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Abstract

We consider hyperbolic dynamical systems with singularities such
as billiards and similar Hamiltonian systems. For this class of systems
we formulate the theorem on local ergodicity in a rather general form.
Besides, the existing version of this theorem is strengthened here by
discarding one of its assumptions.

The ergodic properties of billiard dynamical systems and similar Hamil-
tonian systems with hyperbolic behavior are being intensively studied, see
[1-10]. One of key results in this theory is so called theorem on local ergod-
icity. It was formulated in a rather general form in [5,6] for the systems with
two degrees of freedom. Here we strengthen this theorem by discarding of
one of its assumptions. It should be also noted that we work with systems
of arbitrary dimension.

Let M be a smooth d-dimensional manifold with boundary ∂M and T :
M → M be a smooth transformation with singularities at the set S− =
(T−1∂M) ∪ ∂M . Denote Sn = T n(∂M), and for any m ≤ n set Sm,n =
Sn,m = Sm ∪ . . . ∪ Sn. For any finite n the set S0,n (note that it is the set of
singular points of T−n) is supposed to be a finite union of smooth compact
submanifolds with boundary and of dimension ≤ d − 1. It is convenient to
assume that all the iterates of T are defined on the subset M0 = M \S−∞,∞.

Let ν be an absolutely continuous probability measure on M with a
bounded density and invariant under T .
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We impose certain quite general conditions on our system, which are
formulated in [11]. They are related to the singularity set S− and usually
hold in applications [1-9].

Due to the Oseledec’ theorem [12] there exists a limit

lim
n→±∞

1

n
ln ‖DT nv‖ = χ(v) (1)

for almost every point x ∈ M and any vector v ∈ T§M. This limit is called
the Lyapunov exponent (for x and v). Thus, a DT -invariant decomposition
T§M = Eu§ ⊕ E ∫§ ⊕ E ′§ is defined such that χ(v) is positive in Eu

x , negative
in Es

x and zero in E0
x. We suppose that T is hyperbolic, which means that

dim E0
x = 0 for almost every point x. For simplicity we also suppose that

d+ def
= dim Eu

x and d−
def
= dim Es

x are constants in M (and d+ + d− = d). The
subspace Eu

x and its vectors are called unstable, while Es
x – stable.

The relation (1) guarantees an asymptotically exponential rate of expan-
sion and contraction of vectors v ∈ Eu,s

x under the iterates of DT . However,
we need also a certain monotonicity of this expansion (and contraction). To
this end we suppose that in TM there exists a metric (or at least a pseudo-
metric, which is a metric if restricted to the subspaces Eu

x and Es
x), such that

‖DTv‖ ≥ ‖v‖ for all v ∈ Eu
x and ‖DTv‖ ≤ ‖v‖ for all v ∈ Es

x and x ∈ M .
In what follows only this ”monotone” metric is used. In applications [1-10]
this metric can be always constructed in some way.

According to the Pesin theory, for almost every point x ∈ M there exist
d+-dimensional local unstable manifold (abbr., LUM) γu(x) ⊂ M and d−-
dimensional local stable manifold (LSM) γs(x) ⊂ M , both contain the point
x. The former is contracted exponentially fast under T n as n → −∞ (in the
past), and the latter – as n →∞ (i.e. in the future). For any point y ∈ γu,s(x)
the subspace Eu,s

y is a tangent space to γu,s(x). For hyperbolic systems
with singularities (when S− 6= ∅) the manifolds γu,s have been constructed
in [11]. In this case they are of finite size and have the boundary. So,
we can define two functions ru,s(x) = {the distance of the point x to the
boundary ∂γu,s(x) in the internal metric of the submanifold γu,s(x), induced
by our ”monotone” metric ‖ · ‖}. Besides, the boundary ∂γu(x) lies on the
singularity manifold Sn for n ≥ 0, and the boundary ∂γs(x) lies on Sn for
n ≤ 0. Then it is reasonable to denote ku(x) = min{k ≥ 0 : ∂γu(x)

⋂
Sk 6= ∅}

and ks(x) = min{k ≥ 0 : ∂γs(x)
⋂

S−k 6= ∅}.
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Definition. A point x ∈ M is called u-essential if for any Λ > 1 there
exist n ≥ 0 and a neighborhood V (x) such that for any point y in V (x) and
any vector v ∈ Eu

y (when this subspace exists) one has ‖DT nv‖ ≥ Λ‖v‖.
In other words, in the neighborhood V (x) any LUM is expanded in at

least Λ times in all directions after n iterates of T . An s-essential point is
defined in the same way (but one should replace Eu by Es and set n ≤ 0).

Definition. A point x ∈ M is called sufficient if there exist Λ > 1, two
integers n1 < n2 and a neighborhood V of the point T n1x such that for any
point y ∈ V and any vectors v1 ∈ Eu

y and v2 ∈ Es
y (when these subspaces

exist) one has ‖DT n2−n1v1‖ ≥ Λ‖v1‖ and ‖DT n2−n1v2‖ ≤ Λ−1‖v2‖.
In other words, there is a finite time interval [n1, n2] during which any

LUM starting near the point T n1x is expanded in at least Λ times in all
directions, and any LSM starting near the same point is contracted in at
least Λ times.

Our definitions of essential and sufficient points differ from those intro-
duced in [2,3,7], but ours are formulated in the weakest possible form. In
applications the sufficient and essential points are usually defined in more
explicit terms such as invariant cone fields [12], or special quadratic forms
[6] or geometrical properties like the convexity or concavity [2,7] etc., which
are easier to check.

Below we formulate all the conventional assumptions for the local ergodic
theorem.

Property 1 (double singularities) For any finite n ≥ 1 the intersection
S1,n ∩ S−1,−n (this consists of the singular points of both T n and T−n) is a
finite union of compact submanifolds of dimension ≤ d− 2.

Property 2 (continuity) The fields of subspaces Eu
x and Es

x are continuous
at each sufficient point. Morover, the limit spaces limy→x Eu

y and limy→x Es
y

should be transversal at a sufficient point x.

Property 3 (thickness of singularity region) For ε > 0 denote Uε the
ε- neighborhood of the set S−1,1. Then, ν(Uε) < const · ε.

Property 4 (ansatz) Almost every point of the submanifold S1 (wrt the
internal Riemannian metric) is u-essential, and almost every point of S−1 is
s-essential.
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Property 5 (parallelization) The angles between the submanifold Sn and
the adjacent LUM’s (LSM’s) uniformly tend to zero as n → ∞ (resp., as
n → −∞).

Note that the property 3 is far from being trivial because the ε-neighborhood
is defined through the ”monotone” metric, not through the regular one. If
this monotone metric is actually a pseudo-metric, then the neighborhood Uε

may be quite large. In this case the choice of the pseudo-metric becomes a
very delicate matter – see, for instance, [10].

The property 3 is needed for proving the following two estimates on the
distribution of the lengths of LUM’s and LSM’s. Let x be a sufficient point
and V (x) be a sufficiently small neighborhood of x. Then [2,7] for any δ > 0

ν{y ∈ V (x) : ru,s(y) < δ} ≤ C(x)δ. (2)

Moreover, if F (δ) is a function such that F (δ) →∞ as δ → 0, then

ν{y ∈ V (x) : ru,s(y) < δ and ku,s > F (δ)} ≤ C(x)δϕ(δ), (3)

where ϕ(δ) → 0 as δ → 0. The estimate (2) states that the ”short” LUM’s
and LSM’s occupy not so large subset of the neighborhood V (x), while the
estimate (3) tells us that most of these ”short” LUM and LSM end (”are
torn”) in the images of the singularity set in a not so distant future (or
past), i.e. in Sn for not so large values of n.

Theorem 1 (on local ergodicity) If a hyperbolic system (M, T, ν) pos-
sesses the above properties 1-5, then each sufficient point x ∈ M0 has a
neighborhood V (x) belonging (almost surely) in one ergodic component of the
transformation T .

The proof of Theorem 1 first appeared in [2] for the billiard systems with a
semidispersing boundary. Then it was modified and generalized in [7,6,5]. In
applications [1-10] the properties 1-5 usually hold, although their verification
(especially that of the properties 4 and 5) is not so simple. Only one of the
cited examples – the system of falling balls introduced by M.Wojtkowski in
[8,9] (when the number of balls is three or more) – does not possess the
property 5. This means that the submanifolds Sn can deviate from the
directions of the LUM’s very far for arbitrary large n > 0. These manifolds
can even approach the directions of the LSM’s!
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The aim of this paper is to strengthen Theorem 1 by replacing the con-
dition 5 with a weaker one:

Property 6 (transversality) At almost every point x of the submanifold
S1 (wrt the internal metric in S1) the subspace Es

x is transversal to S1, i.e.
Es

x 6⊂ T§S∞. Analogously, Eu
x 6⊂ T§S−∞ for almost every point x ∈ S−1.

One should remember that T§S∞ is a subspace of codimension one in the
tangent space T§M, so either the intersection Es

x ∩ T§S−∞ is a subspace of
codimension one in Es

x (in the transversal case) or Es
x itself is just a subspace

of T§S∞. Furthermore, in the case Es
x 6⊂ T§S∞ we define an angle between the

subspaces Es
x and T§S∞ as the angle between the vector v ∈ Es

x orthogonal
to the intersection Es

x ∩ T§S∞ and the subspace T§S∞.
The property 6 allows the singularity manifolds S1, S2, . . . , Sn, . . . to de-

viate from the LUM’s and even to approach the LSM’s, but it forbids them
to become parallel to the LSM’s. Note that if the property 6 fails, then some
open region on the submanifold S1 foliates with a smooth family of LSM’s.
In the latter case this region on S1 can actually separate two ergodic compo-
nents in the phase space M . At least, the main idea of the proof of Theorem
1 (the construction of so called ”Hopf chain”, joining two arbitrary points
in V (x)) does not work, because there are obstacles (”walls”) through which
none of the Hopf chains can go. These obstacles are obtained by the images
of the above open region in S1 in the future. So, one cannot weaken the
condition 6 any more, it seems to be the maximal possible relaxation of the
condition 5.

Let us point out another example of a hyperbolic system possessing the
property 6 but not the property 5, in addition to the above falling balls.
Consider a hyperbolic toral automorphism [14] and then cut the underlying
torus into several parts along a finite number of smooth hypersurfaces. Sup-
pose one can displace and permute these parts so that they will cover again
the entire torus. If after this permutation one applies the linear hyperbolic
automorphism, then one obtains a piecewise linear hyperbolic transforma-
tion. The cut surfaces may be chosen arbitrary but the conditions 1 and 6
must hold. In particular, no open part of the cut surfaces should foliate with
a smooth family of stable or unstable subspaces. As an illustrative exam-
ple, one can cut two identical but disjoint balls out of the torus and then
interchange the balls keeping the outside area unmovable.
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The rest of this paper contains the proof of Theorem 1 under the as-
sumptions 1-4 and 6 (instead of 5). We suppose that the reader is familiar
with the proof of Theorem 1 due to the papers [2,7]. The main tool of the
proof is a parametrized family of coverings of the neighborhood V (x) with

special systems of subsets called parallelograms G
(δ)
1 , . . . , G

(δ)
I(δ), where δ > 0

is a small parameter of the family (note, that this construction has first ap-
peared in [1]). In the proof these parallelograms are classified into ”good”
ones which contain an ample set of points with LUM’s and LSM’s of size
> δ, and ”bad” ones – the rest of them. The total measure of ”bad” par-
allelograms is estimated as o(δ), i.e. it is equal to δϕ(δ) where ϕ(δ) → 0 as
δ → 0. The replacement of the condition 5 with 6 causes difficulties with
only parallelograms intersecting exactly one of the smooth components of
the set S−N,N , where N = F (δ) is a large number specified in the proof, see
[2,7].

Consider a parallelogram G = G
(δ)
i intersecting a smooth submanifold

R ⊂ Sn, where |n| ≤ N . Let also n > 0 for the sake of definiteness. Suppose
first that the angle between the subspace Es

y and the tangent space T†R at
any point y ∈ R ∩ G is greater than ε1 (where ε1 = ε1(δ) is to be specified
below). Show then that such a parallelogram is ”good”. Indeed, since n > 0
the parallelogram G contains an ample set of points with ”long” (of size
> δ) LSM’s. More precisely, these LSM’s fill a subset G′ ⊂ G of measure
ν(G′) > (1− ε2)ν(G) where ε2(δ) → 0 as δ → 0 (the proof of this statement
goes the same way as in [2,7]). Besides, it is easy to choose ε1 such that
ε1 � ε2 but ε1(δ) → 0 as δ → 0 (e.g., let ε1 =

√
ε2). One gets then that

there are ”long” LSM’s in G which go through the hypersurface R and so
connect two parts of G separated by the hypersurface R. Both these parts
also contain ample sets of points with LUM’s which are either adjacent to R
or extended to the boundary ∂G. This is enough for a parallelogram to be
used in the construction of the Hopf chain, i.e. to be ”good” (cf. [7], lemma
3.11).

Now suppose the contrary: the angles between Es
y and T†R for y ∈ R∩G

are less than ε1. We add such a parallelogram to the collection of the ”bad”
ones, and then our aim is to estimate their total measure. Let G be one
of such parallelograms intersecting a smooth manifold R ⊂ Sn for some
n, 0 < n ≤ N . Then in virtue of the property 2 the angles between the
subspaces Eu

y for y ∈ G and T†R for y ∈ R ∩ G exceed a positive constant
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c(x0) > 0. This implies that ru(y) < c1(x)δ for all y ∈ G and another
constant c1(x) > 0. Combining this estimate with the inequalities (2), (3) and
then applying the property 6 together with the fact that ε1(δ) → 0 as δ → 0
we conclude that the total measure of parallelograms under consideration
does not exceed o(δ). Hence, the statement of Theorem 1 is proven under
the assumptions 1-4 and 6.

As in [2-7], our theorem admits the following modification:

Theorem 2 Let a hyperbolic system (M, T, ν) possess the properties 1-4 and
6. Then each point x belonging either in M0 or in just one smooth component
of the set S−∞,∞ has a neighborhood V (x) which is contained (almost surely)
in one ergodic component of T .

Finally, let us briefly describe how Theorem 2 should be used for proving
the ergodicity in applications. If the set of points x indicated in Theorem
2 is of full measure and arcwise connected, then certain standard simple
reasonings show that the transformation T has the only ergodic component,
so it is ergodic and even has a K-property, see [2-5]. Furthermore, the points
of intersections of two or more smooth components of the set S−∞,∞ cannot
prevent the above set of points from being arcwise connected due to the
property 1. On the other hand, the set of insufficient points may be either
empty (as a result of strong hyperbolic properties of T , see for instance [10])
or rather complicated and intricate. In the latter case it may require a lot of
work to overcome its influence, as was the case in [3,4]. Certain experience
on this subject is gained in studying concrete systems in [1-10].

References

[1] Ya.G.Sinai, Ergodic properties of the Lorentz gas, Funkt. analysis and
appl. 13 (1979), 192-202.

[2] Ya.G.Sinai, N.I.Chernov, Ergodic properties of some systems of 2-
dimensional discs and 3-dimensional spheres, Russ. Math. Surv. 42
(1987), 181-207.
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