k

max. Therefore,

(Tm
∗ µ) (Gm) ≤ const ·

∑
R∈R

Bm
0 Λ−m

min du(R) ds(R)/ds(R)

≤ const ·Bm
0 Λ−m

minΛ
k
max

≤ const · βm
1 [λ

(k)
+ ]mΛk

max

Now, we apply Corollary 8.2 to each unstable R-fiber in Rm for all R ∈ R and complete
the proof of Lemma 8.3. 2

We will apply Lemmas 8.1 and 8.3 with m = r0k and n = rkl with l = 1, . . . , k.
We now fix r0 large enough, so that β2 := βr0

1 Λ2
max < 1. Then, the right hand side

of the bound in the Lemma 8.1 will be const·βk
2 [λ

(k)
+ ]n, and that of Lemma 8.3 will be

const·βk
2 [λ

(k)
+ ]m+n, where the constants are global. The value of r is simply chosen to be

> 2r0, so that rk > 2r0k + k1 for all sufficiently large k.
We now estimate the value εXk

= |X̃k −Xk|/|X̃k|, i.e. the relative difference between

the vectors X̃k and Xk. Recall that X̃ represents the probability measure µ
(k)
L−rk2 and

that X̃k = X̃Πk
rk, cf. Remark after (8.4). Observe that

|X̃k| = ||T rk2

∗ µ
(k)
L−rk2|| ·

(
1 + O(eCkαk

)
)
∼ [λ

(k)
+ ]rk2

We now make the last crucial observation. The difference between X̃k and Xk results
from the differences between the matrices A = Πrk and B, compare (8.1) setting m = rk
there and (8.10). We have defined the components B(R′, R′′) by removing certain parts
from R′ and R′′ that entered the definition of Πrk = A. Those parts are precisely
described by Lemmas 8.1 and 8.3, where one sets m = r0k and n = rk, 2rk, . . . , rk2. Our
choice of r0 ensures that the relative losses incurred by the removal of those parts from all
R′, R′′ ∈ R are exponentially small in k (the losses are bounded by const·βk

2 ). The vector
Xk = X̃Bk suffers these losses every time we replace A by B in the product X̃k = X̃Ak.
This happens k times during rk2 iterations of T , so the total relative difference between
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X̃k and Xk will be bounded by const·kβk
2 . The argument for the vector Ỹk is the same.

Therefore,
εXk

+ εYk
≤ const · kβk

2

which is exponentially small in k. This completes the proof of Proposition 6.3. 2
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