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Preface

In the last three decades of the twentieth century, chaotic billiards became
one of the most active and popular research areas in statistical mechan-
ics. This started with a seminal paper by Ya. Sinai in 1970 [Si2], where
he developed a mathematical apparatus for the study of hyperbolic and
ergodic properties for a large class of plane billiards. He also obtained an
exact formula for the entropy of billiards. Sinai’s theory led to an outburst
of papers in mathematics and physics journals devoted to various types of
billiards on plane and space of any dimension. The remarkable progress
of Sinai’s theory culminated in a solution, in some form, of a classical hy-
pothesis by L. Boltzmann (stated back in the 1880’s) on the ergodicity of
gases of hard balls. The advances in the study of billiards also penetrated
nonequilibrium statistical mechanics and some other sciences.

The goal of this book is to introduce the reader to the up-to-date theory
of chaotic billiards. It addresses graduate students and young researchers,
both physicists and mathematicians. We assume basic knowledge of calcu-
lus, elements of Riemannian geometry and some familiarity with probabil-
ity. For the reader’s convenience, the book provides necessary background
in measure theory.

This book is a revised, updated and improved version of the monograph
by R. M. published in 1993 [Ma5]. It has the same general structure and
consists of two major parts.

The first one comprises Chapters I, II and III. It contains a brief ex-
position of the most important elements of ergodic theory. Chapter I is
largely a transcription of the first section of the notes by Ricardo Mañe
that he prepared for his course at the ICTP, Trieste in 1988. (He kindly
gave one of us, R. M., his permission to include this Chapter in the original
version of the book. Regrettably, Mañe passed away in 1995.) Chapter
II contains a proof of Ergodic Theorem and is also inspired by the text of

3



Mañe. Chapter III focuses on smooth hyperbolic dynamics and covers the
main results of the Pesin theory.

The second part of the book is formed by Chapter IV and is fully
devoted to billiards. It starts with elementary properties of planar billiards,
then goes on to multidimensional models, including Lorentz gases and hard
ball systems. It covers mean free path formulas and bounds on the number
of reflections. Sinai’s theory of planar dispersing billiards is outlined. Then
other hyperbolic billiards are described in detail. Formulas for the entropy
are derived. Overall, the material of Chapter IV constitutes a basic course
in billiards, after which one should be able to read main research papers in
the area.

R. M. would like to thank Instituto de Matemática Pura e Aplicada
(IMPA, Rio de Janeiro), Department of Mathematics of the University
of Alabama at Birmingham, and Instituto de Matemáticas (IM-UNAM),
sede Cuernavaca, México, where important parts of the book have been
prepared. R. M. was partially supported by CSIC (Universidad de la
República) and CONICYT (Uruguay). N. Ch. was partially supported
by NSF grant DMS-9732728.

N. Chernov
R. Markarian

July 2001
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Chapter I

Measure Preserving Maps

I.1 Introduction

Let U ⊂ IRn be an open set and v : U → IRn a Cr vector field (r ≥ 1).
Consider the differential equation

ẋ = v(x) (I.1.1)

Suppose that for every p ∈ U there exists a (unique) solution x : IR → U
of (I.1.1) with initial condition p, i.e. x(t) satisfies ẋ(t) = v(x(t)) for all
t ∈ IR and x(0) = p.

Theorem I.1.1 If U has finite volume and the divergence of v is zero,
then, for almost every p ∈ U, the solution x(t) of (I.1.1) with initial
condition p, is recurrent, i.e.

lim inf
t→+∞

dist(x(t),p) = 0. (I.1.2)

The words “almost every” mean that the set S of points p ∈ U for
which the property (I.1.2) fails has measure zero. The divergence divv of
v is the scalar function defined by

div v(x) =
∂v1

∂x1
(x) + · · ·+ ∂vn

∂xn
(x)
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The divv ≡ 0 hypothesis holds in the important case of Hamiltonian
vector fields. The latter are vector fields v : U → IRn, where n = 2m, for
which there exists a scalar function H : U → IR (called the Hamiltonian
of v) such that, denoting points in IRn as (q1, · · · , qm, p1, · · · , pm),
satisfies

v =
(

∂H

∂p1
, · · · , ∂H

∂pm
, −∂H

∂q1
, · · · ,− ∂H

∂qm

)

Theorem I.1.1, proved by Poincaré in his ”Les Nouvelles Méthodes de
la Mécanique Céleste” [Po], can nowadays be regarded as a minor corollary
of deeper and more accurate results; but, due to the simplicity of its state-
ment, it still serves as a beautiful introductory example conveying the flavor
of ergodic theory. Its proof relies on the fact that, due to our hypothesis
on the existence of solutions defined on all of R for every initial condition
p, our vector field v defines a flow of diffeomorphisms ϕt : U → U,
t ∈ IR. This flow, due to the zero divergence hypothesis, is volume pre-
serving. This, together with the crucial assumption on the finiteness of the
volume of U (without which the the theorem fails as the vector field in
IRn given by v = (1, 0, . . . , 0) shows) is what makes the proof work.

For every t ∈ IR define a map ϕt : U → U by ϕt(p) = x(t) where
x : IR → U is the solution of (I.1.1) with initial condition x(0) = p.
Basic results of ordinary differential equations show that, for every t, the
map ϕt is a Cr diffeomorphism, and the family of maps ϕt : U → U,
t ∈ IR makes a one-parameter group (a flow), i.e. ϕ0 = identity and
ϕt+s = ϕt ◦ ϕs for all t, s ∈ IR. Moreover, by Liouville’s formula

det(ϕ′t(p)) = exp
[∫ t

0

div v(ϕs(p)) ds

]

for all p and t. Hence, due to the assumption divv = 0, we have,
det(ϕ′t(p)) = 1 for all t and p. Theorem I.1.1 now follows from its
“discrete version”:

Theorem I.1.2 Let U ⊂ IRn be an open set with finite volume and let
f : U → U be a C1 diffeomorphism with | det(f ′(p))| = 1 for all p ∈ U.
Then almost every p ∈ U is recurrent, i.e. lim infn→+∞ dist(p, fn(p)) =
0.

Theorem I.1.1 follows easily from Theorem I.1.2 applied to f = ϕ1,
observing that if x : IR → U is the solution of (I.1.1) with initial condition
p, then x(n) = ϕn

1 (p) for all n ∈ ZZ. In turn, Theorem I.1.2, whose
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proof in a much more general framework will be given in Section I.5, works
because the hypothesis on the determinant implies that f is volume
preserving, i.e.

Vol f(V ) = Vol(V )

for every open set V ⊂ U. The surprising conclusion of the Poincaré
theorem is obtained by studying the iterates (the dynamics) of the map and
exploiting the fact that the map leaves volume invariant. This exemplifies
the objective of ergodic theory: to study the dynamics of a map with the
help of its invariant measure. The volume, in this context, is an invariant
measure. Naturally, ergodic theory relies on measure theory. Therefore we
shall begin by reviewing the basic definitions and facts of measure theory.

I.2 Measures

Let X be a set. A family O of subsets of X is called an algebra if

X ∈ O

A ∈ O ⇒ Ac ∈ O

A,B ∈ O ⇒ A ∪B ∈ O
It easily follows that

A,B ∈ O ⇒ A ∩B = (Ac ∪Bc)c =∈ O

A,B ∈ O ⇒ A \B = A ∩Bc ∈ O
The family O is called a σ−algebra if it is an algebra and satisfies

Ai ∈ O, i = 1, 2, . . . ⇒ ∪iAi ∈ O.

If O0 is a family of subsets of X, the σ−algebra generated by O0

is the smallest σ−algebra containing O0 : this is the σ−algebra O such
that O ⊃ O0 and O ⊂ O1 for every σ−algebra O1 that contains O0.

If O is an algebra of subsets of X, we say that a function µ : O →
[0,∞] is a measure on O if µ(∅) = 0 and for every finite or countable
collection of disjoint sets Ai ∈ O, i = 1, 2, . . . , ∪iAi ∈ O, we have

µ (∪iAi) =
∑

i

µ(Ai)
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A measure is σ−finite if X can be decomposed into a countable union of
sets with finite measure.

Can we always extend a measure on an algebra to a bigger σ−algebra?
The answer is contained in the following Extension Theorem whose proof
can be found in [Ha] or [F].

Theorem I.2.1 (Hahn-Kolmogorov) Let O0 be an algebra of sets of
X and ν a measure defined on O0 . Then, there exist a σ−algebra O,
and a measure µ on O such that O0 ⊂ O and ν(A) = µ(A) for every
A ∈ O0 (µ is an extension of ν on O). If ν is σ−finite, the extension on
the σ−algebra generated by O0 is unique.

If X is a topological space, we define the Borel σ−algebra of X
to be the σ−algebra generated by the closed subsets of X. Since the
complements of open subsets are closed, it coincides with the σ−algebra
generated by the open subsets of X. Sets in the Borel σ−algebra are called
Borel sets.

The most standard example of a Borel σ−algebra with a measure is
the Lebesgue measure in Euclidean space IRn. A cube in IRn is a set Q
of the form Q = J1 × · · · × Jn where J1, . . . , Jn are bounded intervals of
IR. Its volume Vol(Q) is defined by the product

Vol(Q) = |J1| · |J2| · · · |Jn|

Theorem I.2.2 There exists a unique measure λ on the Borel σ−algebra
of IRn such that λ(Q) = Vol(Q) for every cube Q ⊂ Rn.

This measure is called the Lebesgue measure. To prove Theorem I.2.2
we introduce the notion of outer measure. Let X be a metric space and
denote by P(X) the family of all its subsets. A function µ∗ : P(X) →
[0,+∞] is called an outer measure on X if it satisfies the following
properties:

(a) µ∗(∅) = 0

(b) Ai ⊂ X, i = 1, 2, · · · ⇒ µ∗ (∪iAi) ≤
∑

i µ∗(Ai)

(c) If A ⊂ X, B ⊂ X and dist(A, B) > 0 , then µ∗(A ∪ B) =
µ∗(A) + µ∗(B).

Here dist(A,B)
def
= inf{dist(x, y) : x ∈ A, y ∈ B}.
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Theorem I.2.3 If X is a separable metric space and µ∗ is an outer
measure on X, then µ∗ is a measure on the Borel σ−algebra of X.

For a proof of this theorem see [Ha].
Now we consider the Lebesgue outer measure µ∗ on IRn defined by

µ∗(S) = inf
∑

i

Vol(Qi)

where the infimum is taken over all finite or countable coverings of S by
cubes {Qi}. It is easy to check that µ∗ is an outer measure. By The-
orem I.2.3, µ∗ is a measure on the Borel σ−algebra in IRn. Then, to
obtain the existence of a measure λ on the Borel σ−algebra of IRn

such that λ(Q) = Vol(Q) for cubes Q, we only have to show that
µ∗(Q) = Vol(Q) when Q is a cube and then take λ as the restriction of
µ∗ to the Borel σ−algebra. We leave the verification of µ∗(Q) = λ(Q)
for cubes as an exercise (see Ex. I.2.1.). To prove the uniqueness of λ
suppose that λ′ is another measure on the Borel σ−algebra of IRn

such that λ′(Q) = Vol(Q) for every cube Q. Cover Rn by disjoint
cubes Q1, Q2, . . . and let O0 be the family of Borel sets A such that
λ(A ∩ Qi) = λ′(A ∩ Qi) for every i. When Q is a cube, so is Q ∩ Qi.
Hence λ(Q ∩Qi) = Vol(Q ∩Qi) = λ′(Q ∩Qi). Then O0 contains every
cube. Moreover it is easy to check that O0 is a σ−algebra. Since it
contains all the cubes and it is a σ−algebra itself, O0 must contain all
the countable unions of cubes. But every open set is a countable union of
cubes. Hence O0 contains all the open sets. Since the family of open sets
generates the Borel σ−algebra, O0 contains the Borel σ−algebra. Hence
λ(A) = λ′(A) for every Borel set. 2

Definition. A measure space is a triple (X,O, µ), where X is a set,
O a σ−algebra of subsets of X, and µ : O → [0,∞] a measure. If
µ(X) = 1, we say that (X,O, µ) is a probability space and µ a probability
measure, or a probability.

The Lebesgue probability on the Borel σ−algebra of the torus T| n

is defined by a method similar to that used for IRn. The torus T| n

is the cartesian product S1 × · · · × S1, where S1 is the unit circle
S1 = {z ∈ C|| : |z| = 1}. A cube in T| n is a set Q of the form
Q = J1 × · · · × Jn where J1, · · · , Jn are intervals in S1. The volume
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Vol(Q) of a cube Q ⊂ T| n is defined by

Vol(Q) =
n∏

i=1

|Ji|
2π

.

Theorem I.2.4 There exists a unique measure λ on the Borel σ−algebra
of T| n such that λ(Q) = Vol(Q) for every cube Q ⊂ T| n. This measure
is a probability.

The measure λ is called the Lebesgue probability on T| n.
Let (X,O, µ) be a measure space. A set A ⊂ X is called a zero

measure set (or a null set) if there exists Â ∈ O, A ⊂ Â and µ(Â) = 0.
Two sets A1, A2 ⊂ X are said to be equivalent (mod 0) if their symmetric
difference A14A2 = (A1 \ A2) ∪ (A2 \ A1) is a zero measure set. If S
is a family of subsets of X we say that A ∈ S (mod 0) if there exists
A1 ∈ S, which is equivalent (mod 0) to A. We say that S1 = S2 (mod
0) if for every A1 ∈ S1 and A2 ∈ S2 we have A1 ∈ S2 (mod 0) and
A2 ∈ S1 (mod 0). Finally, S (mod 0)-generates O if O = S̄ (mod 0)
where S̄ is the σ−algebra generated by S.

Theorem I.2.5 Let (X,O, µ) be a measure space and O0 ⊂ O an
algebra that (mod 0)-generates O. Then for every A ∈ O and ε > 0
there exists A0 ∈ O0 such that µ(A4A0) ≤ ε. When (X,O, µ) is a
probability space, the converse is also true.

Proof. Let Ô0 be the family of sets A ∈ O such that for every
ε > 0 there exists A0 ∈ O0 satisfying µ(A4A0) ≤ ε. We claim that
Ô0 is a σ−algebra. If A ∈ Ô0 and A ∈ O satisfies µ(A4A0) ≤ ε,
then µ(Ac4Ac

0) ≤ ε because Ac4Ac
0 = A4A0. Hence A ∈ Ô0 implies

Ac ∈ Ô0. Moreover if A1;A2, . . . are in Ô0, then, given ε > 0, we take
sets S1, S2, . . . in O0 satisfying µ(Ai4Si) ≤ ε/4i. Clearly, for N ≥ 1

(∪iAi)4
(∪N

i=1Si

) ⊂ (∪N
i=1(Ai4Si)

) ∪ (
(∪iAi) \

(∪N
i=1Ai

))

Then

µ
[
(∪iAi)4

(∪N
i=1Si

)] ≤
N∑

i=1

µ(Ai4Si) + µ
[
(∪iAi) \

(∪N
i=1Ai

)]

Now,
∩N

(
(∪iAi) \

(∪N
i=1Ai

))
= ∅
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and so
µ

[
(∪iAi) \

(∪N
i=1Ai

)] ≤ ε/2

for a sufficiently large N. Hence

µ
[
(∪iAi)4

(∪N
i=1Si

)] ≤ ε

if N is sufficiently large. This proves that O0 is a σ−algebra. But
Ô0 ⊃ O0. Then Ô0 ⊃ Õ0 where Õ0 is the σ−algebra generated by
O0. Therefore Ô0 ⊃ O (mod 0) and so every set A ∈ O (mod 0)
(in particular, sets in O) has the approximation property. Conversely if
A ∈ O and there exist sets A0 ∈ O0 with µ(A4A0) arbitrarily small,
we can take a sequence An ∈ O0, n = 1, 2, . . . such that

∑
n

µ(An4A) < +∞.

This implies (see Ex. I.2.4.) that

A = ∪∞m=1 ∩n≥m An (mod0)

Hence A is in the σ−algebra (mod 0)-generated by O0.

Theorem I.2.6 If µ is a probability on the Borel σ−algebra of a separa-
ble metric space, then for every Borel set A and every ε > 0 there exists
a closed set A0 ⊂ A and an open set A1 ⊃ A such that µ(A \ A0) ≤ ε
and µ(A1 \A) ≤ ε.

Proof. Let Ô be the family of Borel sets such that for all ε > 0
there exist a closed set A0 ⊂ A and an open set A1 ⊃ A such that
µ(A \ A0) ≤ ε and µ(A1 \ A) ≤ ε. Then Ô is a σ−algebra because
if A ∈ Ô and A0 ⊂ A ⊂ A1 satisfy the above property for a certain
ε > 0, then Ac

1 ⊂ Ac ⊂ Ac
0 satisfy µ(Ac \ Ac

1) = µ(A \ A1) ≤ ε and
µ(Ac

0 \Ac) = µ(A \A0) ≤ ε. Moreover, if A1, A2, . . . belong to Ô, then,
given ε > 0 we can take closed sets Ci ⊂ Ai and open sets Ui ⊃ Ai

such that µ(Ai \ Ci) ≤ ε/4i and µ(Ui \Ai) ≤ ε/2i for i. Then

µ ((∪iUi) \ (∪iAi)) ≤ µ (∪i(Ui \Ai))

≤
∑

i

µ(Ui \Ai) ≤ ε

11



Moreover, for all N > 0,

(∪iAi) \
(∪N

i=1Ci

) ⊂ (∪N
i=1(Ai \ Ci)

) ∪ (∪iAi \ ∪N
i=1Ai

)

Hence

µ
[
(∪iAi) \

(∪N
i=1Ci

)] ≤
N∑

i=1

µ(Ai \ Ci) + µ
[
(∪iAi) \

(∪N
i=1Ai

)]

≤
∑

i

µ(Ai \ Ci) + µ
[
(∪iAi) \

(∪N
i=1Ai

)]

≤ ε

2
+ µ

[
(∪iAi) \

(∪N
i=1Ai

)]

But
∩∞N=1

[
(∪iAi) \

(∪N
i=1Ai

)]
= ∅

This implies
lim

N→+∞
µ

[
(∪iAi) \

(∪N
i=1Ai

)]
= 0

Hence, if N is large enough

µ
[
(∪iAi) \

(∪N
i=1Ai

)] ≤ ε/2

Then the open set ∪iUi and the closed set ∪N
i=1Ci satisfy the required

property showing that ∪iAi ∈ O and proving that Ô is a σ−algebra.
Moreover Ô contains all the open sets. To prove this observe that if
A is an open set, we can write A = ∪iKi where K1,K2, . . . are
closed sets (using the fact that X is a separable metric space). Then,
given ε > 0, we take, as in the previous argument, N so large that
µ [(∪iKi) \ (∪i≤NKi)] < ε. Then

µ
(
A \ ∪N

i=1Ki

)
= µ [(∪iKi) \ (∪i≤NKi)] < ε

Hence the closed set ∪N
i=1Ki ⊂ A satisfies one of the approximation

requirements, and the open set A itself obviously satisfies the other one.
Hence the σ−algebra Ô contains every open set. Then Ô contains every
Borel set, and the theorem is proved. 2

Theorem I.2.7 If X is a complete separable metric space and µ is a
probability on its Borel σ−algebra, then for every Borel set A and every
ε > 0 there exists a compact set K ⊂ A such that µ(A \K) ≤ ε.
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Proof. Given a Borel set A and ε > 0 take a closed set A0 ⊂ A such
that µ(A\A0) ≤ ε/2. Now it suffices to find a compact set K ⊂ A0 with
µ(A0 \K) ≤ ε/2. For each n ∈ ZZ+ take a covering of A0 by closed balls
B

(n)
1 , B

(n)
2 , . . . of radius 1/n. Take Nn such that

µ
[
A0 \ ∪Nn

i=1(B
(n)
i ∩A0)

]
≤ ε

4n

Such Nn exists because

A0 = ∪i(B
(n)
i ∩A0)

Define
K = ∩∞n=1 ∪Nn

i=1 (B(n)
i ∩A0)

Clearly K is closed. Moreover for every δ > 0 there exists a finite cover
of K by balls of radius ≤ δ (namely, the balls B

(n)
1 , . . . , B

(n)
Nn

, with n
so large that 1/n < δ). Since X is complete, these properties imply that
K is compact. Moreover

µ(A0 \K) = µ
[
A0 \ ∩∞n=1 ∪Nn

i=1 (B(n)
i ∩A0)

]

= µ
[
∪∞n=1

(
A0 \ ∪Nn

i=1(B
(n)
i ∩A0

)]

≤
∞∑

n=1

µ
(
A0 \ ∪Nn

i=1(B
(n)
i ∩A0)

)

≤
∞∑

n=1

ε

4n
<

ε

2
.

The theorem is proved. 2

Exercises:

I.2.1.

(a) If Q,Q1, . . . , Qm are cubes and Q ⊂ ∪m
i=1Qi prove that Vol(Q) ≤∑m

i=1 Vol(Qi).

(b) If Q and Qi, i = 1, 2, . . . are cubes and Q ⊂ ∪iQi, prove that
Vol(Q) ≤ ∑

i Vol(Qi). Hint: Take a compact cube Q0 ⊂ Q with
Vol(Q0) ≥ Vol(Q) − ε and open cubes Q̂i ⊃ Qi with Vol(Q̂i) ≤
Vol(Qi)+ε/2i. Observe that Q0 is covered by some finite collection
Q̂i1 , . . . , Q̂im and apply (a).
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I.2.2. Let (X,O, µ) be a probability space and Ai ∈ O, i = 1, 2, . . .
Prove that

µ (∩n ∪i≥n Ai) = lim
n→+∞

µ (∪i≥nAi) ≥ lim sup
n→+∞

µ(An)

I.2.3. Let (X,O, µ) be a probability space. Suppose that A ∈ O and
that a sequence Ai ∈ O, i = 1, 2, . . . satisfies

∑
i µ(A4Ai) < +∞.

Prove that for almost every x ∈ A there exists n such that x ∈ Ai

for all i ≥ n. Hint: The set of points x in A such that x 6∈ An

for infinitely many values of n coincides with ∩∞n=1 ∪i≥n (A \ Ai) and
µ (∩∞n=1 ∪i≥n (A \Ai)) ≤

∑
i≥n µ(A \Ai) for all n.

I.2.4. Let (X,O, µ) be a probability space. We say that a sequence of
sets Ai ∈ O, i ≥ 1, converges pointwise to a set A ∈ O if for almost
every x ∈ A there exists n = n(x) ∈ ZZ+ such that x ∈ Ai for all i ≥ n
and for almost every x 6∈ A there exists n = n(x) such that x 6∈ Ai for
all i ≥ n(x).

(a) Prove that Ai → A pointwise if and only if

A = ∪∞n=1 ∩i≥n Ai (mod 0)

and
Ac = ∪∞n=1 ∩i≥n Ac

i (mod 0)

(b) Prove that Ai → A pointwise if and only if

A = ∪∞n=1 ∩i≥n Ai (mod 0)

and
A = ∩∞n=1 ∪i≥n Ai (mod 0)

(c) Prove that Ai → A pointwise implies

lim
i→+∞

µ(Ai4A) = 0

and
lim

i→+∞
µ(Ai) = µ(A).

Hint: Observe that, by Exercise I.2.2,

lim sup
i→+∞

µ(A \Ai) ≤ µ (∪∞n=1 ∩i≥n (A \Ai))
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and
lim sup
i→+∞

µ(Ai \A) ≤ µ (∩∞n=1 ∪i≥n (Ai \A))

and that Ai → A pointwise implies that the sets on the right hand
side have measure zero.

(d) Prove that if
∑

n µ(An4A) < +∞ then An → A pointwise. Hint:
Use Exercise I.2.1.

(e) Show that limn→+∞ µ(An4A) = 0 does not imply An → A
pointwise. Hint: Let p1/q1, p2/q2, · · · be all the rational numbers
in [0, 1] including reducible fractions, arbitrarily ordered, and An =
[0, 1] \ [(pn − 1)/qn, (pn + 1)/qn]. Prove that An → [0, 1] is false. In
fact, every point x ∈ [0, 1] misses infinitely many of Ai’s.

I.2.5. Prove that if X is a complete metric separable space and µ is a
probability on its Borel σ−algebra then every Borel set of X is the union
of a Borel set N with µ(N) = 0 and a countable collection of disjoint
compact sets.

I.2.6. Let X be a metric space. Given t ≥ 0, the Hausdorff outer
measure ht on X is defined by

ht(S) = lim
ρ→0

inf
∑

i

(diamBi)t

where the infimum is taken over all the coverings of X by balls Bi, i ≥ 0,
with diamBi ≤ ρ for all i.

(a) Prove that if X = IRn there exists C > 0 such that if µ∗ is the
Lebesgue outer measure then

C−1µ∗(S) ≤ hn(S) ≤ C µ∗(S)

for every set S ⊂ X.

(b) Prove that if µ is a probability on a metric space X such that
there exist δ > 0 and C > 0 satisfying

µ(B) ≤ C (diamB)δ

for every ball B ⊂ X, then

µ(S) ≤ C hδ(S)

for every Borel set S ⊂ X.
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(c) Prove that if X is a Borel subset of IRn and there exists a proba-
bility µ on X for which there exist δ > 0 and R > 0 satisfying

µ(B) ≥ C−1(diamB)δ

for every ball B in X with diam (B) ≤ R, then there exists
K > 0 such that

µ(S) ≥ K hδ(S)

for every Borel set S ⊂ X. Hint: Take an open set U ⊃ S with
µ(U ∩ X) ≤ µ(S) + ε. Decompose U into a disjoint union of cubes
Q1, Q2, . . . such that all the sides of each Qi have same length di.
Then

µ(S) + ε ≥
∑

i

µ(Qi ∩X) ≥
∑

i

C−1dδ
i

=
∑

i

C−1(n−1/2diam Qi)δ

(d) If X is a metric space, prove that

ht(X) < +∞ ⇒ ht2(X) = 0 ∀t2 > t

ht(X) > 0 ⇒ ht1(X) = +∞ ∀t1 < t

The number d such that ht(X) = 0 for t > d and ht(X) = +∞
for t < d is called the Hausdorff dimension of X and denoted by
HD(X).

(e) Let X and Y be metric spaces. Prove that if there exists a
Lipschitz continuous homeomorphism between X and Y (i.e.
a map h : X → Y such that there exists C > 0 satisfying
C−1dist(x, y) ≤ dist(h(x), h(y)) ≤ C dist(x, y) for all x, y ∈ X),
then HD(X) = HD(Y ).

I.2.7. If A ⊂ IRn is an open set with λ∗(∂A) = 0, then the characteristic
function fA of A (defined by fA(x) = 1 if x ∈ A and by fA(x) = 0 if
x 6∈ A) is integrable in the sense of Riemann and

λ(A) =
∫

fA(x) dx
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I.3 Measurable Maps

Let X,Y be two sets, and let O and S be σ−algebras of subsets of
X and Y, respectively. A map f : X → Y is said to be measurable
with respect to O and S if f−1(B) ∈ O for every B ∈ S. If X and
Y are topological spaces, we say that f : X → Y is measurable if it is
measurable with respect to the Borel σ−algebras of X and Y.

Proposition I.3.1 If X and Y are topological spaces and f : X → Y
is a map such that f−1(A) is a Borel subset of X for every open subset
of Y, then f is measurable.

Proof. Let S be the family of subsets A ⊂ Y such that f−1(A)
is a Borel subset of X. It is easy to check that S is a σ−algebra. By
the hypothesis it contains all the open sets of Y. Then it contains the
σ−algebra generated by the open sets that is exactly the Borel σ−algebra
of Y . Hence every Borel subset A of Y belongs in S, and then f−1(A)
is a Borel subset of X. 2.

Corollary I.3.2 If X and Y are topological spaces, every continuous
map f : X → Y is measurable.

If X is a set and Y a topological space we say that a sequence of
maps fn : X → Y, n ≥ 1, converges (pointwise) to a map f : X → Y if

lim
n→∞

fn(x) = f(x)

for every x ∈ X.

Corollary I.3.3 If X is a set with a σ−algebra O, Y a metric space
with Borel σ-algebra, and fn : X → Y, n ≥ 1, a sequence of measurable
maps that converges pointwise to a map f : X → Y, then f is measurable

Proof. By Corollary I.3.2 we only have to show that f−1(A) is a Borel
set whenever A ⊂ Y is an open set. If A is an open set, then A = ∪∞i=1Bi,
where Bi are open sets such that dist(Bi, Y \ A) > 0 for every i ≥ 1 (for
instance, take Bi = {y ∈ Y : dist(y, Y \A) > 1/i}). Then

f−1(A) = ∪∞i=1 ∪∞m=1 ∩n≥mf−1
n (Bi)

17



Since f−1
n (Bi) ∈ O for all n and i (because every map fn is measurable)

then the set on the right hand side belongs in O, thus proving that
f−1(A) is measurable. 2

If (X,O, µ) is a measure space and Y is a topological space, we say
that a sequence of maps fn : X → Y converges almost everywhere to a
map f : X → Y if the set of points x ∈ X for which the convergence
limn→∞ fn(x) = f(x) fails is a zero measure set.

Theorem I.3.4 (Egorov’s theorem) Let (X,O, µ) be a probability space
and Y a metric space. Let fn : X → Y be a sequence of measurable
maps that converges almost everywhere to a map f : X → Y. Then for
every ε > 0 there exists a set A ∈ O with µ(A) ≥ 1− ε such that fn|A
converges uniformly to f |A.

Proof. Let X0 ∈ O be a set such that µ(X0) = 1 and limn→∞ fn(x) =
f(x) for all x ∈ X0. Then (X0,O0, µ) is a probability space, where
O0 consists of all measurable subsets of X0. The maps fn : X0 → Y
are measurable and converge (pointwise) to f : X0 → Y. Hence f :
X0 → Y is a measurable map. Then the functions X0 → IR defined by
x 7→ dist(f(x), fn(x)) are measurable, and (cf. Exercise I.3.1) so are the
functions X0 → IR defined by

x 7→ sup
n≥N

dist(f(x), fn(x))

Then the sets

SN (δ) = {x ∈ X0| sup
n≥N

dist(f(x), fn(x)) ≥ δ}

are measurable. Moreover

S1(δ) ⊃ S2(δ) ⊃ · · · ⊃ SN (δ) ⊃ SN+1(δ) ⊃ · · ·
and, since the maps fn : X0 → Y converge to f : X0 → Y, we have

∩NSN (δ) = ∅
for every δ > 0. Indeed, if this intersection contains a point x, then
dist(fni(x), f(x)) would be ≥ δ for infinitely many values of ni, contra-
dicting limn→∞ fn(x) = f(x). Hence

lim
N→∞

µ(SN (δ)) = 0
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for all δ > 0. Given ε > 0 choose, for each n ∈ ZZ+, an integer Nn

such that
µ(SNn(1/n)) ≤ ε/2n

Define
S = ∪∞n=1SNn

(1/n)

Then

µ(S) ≤
∞∑

n=1

µ(SNn(1/n)) ≤ ε

Let us prove that fn|X0\S converges uniformly to f |X0\S . Given ε0 > 0
take n such that 1/n ≤ ε0. Observe that x ∈ X0 \ S implies x ∈
X0 \ SNn

(1/n). This means that

sup
i≥Nn

dist(fi(x), f(x)) ≤ 1
n
≤ ε0

Hence
dist(fi(x), f(x)) ≤ ε0

for all x ∈ X0 \ S and i ≥ Nn. This proves the uniform convergence of
fn|X0\S to f |X0\S . 2

Theorem I.3.5 (Lusin’s theorem) Let (X,O, µ) be a probability space
where X is a complete metric separable space, Y a separable metric
space and f : X → Y a measurable map. Then, for every ε > 0 there
exists a compact set K ⊂ X such that µ(K) > 1− ε and the map f |K
is continuous.

Proof. The function f is the limit of a sequence of simple functions
fn : X → Y, i.e. measurable maps whose images are finite sets (see Exercise
I.3.2). For these maps the theorem holds as a corollary of Theorem I.2.7.
Given ε > 0 take a set X0 ∈ O such that µ(X0) > 1 − ε/2 and
fn|X0 → f |X0 uniformly. For each n take a compact set Kn ⊂ X0 such
that µ(Kn) ≤ µ(X0) − ε/4n and fn|Kn is continuous. Define K by
K = ∩nKn. Then K is compact and

µ(K) = µ(X0)− µ(X0 \K)
= µ(X0)− µ(∪n(X0 \Kn))

≥ µ(X0)−
∑

n

ε/4n
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≥ µ(X0)− ε/2
≥ 1− ε.

Moreover, since K ⊂ Kn for all n, the maps fn|K : K → Y are
continuous for all n. Then f |K : K → Y, being the uniform limit of this
sequence as n →∞, is also continuous. 2

Exercises:

I.3.1. Let X be a topological space. Let fα : X → IR α ∈ IN, be
a countable family of maps. Define the function supα fα : X → IR by
(supα fα)(x) = supα fα(x). Prove that

(sup
α

fα)−1((a, b]) = ∩αf−1
α ((−∞, b]) ∩ (∪αf−1

α ((a,+∞)))

and that supα fα is measurable.

I.3.2. Let (X,O, µ) be a probability space and Y a separable metric
space. A map f : X → Y is simple if it is measurable and f(X) is a
finite set. Prove that every measurable map is the limit of a sequence of
simple maps. Hint: Show that for each n ≥ 1 there exists a covering of
Y by disjoint Borel sets P

(n)
1 , P

(n)
2 , . . . with diam P

(n)
i ≤ 1/n for all i.

For each n take Nn such that:

µ(f−1(∪i>NnP
(n)
i )) ≤ 1/4n.

Take a point a ∈ Y and arbitrary points p
(n)
i ∈ P

(n)
i . Define fn : X → Y

by fn(x) = p
(n)
i if x ∈ f−1(P (n)

i ), 1 ≤ i ≤ Nn, and fn(x) = a if

x ∈ f−1(∪i>NnP
(n)
i )

I.3.3. Let (X,O, µ) be a probability space, O0 ⊂ O a subalgebra that
generates O and µ′ : O → [0, 1] a probability. If µ|O0 = µ′|O0 , then
µ = µ′. Hint: Prove that the family O′ of sets A ∈ O such that
µ(A) = µ′(A) is a σ−algebra that contains O0.
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I.4 Measure Preserving Maps

If (X,O, µ) and (Y,S, ν) are measure spaces, we say that a map T :
X → Y is measure preserving if

B ∈ S ⇒ T−1(B) ∈ O and µ(T−1(B)) = ν(B).

The following is a simple but useful method of checking that a map is
measure preserving.

Proposition I.4.1 Let (X,O, µ) and (Y,S, ν) be probability spaces
and S0 ⊂ S an algebra that generates S . If T−1(B) ∈ O and
µ(T−1(B)) = ν(B) for all B ∈ S0, then T is measure preserving.

Proof. Let Ŝ be the family of sets B ∈ S such that T−1(B) ∈ O
and µ(T−1(B)) = ν(B). It is easy to see that Ŝ is a σ−algebra, and it
obviously contains S0. Then Ŝ ⊃ S. Hence B ∈ S implies T−1(B) ∈ O
and µ(T−1(B)) = ν(B). 2

Examples:

1. Translations of T| n. For any k = (k1, . . . , kn) ∈ T| n define the
translation Lk : T| n → T| n by

Lk(x1, . . . , xn) = (k1x1, . . . , knxn)

Proposition I.4.2 The Lebesgue probability on T| n is invariant under all
translations. Moreover, it is the unique probability on the Borel σ−algebra
of T| n with this property.

Proof. Let Lk be a translation. If Q ⊂ T| n is a cube, it is clear that

λ(L−1
k (Q)) = VolL−1

k (Q) = VolQ = λ(Q).

Then, applying Proposition I.4.1 to the algebra of disjoint unions of cubes
gives that λ is Lk−invariant. Conversely, suppose that λ′ is another
probability on the Borel σ−algebra of T| n invariant under all translations.
Let {Q1, . . . , Qm} be a finite collection of disjoint cubes covering T| n,
which are all translations of the same cube. Then λ′(Q1) = · · · = λ′(Qm)
and λ(Q1) = · · · = λ(Qm). Therefore, if λ′(Qi) 6= λ(Qi) for some i, say
λ′(Qi) > λ(Qi), it would immediately imply that λ′(Qj) > λ(Qj) for all
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1 ≤ j ≤ m. This would imply 1 = λ′(T| n) =
∑

j λ′(Qj) >
∑

j λ(Qj) =
λ(T| n) = 1, a contradiction. Hence, λ(Qi) = λ′(Qi) for all i. This shows
that λ and λ′ coincide on cubes belonging to this type of partition. But
it is easy to see that every cube Q ⊂ T| n is a (disjoint) union of cubes
belonging to such partition. Then λ and λ′ agree on the family of all
cubes, and so they agree on the algebra of disjoint unions of cubes. Hence
λ = λ′ on the Borel σ−algebra of T| n. 2

2. Linear maps of T| n. Define a map π : IRn → T| n = S1 × · · · × S1

by
π(t1, . . . , tn) = (e2πit1 , . . . , e2πitn).

Clearly
π(x) = π(y) ⇐⇒ x− y ∈ ZZn

and π(ZZn) = {(1, . . . , 1)}. Given a linear isomorphism T̂ : IRn →
IRn such that T̂ (ZZn) ⊂ ZZn, or, equivalently, whose matrix in the
canonical basis has integral components, there exists T : T| n → T| n

such that π ◦ T̂ = T ◦ π. The map T is defined by taking, for each
p ∈ T| n, a point x ∈ π−1(p) and setting

T (p) = π[T̂ (x)]

This definition is consistent because if y ∈ π−1(p) is another point,
then x− y ∈ ZZn hence T̂ (x− y) ∈ ZZn, and so

π[T̂ (y)] = π[T̂ (x)]

Maps constructed as T above are called linear maps of T| n, and
T̂ is called the linear lifting of T to the covering space IRn.

Proposition I.4.3 The Lebesgue probability on T| n is invariant under
every linear map of T| n.

Proof. Let T : T| n → T| n be a linear map. Define a probability
ν on the Borel σ−algebra of T| n by setting ν(A) = λ(T−1(A)). If
Lk : T| n → T| n is a translation and Tx = k, we have for every Borel set
A:

ν(L−1
k (A)) = λ(T−1L−1

k (A)) = λ(L−1
x T−1(A)) = λ(T−1(A)) = ν(A)

Hence ν is invariant under all translations. Then λ = ν. This proves
that λ is invariant under T.
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3. Bernoulli Shifts. Let X be a compact metric space. Let B(X)
denote the space of double-sided sequences θ : ZZ → X endowed
with metric

d(α, β) =
∞∑

n=−∞

1
k|n|

d0(α(n), β(n))

where k > 1 is a constant and d0 the metric on X. Observe that,
in this metric, a sequence of sequences {θn} ∈ B(X) converges to a
sequence θ ∈ B(X) if and only if it converges componentwise, i.e.

lim
n→∞

θn(j) = θ(j)

for all j ∈ ZZ. Hence the convergence is independent of the constant
k > 1 used to define the metric d. The shift σ : B(X) → B(X) is
defined by

(σθ)(n) = θ(n + 1)

Clearly σ is a homeomorphism. When X is a finite set, X =
{1, . . . , m}, then we denote B({1, . . . , m}) simply by B(m).

Given Borel sets A0, . . . , Am in X and j ∈ ZZ we define a cylinder
C(j, A0, . . . , Am) by

C(j, A0, . . . , Am) = {θ ∈ B(X)| θ(j + i) ∈ Ai, 0 ≤ i ≤ m}

Finite disjoint unions of cylinders make an algebra that generates the Borel
σ−algebra of B(X). Moreover, given a probability µ0 on the Borel
σ−algebra of X, there exists a unique probability µ on the Borel
σ−algebra of B(X) (called the product measure associated with µ0)
such that for every cylinder:

µ(C(j, A0, . . . , Am)) =
m∏

i=0

µ0(Ai) (I.4.1)

The existence and uniqueness of µ can be deduced from Theorem I.2.3
following a construction similar to that of Lebesgue measure on IRn or
T| n. Moreover, µ is invariant under σ. This follows from the fact
µ(σ−1(C)) = µ(C) for every cylinder C, as it can be checked by using
the above formula, and from the fact that finite disjoint unions of cylinders
make an algebra that generates the Borel σ−algebra of B(X). Denote
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by Bµ(X) the space B(X) endowed with the probability µ. The shift
σ : Bµ(X) → Bµ(X) is called a Bernoulli shift.

When X is a finite set, X = {1, . . . , m}, the probability µ0 is
determined by the numbers pi = µ0({i}) and in this case Bµ ({1, . . . , m})
is simply denoted by B(p1, . . . , pm).

In a similar way we define B+(X), the space of one-sided sequences
θ : ZZ+ → X endowed with the metric

d(α, β) =
∞∑

n=0

1
kn

d0(α(n), β(n))

where k > 1. The one sided shift σ : B+(X) → B+(X) is defined also by
the formula (σθ)(n) = θ(n + 1), but now n ≥ 0. The map σ on B+(X) is
only a continuous surjective map, and not a homeomorphism. If µ0 is a
probability on the Borel σ−algebra of X, a product measure µ on the
Borel σ−algebra of B+(X) is defined by the same formula for cylinders
C(j, A0, · · · , Am) with j ≥ 0. Again µ turns out to be σ−invariant .
Then B+

µ (X) and B+(p1, . . . , pm) are defined as in the previous case.

4. Volume Preserving Diffeomorphisms. Let U and V be open sets of
IRn. We say that a diffeomorphism f : U → V is volume preserving
if |det f ′(x)| = 1 for all x ∈ U. Then

λ(f−1(A)) = λ(A)

for every Borel subset A ⊂ V. To prove this property first observe
that if µ∗(·) denotes the outer Lebesgue measure, then

λ(A) =
∫

χA(x) dx

for every open set A ⊂ IRn with µ∗(∂A) = 0. Here the integral is the
Riemann integral and χA is the characteristic function (indicator)
of A (i.e. χA(x) = 0 if x 6∈ A and χA(x) = 1 if x ∈ A, see also
Ex. I.2.7). But µ∗(∂A) = 0 implies µ∗(∂f−1(A)) = 0. Hence

λ(f−1(A)) =
∫

χf−1(A)(x) dx.

Note that χf−1(A) = χA ◦ f. Therefore

λ(f−1(A)) =
∫

χf−1(A)(x) dx =
∫

(χA ◦ f) dx
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=
∫

(χA ◦ f)| det f ′| dx

=
∫

χA(x) dx = λ(A)

where the fourth identity is obtained by change of variables. This
shows that the desired formula holds when A is an open set with
µ∗(∂A) = 0, in particular, when A is a cube. Then we take a cov-
ering of V by disjoint cubes Q1, Q2, · · · and define the σ−algebra
Ô of all the Borel sets A ⊂ V such that

λ(f−1(A ∩Qi)) = λ(A ∩Qi)

for all i. This is a σ−algebra that contains the subalgebra of disjoint
unions of cubes. Hence Ô is the Borel σ−algebra and the formula
is proved.

Exercises

I.4.1. An interval exchange transformation of S1 is a map T : S1 → S1

such that there exists a finite family of disjoint open intervals J1, . . . , Jn,
whose closures cover S1 and such that T |Ji : Ji → T (Ji) is an isome-
try, and the intervals T (Ji) are disjoint, too. Prove that T preserves the
Lebesgue probability.

I.4.2. Let Ji = (ai, bi), i ≥ 1 be a countable family of disjoint open
intervals contained in (0, 1) such that

∞∑

i=1

(bi − ai) = 1

Let T : [0, 1] → [0, 1] be a map satisfying:

T (x) = σi
x− ai

bi − ai
+

1− σi

2

whenever x ∈ Ji. Here σi can be +1 or −1. Prove that T preserves the
Lebesgue probability.
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I.4.3. Prove that the set of periodic points of the shift σ : B(X) → B(X)
is dense in B(X).

I.4.4. Consider B(m) endowed with metric

d(α, β) =
∑

n

1
k|n|

|α(n)− β(n)|

where k > 1. Denote by Br(θ) the closed ball of radius r centered at
θ and put

SN (θ) = {α ∈ B(m)| α(n) = θ(n) for |n| ≤ N}

(a) Prove that SN (θ) ⊂ Br(θ) if

1
kN

· 2m

k − 1
≤ r

(b) Prove that SN (θ) ⊃ Br(θ) if

N ≤ log(1/r)
log k

(c) Prove, by using (a) and (b), that if µ is the product measure as-
sociated with a uniform probability µ0 on {1, . . . , m} given by
µ0({i}) = 1/m, then there exists C > 0 such that

C−1rδ ≤ µ(Br(θ)) ≤ Crδ

where

δ =
2 log m

log k
.

Deduce that 2 log m/ log k equals the Hausdorff dimension of B(m).

I.5 Poincaré Recurrence Theorem

We shall now prove the Poincaré recurrence theorem. We deal first with a
probabilistic version, which makes no reference to topology.
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Theorem I.5.1 Let T be a measure-preserving map of a probability space
(X,O, µ). Given A ∈ O, let A0 be the set of points x ∈ A such that
Tn(x) ∈ A for infinitely many n ≥ 0. Then A0 belongs to O, and
µ(A0) = µ(A).

Proof. Let Cn := {x ∈ A| T j(x) 6∈ A for all j ≥ n}. It is clear that

A0 = A \ ∪∞n=1Cn

Thus, the theorem will be proved if we show that Cn ∈ O and µ(Cn) = 0
for every n ≥ 1. Observe that

Cn = A \ ∪j≥nT−i(A).

which shows that Cn ∈ O, and implies that

Cn ⊂ ∪j≥0T
−j(A) \ ∪j≥nT−j(A)

But since
∪j≥nT−j(A) = T−n(∪j≥0T

−j(A))

we obtain that
µ(∪j≥nT−j(A)) = µ(∪j≥0T

−j(A))

This implies µ(Cn) = 0. 2

In order to state the topological version of the recurrence theorem, we
need the notion of the ω−limit set of a point under a map. Let X be a
topological space and T : X → X a map. We define the ω−limit set of a
point x ∈ X as the set of points y ∈ X such that for every neighborhood
U of y the relation Tn(x) ∈ U holds for infinitely many positive values
of n. If X is a metric space, this is equivalent to saying that

lim inf
n→∞

dist (Tn(x), y) = 0

Theorem I.5.2 Let X be a separable metric space and T : X → X a
Borel-measurable map. Let µ be a T -invariant probability measure on the
Borel σ−algebra of X. Then µ({x : x 6∈ ω(x)}) = 0. In other words,
almost every point is recurrent.

Proof. Let {Un}∞n=0 be a basis of open sets such that

lim
n→∞

diam Un = 0
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and
∪n≥mUn = X

for every m ≥ 0. Let Ũn := {x ∈ Un| T j(x) ∈ Un for infinitely many
positive values of j}. From the preceding theorem

µ(Un \ Ũn) = 0.

Put
X̃ := ∩∞m=0 ∪n≥m Ũn

It follows that

µ(X \ X̃) = µ(∪∞m=0(X \ ∪n≥mŨn))

= µ(∪∞m=0(∪n≥mUn \ ∪n≥mŨn))

≤ µ(∪∞m=0 ∪n≥m (Un \ Ũn))
= 0

Thus we only have to show that x ∈ X̃ implies x ∈ ω(x). Let r > 0.
Choose m such that diam Un ≤ r/3 if n ≥ m. Since x ∈ X̃, it
follows that x ∈ ∪n≥mŨn. Thus there exists n ≥ m such that x ∈ Ũn.
Since diam Un ≤ r/3, it follows that Un ⊂ Br(x), which implies that
T j(x) ∈ Br(x) if T j(x) ∈ Un. But since x ∈ Ũn, T j(x) ∈ Un for
infinitely many values of j, showing that x ∈ ω(x). 2

Exercises:

I.5.1. Let T be a measure preserving map of a probability space (X,O, µ).
Given A ∈ O, define Ã as the set of points x ∈ A such that Tn(x) ∈ A
for infinitely many n > 0. Define N : Ã → ZZ by setting N(x) = m if
m > 0, Tm(x) ∈ A and Tn(x) 6∈ A for 0 < n < m. The function N(x) is
called the first return time.

(a) Prove that Ã ∈ O, µ(A \ Ã) = 0, and N : Ã → ZZ is a measurable
function;

(b) Define T̃ : Ã → X by

T̃ (x) = TN(x)(x)
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Prove that T̃ (Ã) ⊂ Ã and that if T is invertible (i.e. if there exists a mea-
sure preserving map S of (X,O, µ) such that TS(x) = ST (x) = x =
for a.e. x), then T̃ : Ã → Ã leaves invariant the measure µ|Ã. Hint: Put
Ãn = N−1({n}). Prove that µ(T̃ (C)) = µ(C) for all C ∈ O such that
C ⊂ Ãn.

I.5.2. Consider the map T : [0, 1] → [0, 1] defined by T (x) = x/2 for
0 < x ≤ 1 and T (0) = 1. Prove that T is measurable and that there is
no T -invariant probability on the Borel σ−algebra of [0, 1].

I.6 Integration

Let (X,O, µ) be a measure space. Given a set A ∈ O, its characteristic
function χA is defined by χA(x) = 0 if x 6∈ A and χA(x) = 1 if
x ∈ A. A function f : X → C|| is said to be simple if it can be written as
f =

∑n
i=1 λiχAi , where A1, . . . , An are in O and µ(Ai) < +∞ when

λi 6= 0. The integral of f is defined by
∫

X

f dµ =
∑

λi 6=0

λi µ(Ai)

if the series converges absolutely.
We say that f : X → C is integrable if there exists a sequence of

simple functions fn : X → C|| such that

lim
n→∞

fn(x) = f(x) for a.e. x

and
lim

n,m→∞

∫

X

|fn − fm| dµ = 0 (I.6.1)

The integral of f is defined by
∫

X

f dµ = lim
n→∞

∫

X

fn dµ (I.6.2)

The existence of the limit on the right hand side follows from (I.6.1), be-
cause it implies

lim sup
n,m→∞

∣∣∣∣
∫

X

fn dµ−
∫

X

fm dµ

∣∣∣∣ ≤ lim
n,m→∞

∫

X

|fn − fm| dµ = 0
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thus showing that the sequence in (I.6.2) is a Cauchy sequence of complex
numbers. It is more difficult, but necessary, to show that the limit in (I.6.2)
is independent of the sequence {fn}. This is clearly guaranteed by the
following property: If gn : X → C|| , n ≥ 1, is a sequence of simple
functions such that limn→∞ gn(x) = 0 a. e. and

lim
n,m→∞

∫

X

|gn − gm| dµ = 0

then

lim
n→∞

∫

X

gn dµ = 0

The purpose of this section is to survey the basic properties of integration.
The proofs of the results can be found in, for instance, [Rd, Ha] or [F].

Integrable functions do not have to be measurable (i.e. f−1(A) ∈ O
whenever A ⊂ C|| is a Borel set), but it follows from the definition that
any integrable function f coincides with a measurable function on a set
X0 ⊂ X with µ(Xc

0) = 0. Hence, f−1(A) ∈ O (mod 0), if A ⊂ C|| is a
Borel set. It is also clear that given two functions fi : X → C|| , i = 1, 2,
which coincide almost everywhere, f1 is integrable if and only if so is f2,
and in this case their integrals are equal. Given f : X → C|| , we say that
f is integrable on A ⊂ X if f · χA is integrable, and we put

∫

A

f dµ =
∫

X

f · χA dµ.

It is easy to see that if f is integrable, then it is integrable on every
A ∈ O. Moreover, observe that f is integrable if and only if |f | is.

When dealing with applications, an often important problem is to decide
if a function f : X → C|| , which is the limit a.e. of a sequence of integrable
functions fn : X → C|| , is integrable and if its integral is the limit of the
integrals of fn as n → ∞. Obviously, affirmative answer will require
additional hypotheses. The following three results are fundamental tools
to handle this problem.

Theorem I.6.1 (Fatou’s Lemma) Let fn : X → IR be a sequence of
positive integrable functions such that

lim inf
n→∞

∫

X

fn dµ < +∞
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and converging a.e. to f : X → IR. Then f is integrable and

lim inf
n→∞

∫

X

fn dµ ≥
∫

X

f dµ

Theorem I.6.2 (Monotone Convergence Theorem) Let fn : X →
IR be a sequence of integrable functions such that for a.e. x the sequence
{fn(x)} is monotonically increasing and

sup
n

∫

X

fndµ < +∞

Then the function f(x) = limn→∞ fn(x) is integrable and

lim
n→∞

∫

X

fn dµ =
∫

X

f dµ

Theorem I.6.3 (Dominated Convergence Theorem) Let fn : X →
C|| be a sequence of integrable functions dominated by an integrable function
f : X → IR, i.e. |fn(x)| ≤ f(x) for all n and a.e. x. Then, if
the sequence fn(x), converges for a.e. x, the limit function f(x) =
limn→∞ fn(x) satisfies

∫
f dµ = lim

n→∞

∫
fn dµ

Given p ≥ 1, denote by Lp(X,O, µ) the space of functions f : X →
C|| such that |f |p is integrable.

Theorem I.6.4 Lp(X,O, µ) is a vector space of functions (i.e. f, g ∈
Lp(X,O, µ) ⇒ λf + γg ∈ Lp(X,O, µ) for all λ, γ ∈ C|| ) and it becomes a
Banach space when endowed with the norm

‖f‖p =
(∫

|f |p dµ

)1/p

In fact, ‖ · ‖p is not exactly a norm because ‖f‖p = 0 only implies
f(x) = 0 for a. e. x. This “normal” problem is solved by considering,
when necessary, Lp(X,O, µ) as the quotient space of the space of functions
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f such that |f |p is integrable over the space of functions that are zero
a.e.

A function f : X → C|| is said to be L∞ if it is measurable and
there exists K ≥ 0 such that |f(x)| ≤ K for a.e. x. Let ‖f‖∞
denote the infimum of the constants K satisfying this property. Denote
by L∞(X,O, µ) the set of L∞ functions. Clearly, it is a vector space of
functions, and on its quotient space over the subspace of functions that are
zero a.e., ‖ · ‖∞ is a Banach norm.

Let X be a set and O a σ−algebra of subsets of X. If µ : O →
[0,+∞] and ν : O → [0,+∞] are measures, we say that µ is absolutely
continuous with respect to ν, and we write µ ¿ ν, if ν(A) = 0 implies
µ(A) = 0.

Theorem I.6.5 (Radon-Nikodym) Let (X,O, µ) be a measure space
and ν : O → [0,+∞) a measure satisfying µ ¿ ν. If (X,O, µ) is
σ−finite (i.e. if there exists a countable covering of X by sets in O of
finite µ-measure), then there exists a ν-integrable function f : X → IR+

such that for every A ∈ O

µ(A) =
∫

A

f dν.

Moreover, a function g : X → C|| is in L1(X,O, µ) if and only if
gf ∈ L1(X,O, ν), and then

∫

X

g dµ =
∫

X

fg dν.

It is clear that the function f is essentially unique: if f1 : X → IR is
another function satisfying the requirements of the theorem, then f1 = f
almost everywhere. The function f is called the Radon-Nikodym derivative
of µ with respect to ν and denoted by dµ/dν. When µ ¿ ν and
ν ¿ µ, we say that µ is equivalent to ν. In this case dµ/dν = (dν/dµ)−1.
a.e.

I.7 Existence of Invariant Measures

Let X be a compact metric space and O its Borel σ−algebra. In this
section we shall first prove that the set m(X) of probabilities µ : O →
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[0, 1] admits a unique topology that is metrizable and such that µn → µ
if and only if ∫

ϕdµn →
∫

ϕdµ

for every continuous ϕ : X → IR. Then we shall prove that with this
topology m(X) becomes a compact space and using this property we shall
show that every continuous map T : X → X has at least one T -invariant
probability, i.e. a probability µ ∈ m(X) such that µ(T−1(A)) = µ(A)
for all A ∈ O. In fact the most frequent situation is when T has infinitely
many invariant probabilities. When T has only finitely many invariant
probabilities it is clear that is has only one (because if it has two, µ1

and µ2, then all the linear combinations λµ1 + (1 − λ)µ2, 0 ≤ λ ≤ 1,
would be invariant probabilities), and then T has extremely strong ergodic
properties, as we shall see below.

Given a continuous map T , denote by mT (X) the set of T -invariant
probabilities.

Proposition I.7.1 mT (X) is non-empty.

It will be necessary to introduce a topology in m(X), defined by the
following neighborhood basis:

Vε,φ(µ) =
{

ν ∈ m(X) :
∣∣∣∣
∫

X

φdν −
∫

X

φdµ

∣∣∣∣ ≤ ε

}

where ε > 0 and φ : X → R is a continuous function.
The following lemmas are simple but important:

Lemma I.7.2 m(X) is a compact metric space.

Let C0(x) be the vector space of continuous functions f : X → IR,
endowed with the norm

‖f‖0 = sup
x∈X

|f(x)|

Since X is a compact metric space, there exists a countable subset
{gi}i>0 of C0(X) which is dense in the unit ball B := {f ∈ C0(X) :
‖f‖0 ≤ 1}. Consider in m(X) the metric

d(µ, ν) =
∞∑

j=1

1
2j

∣∣∣∣
∫

X

gj dµ−
∫

X

gj dν

∣∣∣∣
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We leave it to the reader to verify that d(·, ·) is indeed a metric. The
proof of Lemma I.7.2 is based on the following fact:

Lemma I.7.3 The following properties of a sequence µn ∈ m(X) are
equivalent:

(a) limn→∞ d(µn, µ) = 0;

(b) limn→∞
∫

X
gj dµn =

∫
X

gj dµ for every j ≥ 1.

(c) limn→∞
∫

X
g dµ =

∫
X

g dµ for every g ∈ C0(X).

Proof. The implication (a) ⇒ (b) follows from the inequality
∣∣∣∣
∫

X

gj dµn −
∫

X

gj dµ

∣∣∣∣ ≤ 2jd(µn, µ)

We now prove (b) ⇒ (c). Given g ∈ C0(X) and ε > 0, let gj be such
that ∥∥∥∥gj − g

‖g‖

∥∥∥∥ ≤
ε

3‖g‖
the case g = 0 being trivial. Let n0 be such that n ≥ n0 implies that

∣∣∣∣
∫

X

gj dµn −
∫

X

gj dµ

∣∣∣∣ ≤
ε

3‖g‖
Then, for n ≥ n0

∣∣∣∣
∫

X

g dµn −
∫

X

g dµ

∣∣∣∣ ≤ ‖g‖
∣∣∣∣
∫

X

g

‖g‖ − gj dµn

∣∣∣∣

+‖g‖
∣∣∣∣
∫

X

gj dµn −
∫

X

gj dµ

∣∣∣∣

+‖g‖
∣∣∣∣
∫

X

gj − g

‖g‖ dµ

∣∣∣∣
≤ ‖g‖ ε

3‖g‖ + ‖g‖ · ε

3‖g‖ + ‖g‖ ε

3‖g‖
= ε

We now prove (c) ⇒ (a). Let j0 be such that
∞∑

j=j0+1

1
2j
≤ ε

4
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Then

d(µn, µ) ≤
j0∑

j=1

1
2j

∣∣∣∣
∫

X

gj dµn −
∫

X

gj dµ

∣∣∣∣

+
∞∑

j=j0+1

1
2j

(∫

X

|gj | dµn +
∫

X

|gj | dµ

)

≤
j0∑

j=1

1
2j

∣∣∣∣
∫

X

gj dµn −
∫

X

gj dµ

∣∣∣∣ + 2 · ε

4

Since the sequence {µn} satisfies (c), we can find n0 such that n ≥ n0

implies ∣∣∣∣
∫

X

gj dµn −
∫

X

gj dµ

∣∣∣∣ ≤
ε

2
for every 1 ≤ j ≤ j0. This implies that for every n ≥ n0 we have

d(µn, µ) ≤ ε

2
+

j0∑

j=1

1
2j

∣∣∣∣
∫

X

gj dµn −
∫

X

gj dµ

∣∣∣∣ ≤
ε

2
+

ε

2
= ε

The lemma is proved. 2

Proof of Lemma I.7.2. We prove that m(X) is metrizable by showing
that the metric d(·, ·) generates the topology of m(X). Let µn be a
sequence such that d(µn, µ) approaches 0; we will show that µn → µ in
the topology of m(X). Let Vε,f (µ) be a neighborhood of µ defined as
above. From Lemma I.7.3

lim
n→∞

∫

X

f dµn =
∫

X

f dµ,

which implies that µn ∈ Vε,f (µ) for large values of n. This proves that
every open set of m(X) is open in the topology given by d.

Conversely, given U ⊂ m(X) open with respect to d, we show that it
is also open in the topology of m(X) by finding for any µ ∈ U and ε > 0
a finite sequence {fj}1≤j≤m, fj ∈ C0(X), such that ∩m

j=1Vε,fj (µ) ⊂ U.
Since U is open in the metric d, there exists r > 0 such that d(ν, µ) ≤ r
implies ν ∈ U. Let m be such that

∞∑

j=m+1

1
2j
≤ r

4
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If we take fj = gj and ε = r/2, we are done, since

ν ∈ ∩m
j=1Vε,gj

(µ)

implies that

d(ν, µ) ≤
m∑

j=1

1
2j

∣∣∣∣
∫

X

gj dµ−
∫

X

gj dν

∣∣∣∣

+
∞∑

j=m+1

1
2j

(∫

X

|gj | dµ +
∫

X

|gj | dν

)

≤
m∑

j=1

1
2j
· r

2
+

∞∑

j=m+1

1
2j
· 2

≤ r

2
+ 2 · r

4
= r

and hence that ν ∈ U.
The proof of compactness requires the following theorem (see [Rd] for

a proof):

Theorem I.7.4 (Riesz Representation Theorem) Let φ : C0(X) →
IR be a positive linear functional, i.e. a linear map such that φ(f) ≥ 0 if
f ≥ 0 and φ(1) = 1, where 1 ∈ C0(X) is the constant function equal to
1. Then there exists a unique µ ∈ m(X) such that

∫

X

f dµ = φ(f)

for all f ∈ C0(X).

Since m(X) is metrizable, proving compactness is equivalent to proving
that every sequence {µn}n≥1, µn ∈ m(X), has a convergent subsequence.
We associate to each µn a sequence of numbers {µn(j)}j≥1 defined by

µn(j) =
∫

X

gj dµn

Note that µn(j) ∈ [−1, 1]. By a standard diagonal argument, there exists
a subsequence {µnm}m≥1 such that {µnm(j)}m≥1, converges for every
j, i.e. for every j the sequence

{∫

X

gj dµnm

}

m≥1
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converges. Using the same reasoning as in the proof of the implication (b)
⇒ (c) of Lemma I.7.3, we conclude that

{∫

X

g dµnm

}

m≥1

converges for every g ∈ C0(X). Let φ : C0(X) → IR be defined by

φ(g) = lim
m→∞

∫

X

g dµnm

It is easy to see that φ is a positive linear functional. Then, by Theo-
rem I.7.4, there exists ν ∈ m(X) such that, for every g ∈ C0(X),

φ(g) =
∫

X

g dν

Lemma I.7.2 is proved. 2

Proof of Proposition I.7.1. Given a continuous map T : X → X, we
define T ∗ : m(X) → m(X) by

(T ∗µ)(A) = µ(T−1(A))

for every Borel set A ⊂ X; this is a continuous map. The proposition
will be proven if we find µ ∈ m(X) such that T ∗µ = µ. Take any
µ0 ∈ m(X), and consider the sequence {µn}n≥0 defined by

µn =
1

n + 1

n∑
m=0

(T ∗)mµ0

By Lemma I.7.2, we can find a convergent subsequence {µnj}j≥1 and take
µ = limj→∞ µnj . Then

T ∗µnj =
1

nj + 1

nj∑
m=0

(T ∗)m+1µ0

=
1

nj + 1

nj∑
m=0

(T ∗)mµ0 − 1
nj + 1

µ0 +
1

nj + 1
(T ∗)nj+1µ

The last two terms converge to 0 as j →∞. Thus

T ∗µ = lim
j→∞

T ∗µnj = lim
j→∞

1
nj + 1

nj∑
m=0

(T ∗)mµ0 = lim
j→∞

µnj = µ
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The proposition is proved. 2

It may happen that a continuous map of a compact metric space has ex-
actly one invariant probability. Such maps are called uniquely ergodic. The
class of uniquely ergodic maps is very restricted. The standard examples
are certain translations of T| n.

Theorem I.7.5 Let f be a translation of T| n. Then the following
properties are equivalent

(a) Denoting e = (1, . . . , 1), the orbit {fn(e)|n ∈ ZZ} is dense in T| n

(b) {fn(x)|n ∈ ZZ} is dense in T| n for every x ∈ T| n

(c) f is uniquely ergodic.

Proof. The implication (b) ⇒ (a) is trivial.
(a) ⇒ (c) Let µ ∈ mf (T| n). We shall prove that µ is invariant under

all the translations of T| n. This property, as proved in Section I.3, implies
that µ is the Lebesgue probability. Let g be any translation. Take a
sequence of positive integers nj , j ≥ 1, such that

lim
j→∞

fnj (e) = g(e)

Such a sequence exists by (a). But, since f and g are translations

d(fnj (x), g(x)) = d(x · fnj (e), x · g(e))
= d(fnj (e), g(e))

Hence fnj → g uniformly. Now it is easy to see that (fnj )∗ν → g∗ν for
all ν ∈ m(T| n). Hence

g∗µ = lim
j→∞

(fnj )∗ µ = lim
j→∞

(f∗)nj µ = µ

(c ) ⇒ (b). Let f be uniquely ergodic. We shall show that if X
denotes the closure of {fn(x) : n ∈ ZZ}, for some x ∈ T| n, then X = T| n.
Observe first that f(X) = X, so we may consider f |X : X → X. On
the other hand, X is compact, and so it follows from Proposition I.7.1
that there exists an (f |X)−invariant invariant probability ν defined on
the Borel subsets of X. We extend ν to a probability µ on the Borel
σ−algebra of T| n by defining

µ(A) = ν(A ∩X),
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for every Borel subset A ⊂ T| n. By the invariance of X and ν we have

µ(f−1(A)) = ν(f−1(A) ∩X)
= ν((f |X)−1(A ∩X))
= ν(A ∩X)
= µ(A)

so µ is f -invariant. Since we assume f to be uniquely ergodic, µ = λ,
the Lebesgue probability on T| n. Then

λ(X) = µ(X) = ν(X) = 1 = λ(T| n)

and so λ(T| n \ X) = 0. Since λ is positive on non-empty open sets, we
obtain T| n \X = ∅, i.e. X = T| n. 2

The following theorem characterizes uniquely ergodic maps in terms of
orbital averages of continuous functions.

Theorem I.7.6 Let X be a compact metric space and T : X → X a
continuous map. The following properties are equivalent:

(a) T is uniquely ergodic;

(b) For every f ∈ C0(X) the limit

lim
n→∞

1
n + 1

n∑

j=0

f(T j(x))

exists for every x ∈ X and does not depend on x.

(c) For every f ∈ C0(X) the sequence of functions

1
n + 1

n∑

j=0

f ◦ T j (I.7.1)

converges uniformly to a constant.

Proof. (a) ⇒ (c). If (c) does not hold, there exists f ∈ C0(X) such
that the sequence (I.7.1) does not converge uniformly to

∫

X

f dµ
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where µ is the only element of mT (X). Then there exist ε > 0, a
sequence of integers {ni}i≥1 and a sequence {xi}i≥1 of points of X
such that ∣∣∣∣∣∣

1
ni + 1

ni∑

j=0

f(T j(xi))−
∫

X

f dµ

∣∣∣∣∣∣
≥ ε

for every i. Let µni
∈ m(X) be such that

∫

X

g dµni =
1

ni + 1

ni∑

j=0

g(T j(xi))

for every g ∈ C0(X); the existence of such a measure is guaranteed
by the Riesz representation Theorem I.7.4. Since m(X) is compact by
Lemma I.7.2, we can assume that the sequence {µni} converges to a
measure ν ∈ m(X). We now prove that ν ∈ mT (X). Let g ∈ C0(X);
then
∫

X

(g ◦ T ) dν = lim
ni→∞

∫

X

(g ◦ T ) dµni

= lim
ni→∞

1
ni + 1

ni∑

j=0

g(T j+1(xi))

= lim
ni→∞

∫

X

g dµni − lim
ni→∞

g(xi)
ni + 1

+ lim
ni→∞

g(Tni+1(xi))
ni + 1

=
∫

X

g dν,

so that ν ∈ mT (X). But
∣∣∣∣
∫

X

f dν −
∫

X

f dµ

∣∣∣∣ = lim
ni→∞

∣∣∣∣
∫

X

f dµni −
∫

X

f dµ

∣∣∣∣

= lim
ni→∞

∣∣∣∣∣∣
1

ni + 1

ni∑

j=0

f(T j(xi))−
∫

X

f dµ

∣∣∣∣∣∣
≥ ε

and we get ν 6= µ, contradicting that T is uniquely ergodic.
(c) ⇒ (b). This is trivial.
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(b) ⇒ (a). Let φ : C0(X) → IR be the functional defined by

φ(f) = lim
n→∞

1
n + 1

n∑

j=0

f(T j(x))

Then for µ ∈ mT (X),

∫

X

f dµ =
1

n + 1

n∑

j=0

∫

X

(f ◦ T j), dµ

because

∫

X

f dµ =
∫

X

(f ◦ T j) dµ

for every j. Since the sequence 1
n+1

∑n
j=0 f(T j(x)) is bounded by ‖f‖0,

it follows from the dominated convergence theorem that

∫

X

f dµ = lim
n→∞

1
n + 1

n∑

j=0

∫

X

(f ◦ T j) dµ

=
∫

X

lim
n→∞

1
n + 1

n∑

j=0

(f ◦ T j) dµ

=
∫

X

φ(f) dµ

= φ(f)

Thus, the only element of mT (X) is the measure associated with the
positive linear functional φ. 2

Exercises:

I.7.1 Let f : S1 → S1 be a homeomorphism with fixed points. Prove that
a point of S1 is recurrent if and only if it is a fixed point of fn for some
n ∈ ZZ. Deduce that if f has a finite set of recurrent points, then every
probability measure invariant under f is a convex linear combination of
Dirac delta measures concentrated at fixed points of fn, n ∈ ZZ.
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I.7.2. Let f : [0, 1] × S1 → S1 be a continuous map such that for every
t ∈ [0, 1] the map ft(·) = f(t, ·) is a homeomorphism S1 → S1. Is there
a continuous map µ : [0, 1] → m(S1) such that µ(t) is f -invariant for
every 0 ≤ t ≤ 1?

I.7.3. Let X be a compact metric space and T : X → X a continuous
map. If A is a subset of X, we put

τ(x,A) := lim sup
n→∞

1
n

#{0 ≤ j < n| T j(x) ∈ A}

Prove that for every compact set U ⊂ X and every x ∈ X there exists
µ ∈ mT (X) such that

µ(U) ≥ τ(x,U)

Hint: Let {ni}i≥1 be a sequence of integers such that

lim
i→∞

1
ni

#{0 ≤ j < ni| T j(x) ∈ A} = τ(x,U)

Prove that one can assume that the sequence

1
ni

ni−1∑

j=0

δT j(x)

converges in m(X). Prove that its limit, call it µ, is T -invariant and that
∫

X

φdµ ≥ τ(x,U)

for every continuous function φ : X → [0, 1] which takes value 1 on U.

I.7.4. Let X be a compact metric space and µ a Borel probability on
X.

(a) If U ⊂ X is open and µ(∂U) = 0, then for every ε > 0 there exists
a function f ∈ C0(X) such that f ≥ χU and

∫
X

f dµ ≤ µ(U) + ε.

(b) If f ∈ C0(X) and ε > 0, then there exists g =
∑∞

i=1 λiχUi , where
Ui are open sets with µ(∂Ui) = 0, such that

∫
X
|f − g| dµ < ε.

(c) A sequence µn ∈ m(X), converges to µ if and only if µn(U)
converges to µ(U) for every open set U ⊂ X with µ(∂U) = 0.
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I.7.5. If X is a compact metric space and T : X → X is a continuous
map, prove that

sup
µ∈mT (X)

∫

X

φdµ = sup
x∈X

lim sup
n→∞

1
n

n−1∑

j=0

φ(T j(x))

for every continuous function φ : X → IR. Hint: Observe that
∫

X

φ dµ =
∫

X

1
n

n−1∑

j=0

φ(T j(x)) dµ

I.8 The Equivalence Problem

The natural notion of equivalence between two measure preserving maps is
given by the following definition.

Definition. We say that two measure preserving maps Ti, i = 1, 2, of
two measure spaces (Xi,Oi, µi), i = 1, 2, respectively, are equivalent if
there exists a measure preserving map F taking (X1,O1(mod 0), µ1) into
(X2,O2(mod 0), µ2) satisfying

(a) F is invertible, i.e. there exists a measurable map G : X2 → X1

such that GF (x) = x for a.e. x ∈ X1 and FG(y) = y for a.e.
y ∈ X2.

(b) F preserves measure, i.e. µ1(F−1(A)) = µ2(A) (mod 0) for every
Borel A ⊂ X2.

(c) T2F = FT1 for a.e. x ∈ X1.

Observe that (a)-(b) imply that G is a measure preserving map of
(X2,O2, µ2) into (X1,O1, µ1), and, by (c), GT2 = T1G almost ev-
erywhere.

Hence, the equivalence is symmetric. Clearly it is transitive and reflex-
ive, so it is a true equivalence relation.

One of the aims of ergodic theory is to classify measure preserving maps
modulo this equivalence relation. One of the methods for this analysis
consists in associating with a measure preserving map T : (X,O, µ) →
(Y,S, ν) a linear operator UT : L2(Y ) → L2(X) defined by

UT f = f ◦ T.
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The fact that T preserves measure implies that UT is a unitary operator,
i.e., denoting by 〈·, ·〉 the inner product in L2 we have

〈UT f, UT g〉 = 〈f, g〉
for every f, g ∈ L2(Y ).

Definition. Let (Xi,Oi, µi), i = 1, 2, be measure spaces and Ti :
Xi → Xi measure-preserving maps, with the associated linear operators
UTi . We say that T1 and T2 are spectrally equivalent if there exists an
invertible isometry

L : L2(X2) → L2(X1)

such that LUT2 = UT1L.
If T1 and T2 are equivalent, they are spectrally equivalent, since

the map F : X1 → X2 given in the definition of equivalence gives rise
to an isometry UF : L2(X2) → L2(X1) which satisfies the condition
UF UT2 = UT1UF (just take UF f = f ◦ F ).

In general, however, spectrally equivalent maps are not necessarily equiv-
alent; for example, all Bernoulli shifts are spectrally equivalent, but Kol-
mogorov proved in 1958 that they are not all equivalent. He did this by asso-
ciating to each measure-preserving map T : X → X a real number h(T ) ∈
[0,+∞], called the entropy of T which is an invariant under equivalence
(meaning that all equivalent maps have the same entropy). The entropy
of a Bernoulli shift B(p1, . . . , pn) is equal to −∑n

i=1 pi log pi. Thus, in
particular, the shifts B(1/2, 1/2), B(1/3, 1/3, 1/3), and B(1/4, 1/4, 1/2)
have different entropies and so cannot be equivalent.

In the case of Bernoulli shifts, the converse also holds: Two Bernoulli
shifts with the same entropy are equivalent. This remarkable result was
proved by Ornstein in 1970. Thus we have the following.

Theorem I.8.1 Two Bernoulli shifts are equivalent if and only if they have
same entropy.

Exercises:

I.8.1. Prove that if Bernoulli shifts B+
ν (p1, . . . , pm) and B+

µ (q1, . . . , q`)
are equivalent, then m = ` and {p1, . . . , pm} can be indexed so that pi =
qi for all 1 ≤ i ≤ m = `. Hint: Put Ai = {θ ∈ B+(p1, . . . , pm)| θ(0) =
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i} and Cj = {θ ∈ B+(q1, . . . , q`)| θ(0) = j}. (a) Prove that the set
Ai has the following property: σ|Ai

is a bijection between Ai and
B+(p1, . . . , pm) and ν(σ(S)) = p−1

i ν(S) for all Borel subsets S ⊂ Ai.
(b) Then, if T : B+

ν (p1, . . . , pm) → B+
µ (q1, . . . , q`) realizes the equivalence

between the two shifts, show that T (Ai) contains a Borel subset D
such that σ|D is a bijection between D and a full measure subset of
B+(q1, . . . , q`) and µ(σ(S)) = p−1

i µ(S) for all S ⊂ D. (c) Deduce that
there exists j such that qj = pi and T (Ai) = Cj (mod 0). Assume first
that the q′js are all distinct.

I.8.2. Let f : [0, 1] → [0, 1] be the map given in Exercise I.4.2. Prove that
f is equivalent to σ : B+(p1, p2, . . .) → B+(p1, p2, . . .) with pi = bi − ai.
Hint: Define a map T : [0, 1] → B+(p1, p2, . . .) setting (Tx)(n) = j if
fn(x) ∈ (aj , bj).

I.9 Entropy

The entropy is an important numerical characteristic of any measure pre-
serving map. The notion of entropy has some long history, it came from
other branches of physics and sciences. Originally, R. Klausius introduced
the entropy in 1864 to describe the transformation of heat energy into ki-
netic energy. Nowadays the entropy in physics is commonly regarded as a
measure of complexity of systems with a large number of components and
possible configurations.

In 1948, C. Shannon introduced the entropy into information theory
as a quantitative characteristic of uncertainty (or information) for random
events. Let (X,A, µ) be a probability space. We want to measure the
amount of information added by knowing that an event A ∈ A has actually
occurred. Clearly such a measure should be a function, i, of the probability
µ(A), and
a) be nonnegative, i.e. i : [0, 1] → [0, +∞)),
b) be zero if the event has probability one, i.e. i(1) = 0,
c) increase when µ(A) decreases, and
d) satisfy the following independence relation: if A,B ∈ A are independent
events (i.e., µ(A∩B) = µ(A)µ(B)), the information added by knowing that
both A and B occur (i.e., A∩B occurs) is equal to the sum of information
given by knowing that A and B have occurred.
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It can be proved that there is a unique function that satisfies these
conditions: i(p) = −k log p, where k > 0 is a constant, see Exercise I.9.1. If
k = 1/ log 2, the unit of information is called “bit” (it is used in information
theory).

Let now A1, . . . , An be random events of which one and only one can
actually occur (so, they are mutually exclusive). Let pi = µ(Ai), 1 ≤ i ≤ n,
be their probabilities, and of course, p1 + · · · + pn = 1. Then the amount
of information added by knowing which one of these events actually occurs
is the mean (expected value) of the information defined above:

h(p1, . . . , pn) = −p1 log p1 − · · · − pn log pn (I.9.1)

Now this quantity is called the entropy of the probability distribution
{p1, . . . , pn}. We note that h ≥ 0. If n is fixed, h attains its maximum
value h = log n at the uniform distribution p1 = · · · = pn = 1/n, see
Exercise I.9.2. In this case the number of events, n, can be expressed by
n = eh.

What is the meaning of h in a general case, when n is very large and
the distribution is very nonuniform, so that h ¿ log n? The answer is
given by the classical Shannon-McMillan-Breiman theorem in information
theory, which we describe somewhat loosely. It says that we can divide
the set of events {A1, . . . , An} into two groups: essential events, whose
probabilities are large enough, and negligible events (the others), so that
(i) the negligible events can be removed from the expression (I.9.1) without
a significant loss for the value of h, and (ii) the number of essential events
is approximately

ness ≈ eh (I.9.2)

This is the basic meaning of the entropy in information theory: eh gives,
essentially, the number of possible events.

In 1958, based on Shannon’s ideas, A. N. Kolmogorov introduced the
entropy into the theory of dynamical systems. His version of entropy, devel-
oped jointly with Ya. G. Sinai, is now referred to as the measure-theoretic
entropy or the Kolmogorov-Sinai entropy.

Let T : X → X be a map preserving a probability measure µ. We
are going to measure the complexity of the map TN as N → ∞. What is
the complexity? Let X = A1 ∪ · · · ∪ An be a partition of X into disjoint
measurable subsets, Ai ∩ Aj = ∅ as i 6= j. If we label each set Ai by i,
then a phase point x can be coded by a label i if x ∈ Ai. The complexity
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of the partition ξ = {A1, . . . , An} is measured by its entropy defined by
Shannon’s formula, i.e.

h(ξ) = −µ(A1) log µ(A1)− · · · − µ(An) log µ(An)

Now the map T enters the construction. Given a point x ∈ Ai0 (with a label
i0), the point T kx for a k ≥ 1 can be labeled by ik if T kx ∈ Aik

. Hence,
the orbit {x, Tx, . . . , TNx} can be labeled by a string {i0, i1, . . . , iN}. One
can easily see that this string will actually label all the points in the set
Ai0 ∩ T−1Ai1 ∩ · · · ∩ T−NAiN

. All such sets (with a fixed N) make a
partition of X that we denote by ξN . Its complexity is again measured by
the entropy h(ξN ) defined by the same Shannon’s formula.

To understand what the partition ξN looks like, for each j ≥ 1 con-
sider a partition of X given by T−jξ = {T−jA1, . . . , T

−jAn}. Due to the
invariance of µ under T we obviously have h(T−jξ) = h(ξ) for all j ≥ 1.
Now ξN is obtained by taking all possible intersections of the elements of
T−jξ, 0 ≤ j ≤ N . This construction is called the product of partitions and
denoted by

∨N
j=0 T−jξ. Note that if N ≥ M , each set in ξN is contained

in ξM and each element of ξM is the union of elements of ξN ; so, ξN is a
refinement of ξM .

The partition ξN consists of nN+1 sets, called elements or atoms (some
of them may be empty, in this case we put 0 instead of 0 log 0). So, its
maximal entropy cannot exceed h(ξN ) ≤ log nN+1 = (N + 1) log n, i.e.
h(ξN ) grows at most linearly in time N . In fact, this estimate is rather
optimistic, as for many maps most of the elements of ξN will be just empty,
and h(ξN ) will grow slowly, if at all, see Exercise III.9.3. But for many other
maps there will be a linear growth of h(ξN ), indeed, see Exercise I.9.4.

The quantity

h(T, ξ) = lim
N→∞

1
N + 1

h(ξN )

is called the entropy of the map T with respect to the partition ξ. This limit
always exists and is equal to infN≥1(N + 1)−1h(ξN ), because the sequence
(N + 1)−1h(ξN ) monotonically decreases with N , but we omit a proof of
that. In particular, for every N we have h(T, ξ) ≤ (N + 1)−1h(ξN ) ≤ h(ξ).

The value h(T, ξ) admits the following interpretation in terms of infor-
mation theory. We want to code the information about the state of the
system (X,T, µ) at every future iteration j by using the partition ξ. The
itinerary {i0, i1, . . . , iN} of a given point x defined above codes an atom of
the partition ξN that contains x. Since h(ξN ) is the (expected) amount of
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information given by knowing the itinerary of the point x during the first
N + 1 iterations, the value h(ξN )/(N + 1) is the mean speed of data trans-
mission required to code the evolution of the system. Hence, h(T, ξ) is the
asymptotic speed of transmission of data as N → ∞ . More specifically,
the amount of bits transferred per unit time is h(T, ξ)/ log 2. If this quan-
tity is positive, the system is complex enough so that the description of
its evolution during time N requires an amount of computer memory that
must grow linearly with N . No finite amount of information about this sys-
tem can describe its evolution in the entire future. Practically, this means
that the future cannot be predicted, i.e. such a system is deterministic but
unpredictable.

As it follows from our previous estimates, h(T, ξ) ≤ h(ξ), i.e. h(T, ξ) is
always finite, but may be unbounded as a function of ξ.The quantity

hµ(T ) = sup
ξ

h(T, ξ)

where the supremum is taken over all finite measurable partitions of X is
called the measure-theoretic entropy of the map T . This is the Kolmogorov-
Sinai entropy.

We emphasize the meaning of the entropy. By the formula (I.9.2), the
entropy h(T, ξ) measures the exponential rate of growth of the number of
essential elements in the partition ξN as N → ∞ (those elements that
make essential contribution to the quantity h(ξN )). One can think of h(T )
then as the exponential rate of growth of the complexity of the map TN as
N →∞.

There is a practically useful theorem by Kolmogorov and Sinai that
simplifies the calculation of entropy. We need some definitions. If {Pn}n≥1

is a sequence of partitions, we denote by
∨

n≥1 Pn the minimum σ-algebra
that contains all the atoms of all these partitions. In other words, it is
σ-algebra generated by

⋃
n≥1 Pn. If T is a measurable map on the measure

space (X,A, µ), we say that P is a generating partition if it satisfies one of
the following conditions:

i) either
∨∞

j=0 T−jP = A (up to subsets of measure zero)

ii) or
∨∞

j=0 T−jP 6= A, but T is invertible with a measurable inverse and∨∞
j=−∞ T−jP = A

Then, the Kolmogorov-Sinai theorem states that if P is a generating par-
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tition with h(P) < ∞, then

hµ(T ) = h(T,P).

Exercises:

I.9.1. Prove that the only function i : [0, 1] → [0, +∞) that satisfies (a)-(d)
in the beginning of this section is i(p) = −k log p, with a constant k > 0.
Note that the condition (d) means i(pq) = i(p) + i(q) for all 0 ≤ p, q ≤ 1.
Hint: change variable x = − log p, then the function f(x) = i(e−x) is
increasing and satisfies f(0) = 0 and f(x+y) = f(x)+f(y) for all x, y > 0.
Denote f(1) = a and show that f(m/n) = am/n for all m,n ∈ IN. Then
use the monotonicity of f to prove that f(x) = ax for all x > 0.

I.9.2. Show that h(p1, . . . , pn) ≤ log n and the equality takes place if and
only if p1 = · · · = pn = 1/n. Hint: the function g(x) = −x log x − (a −
x) log(a− x), where a > 0 is given, takes its sole maximum at x = a/2.

I.9.3. Let T : S1 → S1 be a rotation of the circle S1 through a fixed angle
θ > 0. Show that h(T, ξ) = 0 for any finite partition of S1 into arcs. Hint:
let n be the number of arcs. Verify that ξN is a partition of S1 into no
more than n(N + 1) arcs.

I.9.4. Consider a Bernoulli shift Bµ(p1, . . . , pm) and a partition ξ into the
sets Ai = {θ ∈ B(m): θ(0) = i}, for 1 ≤ i ≤ m. Show that

h(σ, ξ) = h(p1, . . . , pm) = −p1 log p1 − · · · − pm log pm

Hint: verify by induction that h(ξN ) = Nh(p1, . . . , pm) for all N ≥ 1.
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Chapter II

Ergodicity

II.1 Ergodic Theorem of Birkhoff-Khinchin

Birkhoff-Khinchin theorem deals with the distribution of the orbits of a
measure preserving map T of a probability space (X,O, µ). In order to
study how an orbit {x, T (x), T 2(x), . . .} is asymptotically distributed in
X we introduce the sojourn time of x in a set A ∈ O by

τ(x,A) = lim
n→∞

1
n

#{0 ≤ m < n|Tm(x) ∈ A}

Birkhoff’s Theorem states that this limit exists for a.e. x and that τ(x,A)
is an integrable function of x whose integral is given by

∫

X

τ(x,A) dµ(x) = µ(A)

Moreover, one can easily check that, as a function of x, τ is T -invariant,
i.e.

τ(x,A) = τ(T (x), A) a.e.

This motivates the following definition: we say that T is ergodic if all the
T -invariant functions are constant a.e. Then τ must be constant and its
integral becomes just its value a.e. Then, for a.e. x we have:

τ(x,A) = µ(A)
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This is a remarkable conclusion and poses the problem of developing meth-
ods to decide when a map T is ergodic. Ergodicity is a strong property and
many important transformations, as for instance those arising in Hamilto-
nian Mechanics, are frequently not ergodic. On the other hand, as we shall
see in this chapter, there are plenty of important classes of ergodic transfor-
mations. Moreover, when X is a compact metric space and T : X → X
is a continuous map, there always exist ergodic T -invariant probabilities
on the Borel σ−algebra of X. They are important in the analysis of the
dynamics of T.

An interesting example of an ergodic measure preserving map is the
map T : [0, 1] → [0, 1] given by T (x) = 10x− [10x] (sometimes denoted
by {10x}, where {·} stands for the fractional part of a number). This
map preserves the Lebesgue probability on [0,1] and is ergodic (for a proof
see Ch. III.1. in [Mn]). An direct consequence of its ergodicity is the
following important fact in number theory. Write x ∈ [0, 1] in decimal
representation x = 0.a0a1a2 . . . and let Nn(x, j) be the number of times
that the digit 0 ≤ j ≤ 9 appears in the string [a0 . . . an−1]. Then, for
a.e. x ∈ [0, 1]

lim
n→∞

1
n

Nn(x, j) =
1
10

This is a consequence of the ergodicity of T because am = j if and only
if Tm(x) ∈ [j/10, (j + 1)/10). Then, for a.e. x :

lim
n→∞

1
n

Nn(x, j) = τ(x, [j/10, (j + 1)/10))

= λ([j/10, (j + 1)/10))
= 1/10.

More subtle is a similar property for continued fractions. Every irrational
number x ∈ (0, 1) can be written in a unique way as a continued fraction

x =
1

a0 + 1
a1 + 1

a2 + 1
...

where a0, a1, . . . are positive integers. Let Pn(x, k) be the number of
times that k appears among a0, . . . , an−1. Then, for a.e. x ∈ (0, 1)

lim
n→∞

1
n

Pn(x, k) =
1

log 2
log(1 +

1
k(k + 2)

)
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The proof of this property requires first transforming Pn(x, k) into a
sojourn time. This is done with the help of the Gauss map T : [0, 1] →
[0, 1] defined by

T (x) =
{

1
x −

[
1
x

]
if x 6= 0

0 if x = 0
Observe that

1
x

= a0 +
1

a1 + 1
a2 + 1

...
where

a0 =
[

1
x

]

and

T (x) =
1
x
−

[
1
x

]
=

1

a1 + 1
a2 + 1

...
Repeating this argument gives

Tn(x) =
1

an + 1
an+1 + 1

...
Then

1
Tn(x)

= an +
1

an+1 + 1
...

thus implying

an =
[

1
Tn(x)

]

Observe that

an = k ⇐⇒ Tn(x) ∈
(

1
k + 1

,
1
k

]

Hence, if the Lebesgue probability were T-invariant, we would have

lim
n→∞

1
n

Pn(x, k) = lim
n→∞

1
n

#
{

0 ≤ j < n|T j(x) ∈
(

1
k + 1

,
1
k

]}

= τ

(
x,

(
1

k + 1
,
1
k

])
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for almost every x. However, the Lebesgue probability is not T -invariant.
Fortunately, there is another probability on the Borel σ−algebra, discov-
ered by Gauss in 1799, that is T -invariant. It is defined by

µ(A) =
1

log 2

∫

A

dx

1 + x

for every Borel set A. The probability µ is T -invariant as the reader
can check easily by proving first that µ(A) = µ(T−1(A)) when A is
an interval and then using the fact that finite unions of intervals make a
generating subalgebra for the Borel σ−algebra. Moreover, it can be proved
that T is ergodic with respect to the probability µ. In fact it belongs to
a very well understood class of maps of the interval called Markov maps.
Then, for µ a.e. x we have

lim
n→∞

1
n

Pn(x, k) = τ (x, (1/(k + 1), 1/k])

=
1

log 2

∫ 1/k

1/(k+1)

dx

1 + x

=
1

log 2
log

(
1 +

1
k(k + 2)

)

Since the measure µ is equivalent to the Lebesgue measure, we conclude
that the above property holds for a.e. x with respect to the Lebesgue
measure.

Given a measure preserving map T of a probability space (X,O, µ) we
say that a function f : X → IR is invariant (or T -invariant) if f(T (x)) =
f(x) for a.e. x ∈ X.

Theorem II.1.1 (Birkhoff-Khinchin) Let (X,O, µ) be a probability
space and T : X → X a measure preserving map. If f : X → IR is an
integrable function, the limit

f̃(x) := lim
n→∞

1
n

n−1∑

j=0

f(T j(x)) (II.1.1)

exists for a.e. x ∈ X, and the function f̃ is T -invariant, integrable and
∫

X

f̃ dµ =
∫

X

f dµ
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lim
n→∞

∫

X

∣∣∣∣∣∣
f̃ − 1

n

n−1∑

j=0

f ◦ T j

∣∣∣∣∣∣
dµ = 0

The function f̃ is called the time average of f. Sojourn times are
time averages of characteristic functions because

#{0 ≤ j < n : T j(x) ∈ A} =
n−1∑

j=0

χA(T j(x))

and then

τ(x,A) = lim
n→∞

1
n

n−1∑

j=0

χA(T j(x)) = χ̃A(x)

Hence we have
∫

τ(x,A) dµ(x) =
∫

χ̃A dµ =
∫

χA dµ = µ(A)

Proof. Suppose that we have proved the existence of the limit (II.1.1)
that defines f̃ . The integrability of f̃ would follow from the integrability
of |f̃ | (because | ∫ f̃ dµ| ≤ ∫ |f̃ | dµ). Next, if the limit (II.1.1) exists, we
have

|f̃(x)| ≤ lim
n→∞

1
n

n−1∑

j=0

|f(T j(x))|

for almost every x. So it is enough to prove that the above limit is integrable
(the existence of this limit follows from our assumption that (II.1.1) exists,
applied to |f |). As T j preserves the measure µ,

∫
|f(T j(x))| dµ =

∫
|f ◦ T j | dµ =

∫
|f | dµ < ∞

and so

lim inf
n→∞

1
n

n−1∑

j=0

∫
|f(T j(x))| dµ = ‖f‖1 < ∞

Then, Fatou’s lemma (Theorem I.6.1) implies that |f̃ | is integrable and
that ‖f̃‖1 ≤ ‖f‖1.
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Now, f̃ is T -invariant because

f̃(T (x)) = lim
n→∞

1
n

n−1∑

j=0

f(T j+1(x))

= lim
n→∞

n + 1
n

1
n + 1

n∑

j=0

f(T j(x))− lim
n→∞

1
n

f(x)

= lim
n→∞

1
n + 1

n∑

j=0

f(T j(x))

= f̃(x)

for almost every x.
In order to prove the last inequality in Theorem II.1.1 we first assume

that f ∈ L∞(X,O, µ). The definition of f̃ implies that the following
sequence converges to zero almost everywhere

∣∣∣∣∣∣
f̃ − 1

n

n−1∑

j=0

f ◦ T j

∣∣∣∣∣∣
(II.1.2)

We have also that for almost every x

|f̃(x)| ≤ lim
n→∞

1
n

n−1∑

j=0

|f(T j(x))| ≤ lim
n→∞

1
n

n−1∑

j=0

‖f‖∞ = ‖f‖∞

Hence,
∣∣∣∣∣∣
f̃(x)− 1

n

n−1∑

j=0

f ◦ T j(x)

∣∣∣∣∣∣
≤ ‖f‖∞ +

1
n

n−1∑

j=0

|f ◦ T j(x)| ≤ 2‖f‖∞

and so the sequence (II.1.2) is dominated by a constant. Then, we apply
the Dominated Convergence Theorem I.6.3.

If f is only integrable, given any ε > 0 there exists φ ∈ L∞ (X,O, µ),
and N > 0 such that ‖f − φ‖1 < ε/3 (actually, φ may be chosen as a
simple function) and

∥∥∥∥∥∥
φ̃− 1

n

n−1∑

j=0

φ ◦ T j

∥∥∥∥∥∥
1

≤ ε/3
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for n ≥ N. So
∥∥∥∥∥∥
f̃ − 1

n

n−1∑

j=0

f ◦ T j

∥∥∥∥∥∥
1

≤ ‖f̃ − φ̃‖1 +

∥∥∥∥∥∥
1
n

n−1∑

j=0

φ ◦ T j − φ̃

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
1
n

n−1∑

j=0

φ ◦ T j − 1
n

n−1∑

j=0

f ◦ T j

∥∥∥∥∥∥
1

But
‖f̃ − φ̃‖1 = ‖(f − φ)∼‖1 ≤ ‖f − φ‖1 ≤ ε/3

and
∥∥∥∥∥∥

1
n

n−1∑

j=0

(φ− f) ◦ T j

∥∥∥∥∥∥
1

≤ 1
n

n−1∑

j=0

‖φ− f‖1 = ‖φ− f‖1 ≤ ε/3

It follows that ∥∥∥∥∥∥
f̃ − 1

n

n−1∑

j=0

f ◦ T j

∥∥∥∥∥∥
1

≤ ε

for all n ≥ N, and this finishes the proof of the last equality in Theo-
rem II.1.1.

The space averages (integrals) of f and f̃ are equal because of the
convergence in L1 that we have just proved and the µ−invariance of T :

∫
f̃ dµ = lim

n→∞
1
n

n−1∑

j=0

∫
f ◦ T j dµ = lim

n→∞
1
n

n−1∑

j=0

∫
f dµ =

∫
f dµ

So, it “only” remains to prove the existence of f̃ . This will follow from
the next theorem:

Theorem II.1.2 (Maximal Ergodic Theorem) If f ∈ L1(X,O, µ)
and

E(f) =



x : sup

n≥0

n∑

j=0

f(T j(x)) > 0
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then ∫

E(f)

f dµ ≥ 0

Proof. Consider the increasing sequence

fn(x) = max



f(x), f(x) + f(T (x)), . . . ,

n∑

j=0

f(T j(x))





Since
E(f) = ∪∞n=0{x : fn(x) > 0}

it is sufficient to prove
∫

{x:fn(x)>0}
f dµ ≥ 0

for every n ≥ 0.
If fn ◦ T (x) ≥ 0, we have fn ◦ T (x) + f(x) ≥ f(x) and so,

fn ◦ T (x) + f(x) = max{f(T (x)), . . . ,
n+1∑

j=1

f(T j(x))}+ f(x)

= max{f(T (x)) + f(x), . . . ,
n+1∑

j=0

f(T j(x))}

= max{f(x), f(x) + f(T (x)), . . . ,
n+1∑

j=0

f(T j(x))}

= fn+1(x) ≥ fn(x)

We now consider the following decomposition
∫

{fn≥0}
f dµ =

∫

{fn≥0}∩{fn◦T<0}
f dµ +

∫

{fn≥0}∩{fn◦T≥0}
f dµ

≥
∫

{fn≥0}∩{fn◦T<0}
f dµ +

∫

{fn≥0}∩{fn◦T≥0}
fn dµ

−
∫

{fn≥0}∩{fn◦T≥0}
fn ◦ T dµ
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On the domain of integration in the first integral of the last sum we have
f(x) ≥ fn(x). Indeed, from the definitions of fn and fn ◦ T and the
positivity of the first one, we deduce that for some 0 ≤ m̄ ≤ n

fn(x) =
m̄∑

j=0

f(T j(x)) ≥ 0

and from the negativity of fn ◦ T we deduce that

m+1∑

j=1

f(T j(x)) < 0

for every 0 ≤ m ≤ n. If m̄ = 0, then fn(x) = f(x). If m̄ > 0, then

fn(x) = f(x) +
m̄∑

j=1

f(T j(x))

and fn(x) < f(x).
Now

∫

{fn≥0}
f dµ ≥

∫

{fn≥0}∩{fn◦T<0}
fn dµ

+
∫

{fn≥0}∩{fn◦T≥0}
fn dµ−

∫

{fn≥0}∩{fn◦T≥0}
fn ◦ T dµ

=
∫

{fn≥0}
fn dµ−

∫

{fn≥0}∩{fn◦T≥0}
fn ◦ T dµ

=
∫

T−1({fn≥0})
fn ◦ T dµ−

∫

{fn≥0}∩{fn◦T≥0}
fn ◦ T dµ

Note that the domain of integration in the first integral on the right is

{T−1(x) : max{f(x), . . . ,
n∑

j=0

f(T j(x))} ≥ 0}

= {y : max{f(Ty), . . . ,
n+1∑

j=1

f(T j(y))} ≥ 0}

= {fn ◦ T ≥ 0}
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which contains the domain of integration of the second integral. So, the
subtraction of the integrals gives the integral of fn ◦T over a subset of the
set {x : fn ◦ T (x) ≥ 0}, so that integral is ≥ 0. Theorem II.1.2 is proved.
2

Corollary II.1.3 If A is a measurable set, A ⊂ E(f), and T−1(A) =
A, then

∫
A

f dµ ≥ 0.

Proof. If χA is the characteristic function of A, from the definition
of E(fχA) we have that A = E(fχA). So,

0 ≤
∫

E(fχA)

fχA dµ =
∫

A

fχA dµ =
∫

A

f dµ

2

Now we finish the proof of Theorem II.1.1. Let f ∈ L1(X,O, µ) and
define

E+
α (f) = {x : lim sup

n→∞

∑n
j=0 f(T j(x))

n + 1
> α}

E−
α (f) = {x : lim inf

n→∞

∑n
j=0 f(T j(x))

n + 1
< α}

Observe that E−
α (f) = E+

−α(−f) and T−1(E+
α (f)) = E+

α (f) ⊂ E(f).
First, we will prove that if A ⊂ E+

α (f) is a measurable set such that
T−1(A) = A, then ∫

A

f dµ ≥ αµ(A) (II.1.3)

Indeed, ∫

A

f dµ =
∫

A

(f − α) dµ + αµ(A) ≥ αµ(A)

since A ⊂ E+
α (f) = E+

0 (f − α) ⊂ E(f − α) and by Corollary II.1.3 the
last integral is not negative. By the same method we can prove that if
A ⊂ E−

β (f) and T−1(A) = A then

∫

A

f dµ ≤ βµ(A) (II.1.4)
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From the inequalities (II.1.3) and (II.1.4), with A = E+
α (f)∩E−

β (f), α >
β, we obtain

µ(E+
α (f) ∩ E−

β (f)) = 0 (II.1.5)

Finally, if αn, n ≥ 1, is a dense sequence in IR (rational numbers, for
example), it results that

{
x : lim sup

n→∞

∑n
j=0 f(T j(x))

n + 1
> lim inf

n→∞

∑n
j=0 f(T j(x))

n + 1

}

= ∪αn>αm(E+
αn

(f) ∩ E−
αm

(f))

This set has zero measure by (II.1.5) and so, on a set of full measure both
limits coincide and define the function f̃ for f ∈ L1(X). The proof of
Birkhoff-Khinchin Theorem is completed. 2

Corollary II.1.4 If T is invertible and f ∈ L1(X,O, µ), then f̃(x) =
f̃−(x) a.e., where

f̃−(x) := lim
n→∞

1
n

n−1∑

j=0

f(T−j(x))

and hence

f̃(x) = lim
n→∞

1
2n + 1

n∑

j=−n

f(T j(x))

Proof. If fn → f in L1, the inequality
∫
|fn − f | dµ =

∫
|fn − f |∼ dµ ≥

∫
|f̃n − f̃ | dµ

shows that f̃n → f̃ in L1, and the same is true for f̃−n and f̃−. On
a probability space X, square integrable functions f ∈ L2(X) are dense
in L1(X) (actually, any function in L1 can be approximated by simple
functions). Hence, it is enough to prove the corollary for f ∈ L2.

Let F ⊂ L2 be the subspace of T -invariant functions. It is a closed
subspace of L2. If π : L2 → F is the orthogonal projection, the equality
f̃ = f̃− will follow from πf = f̃ for every f ∈ L2, since F is also the
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space of T−1-invariant functions (i.e., such that g ◦ T−1 = g a.e.). But
for any g ∈ F

∫
(f − f̃)g dµ =

∫
(fg − f̃g)∼ dµ =

∫
(fg)∼ dµ−

∫
(f̃g)∼ dµ = 0

because (fg)∼ = f̃g = (f̃g)∼, as a consequence of f̃ and g being
T -invariant. 2

Remark. Let T t be a continuous group of automorphisms on a
probability space (X,O, µ) (i.e., parameter t ∈ IR). This means that
every T t is invertible, T 0 = Id, T t+s(x) = T t(T s(x)), and µ(T t(A)) =
µ(A) for every t, s ∈ IR, x ∈ X, A ∈ O. We say that T t is a flow if for
every measurable function g : X → IR, g ◦ T t is measurable on X × IR.

The corresponding version of the Birkhoff-Khinchin theorem for flows
says that for every f ∈ L1(X,O, µ)

f̃(x) = lim
t→∞

1
t

∫ t

0

f(T s(x)) ds

= lim
t→∞

1
t

∫ t

0

f(T−s(x)) ds

= lim
t→∞

1
2t

∫ t

−t

f(T s(x)) ds

where the limits exist for almost every x ∈ X, and f̃ ∈ L1(X,O, µ) and∫
f̃ dµ =

∫
f dµ.

Remark. In the same way as before, we can prove that if f ∈
Lp(X,O, µ) for some 1 ≤ p < ∞, then f̃ ∈ Lp(X,O, µ), and

lim
n→∞

∥∥∥∥∥∥
f̃ − 1

n

n−1∑

j=0

f ◦ T j

∥∥∥∥∥∥
p

= 0

Corollary II.1.5 For every A,B ∈ O the limit

lim
n→∞

1
n

n−1∑

j=0

µ(T−j(A) ∩B)

exists.
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Proof. We have

µ(T−n(A) ∩B) =
∫

X

χT−n(A)χB dµ =
∫

X

(χA ◦ Tn)χB dµ

Since χA ∈ L2(X), we can apply the Birkhoff-Khinchin theorem to con-
clude that the sequence

1
n

n−1∑

j=0

χA ◦ T j

converges in L2. Thus

1
n

n−1∑

j=0

µ(T−j(A) ∩B) =
∫

X


 1

n

n−1∑

j=0

χA ◦ T j


 χB dµ

also converges. 2

Exercises:

II.1.1. Let (X,O, µ) be a probability space, T : X → X a measure-
preserving map and {Fn}n≥0 a dominated sequence of functions in L1(X,O, µ)
which converges almost everywhere to a function F ∈ L1(X,O, µ). Prove
that

lim
n→∞

1
n

n−1∑

j=0

Fj(T j(x)) = F̃ (x) a.e.

II.1.2. Let (X,O, µ) be a probability space and T : X → X a measure-
preserving map.

(a) Prove that for every A ∈ O with positive measure there exists a
subset A0 ∈ O contained in A having positive measure such that,
for every x ∈ A0, we have τ(x,A) ≥ µ(A). Hint: Put A1 :=
{x : τ(x,A) ≥ µ(A)}, and prove that µ(A1) > 0 and A1 =
∪n≥0T

−n(A1 ∩A).

(b) Prove that τ(x,A) > 0 for almost every point x ∈ A.

(c) Let X be a separable metric space and O the σ−algebra of
Borel sets with a T -invariant probability. Prove that for almost every
x ∈ X we have τU (x) > 0 for every neighborhood U of x.
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II.1.3. Let (X,O, µ) be a probability space and T : X → X a measure-
preserving map.

(a) Prove that if C : X → (0,+∞) is measurable, then

lim inf
n→∞

1
n

C(Tn(x)) = 0 a.e.

Hint: If the property does not hold, there exist A ∈ O, K1 > 0
and K2 > 0 such that

lim inf
n→∞

1
n

C(Tn(x)) ≥ K1

C(x) ≤ K2 for all x ∈ A

and µ(A) > 0. Use the Poincaré recurrence theorem (Theorem I.5.1)
to derive a contradiction between the two inequalities.

(b) Prove that if C : X → (0, +∞) is measurable and C ◦ T − C is
integrable, then

lim
n→∞

1
n

C(Tn(x)) = 0 a.e.

Hint: Write

1
n

C(Tn(x)) =
1
n

n−1∑

j=0

(C ◦ T − C)(T j(x)) +
1
n

C(x)

and apply the Birkhoff-Khinchin theorem.

II.2 Ergodicity

Consider a measure-preserving map T of a probability space (X,O, µ).
Recall that a set A ∈ O is called T -invariant if T−1(A) = A.

Definition. T is said to be ergodic if every T -invariant set has measure 0
or 1.
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Bernoulli shifts are ergodic. The proof uses the following fact, which
should be checked by the reader: If Ai ⊂ B(p1, . . . , pn), i = 1, 2, are
cylinders, there exists m0 > 0 such that for all m > m0

µ(σ−m(A1) ∩A2) = µ(A1)µ(A2) (II.2.1)

Now assume that A ⊂ B(p1, . . . , pn) is σ−invariant. Since the σ−algebra
of B(p1, . . . , pn) is generated by cylinders, there exists, for any ε > 0, a
finite union A0 of disjoint cylinders such that

µ(A04A) ≤ ε.

Property (II.2.1) is easily seen to hold for finite unions of cylinders as well
as for single cylinders. Thus, for some m ≥ 0,

µ(σ−m(Ac
0) ∩A0) = µ(A0)µ(Ac

0)

µ(σ−m(A0) ∩Ac
0) = µ(A0)µ(Ac

0)

It follows that

µ(σ−m(A0)4A0) ≤ µ(σ−m(A)4σ−m(A0)) + µ(σ−m(A)4A) + µ(A04A)
= 2µ(A4A0) ≤ 2ε (II.2.2)

On the other hand,

µ(σ−m(A0)4A0) = µ(σ−m(A0) ∩Ac
0) + µ(σ−m(Ac

0) ∩A0)
= 2µ(A0)µ(Ac

0)
= 2µ(A0)(1− µ(A0)) (II.2.3)

Form (II.2.2) and (II.2.3) we get

2µ(A0)(1− µ(A0)) ≤ 2ε

and, since ε is arbitrary,

µ(A)(1− µ(A)) = 0

or, again, µ(A) = 0 or 1.

Proposition II.2.1 The following properties are equivalent:
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(1) T is ergodic;

(2) If f ∈ L1(X) is T -invariant, then f is constant almost everywhere;

(3) If f ∈ Lp(X) is T -invariant, then f is constant almost everywhere;

(4) For every A,B ∈ O we have

lim
n→∞

1
n

n−1∑
m=0

µ(T−m(A) ∩B) = µ(A)µ(B)

(5) For every f ∈ L1(X) we have f̃(x) =
∫

X
f dµ almost everywhere.

Proof. (3) ⇒ (1). If A ∈ O is T -invariant, its characteristic function
χA is T -invariant and belongs in Lp(X). Thus χA is constant almost
everywhere, i.e. µ(A) = 0 or 1.

(1) ⇒ (2). If f ∈ L1(X) is T -invariant, the set Ac := {x : f(x) ≤ c}
is invariant for each c. Since T is ergodic, this means µ(Ac) = 0 or 1
for each c. We leave it to the reader to show that this implies that f is
constant almost everywhere.

(2) ⇒ (5) . Since f̃ belongs in L1(X) and is T -invariant, it must be
a constant. From ∫

X

f̃ dµ =
∫

X

f dµ

the assertion follows.

(5) ⇒ (4). By the Birkhoff-Khinchin theorem,

lim
n→∞

1
n

n−1∑
m=0

χA(T j(x)) = χ̃A =
∫

X

χA dµ = µ(A)

almost everywhere. By Dominated Convergence Theorem I.6.3,

µ(A)µ(B) =
∫

X

( lim
n→∞

1
n

n−1∑

j=0

χA(T j(x))χB dµ

= lim
n→∞

1
n

∫

X

n−1∑

j=0

χA(T j(x))χB dµ

= lim
n→∞

1
n

n−1∑

j=0

µ(T−j(A) ∩B)
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(4) ⇒ (1). If A is T -invariant, we apply (4) to the sets A and Ac.
Then

µ(A)µ(Ac) = lim
n→∞

n−1∑

j=0

µ(T−j(A) ∩Ac) = 0

so that µ(A) = 0 or 1. 2

In fact, condition (5) only needs to hold in a dense set of L1(X) to
imply the other four:

Proposition II.2.2 If there exists a dense set F ⊂ L1(X) such that

f̃(x) =
∫

X

f dµ a.e.

for every f ∈ F, then T is ergodic.

Proof. Since the sequence

1
n

n−1∑

j=0

f ◦ T j

converges to f̃ in L1(X), it is enough to check that for every f ∈ L1(X)

lim
n→∞

∥∥∥∥∥∥
1
n

n−1∑

j=0

f ◦ T j −
∫

X

f dµ

∥∥∥∥∥∥
1

= 0

Take ε > 0, and choose g ∈ F such that ‖g − f‖1 ≤ ε/3. Let n0 be
such that n ≥ n0 implies∥∥∥∥∥∥

1
n

n−1∑

j=0

g ◦ T j −
∫

X

g dµ

∥∥∥∥∥∥
1

≤ ε/3

Then, for all n ≥ n0,∥∥∥∥∥∥
1
n

n−1∑

j=0

f ◦ T j −
∫

X

f dµ

∥∥∥∥∥∥
1

≤ 1
n

∥∥∥∥∥∥

n−1∑

j=0

f ◦ T j −
n∑

j=0

g ◦ T j

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
1
n

n−1∑

j=0

g ◦ T j −
∫

X

g dµ

∥∥∥∥∥∥
1

+
∣∣∣∣
∫

X

g dµ−
∫

X

f dµ

∣∣∣∣
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Since
‖f ◦ T j − g ◦ T j‖1 = ‖(f − g) ◦ T j‖1 = ‖f − g‖1

and since ∣∣∣∣
∫

X

g dµ−
∫

X

f dµ

∣∣∣∣ ≤ ‖g − f‖1

we conclude that
∥∥∥∥∥∥

1
n

n−1∑

j=0

f ◦ T j −
∫

X

f dµ

∥∥∥∥∥∥
1

≤ ‖g − f‖1 + ε/3 + ‖g − f‖1 ≤ ε

The proposition is proved. 2

Another characterization of ergodicity can be given in terms of the
average time τ(x,A) spent by a point x in a set A, which exists by the
Birkhoff-Khinchin theorem.

Proposition II.2.3 T is ergodic if and only if τ(x, A) = µ(A) a.e. for
every A ∈ O.

Proof. If T is ergodic then

τ(x, A) = χ̃A(x) =
∫

X

χA dµ = µ(A) a.e.

Conversely, let A ∈ O be T -invariant. Assume µ(A) > 0. Since
τ(x, A) = 1 for x ∈ A, it follows that µ(A) = 1. 2

The following ”uniqueness theorem” holds for ergodic maps:

Proposition II.2.4 If T is ergodic and µ1 : O → [0, 1] is another
T -invariant probability measure, the following conditions are equivalent:

(a) µ1 = µ;

(b) µ1 ¿ µ;

(c) There exists no T -invariant set A ∈ O such that µ(A) = 0 and
µ1(A) 6= 0.
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Proof. (b) ⇒ (a). If µ1 ¿ µ and both µ1 and µ are invariant, the
Radon-Nikodym derivative dµ1/dµ is an invariant function. Since T is
ergodic, dµ1/dµ is a.e. constant, and so µ1 = µ.

(c) ⇒ (b). Assume (b) does not hold, and take A0 ∈ O such that
µ(A0) = 0 and µ1(A0) 6= 0. The set A := ∪n≤0T

n(A0) contradicts (c).
(a) ⇒ (c). Trivial. 2

If X is a set and O is a σ−algebra on X, the set of all signed
measures on O has an obvious vector space structure. If T : X → X is
a measurable map, the set mT (X,O) of T -invariant probability measures
on O is a convex subset of this vector space. The next proposition
characterizes ergodic maps with respect to T. Note: The expression “µ
is ergodic with respect to T” evidently means that µ ∈ mT (X,O) and
T is an ergodic map of (X,O, µ).

Proposition II.2.5 The measure µ ∈ mT (X,O) is ergodic if and only if
µ is an extremal point1 of mT (X,O).

Proof. Assume that µ ∈ mT (X,O) is ergodic and µ = λµ1+(1−λ)µ2

with some µ1, µ2 ∈ mT (X,O) and 0 < λ < 1. We have µ1 ¿ µ since
λ 6= 0, so Proposition II.2.4 implies that µ1 = µ. Similarly, we have
µ2 = µ, which shows that µ1 = µ2, hence µ is extremal.

Now if µ ∈ mT (X,O) is not ergodic, there exists a T -invariant
set A0 ∈ O satisfying 0 < µ(A0) < 1. We define measures µi ∈
mT (X,O), i = 1, 2, by

µ1(A) =
1

µ(A0)
µ(A ∩A0) and µ2(A) =

1
µ(Ac

0)
µ(A ∩Ac

0)

for all A ∈ O. Then we can write

µ = µ(A0)µ1 + µ(Ac
0)µ2

showing that µ is not extremal. 2

Exercises:

1An extremal point x of a convex set C is one which cannot be presented as
x = λy + (1− λ)z for two distinct y, z ∈ C and some 0 < λ < 1.
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II.2.1. Let X be a set, O a σ−algebra on X and T : X → X a
measurable map. If µi ∈ mT (X,O), i = 1, . . . , n are ergodic measures
and µi 6¿ µj for i 6= j, prove that there exist disjoint sets Ai ∈ O, i =
1, . . . , n, such that ∪n

i=1Ai = X and µj(Ai) = δij .

II.2.2. Let T be a continuous map of a compact metric space X and
µ ∈ mT (X) an ergodic measure.

(a) Prove that there exists a full measure subset A ⊂ X such that for
every x ∈ A we have:

lim
n→∞

1
n

n−1∑

j=0

f(T j(x)) =
∫

X

f dµ

for every continuous function f : X → C|| .

(b) Prove that for almost every x ∈ X we have

τ(x,A) = µ(A)

for every A ∈ O such that µ(∂A) = 0.

(c) Prove that for a.e. a ∈ X there exists a countable set S ⊂ (0, +∞),
such that for r 6∈ S we have

τ(a, Br(a)) = µ(Br(a))

II.2.3. Let (X,O, µ) be a probability space and T : X → X a measure-
preserving map. Prove that if f ∈ L2(X) satisfies

∞∑
n=0

∣∣∣∣∣〈U
n
T f, f〉 −

(∫

X

f dµ

)2
∣∣∣∣∣ < +∞

then

lim
n→∞

1
n

n−1∑

j=0

f(T j(x)) =
∫

X

f dµ

for almost every x ∈ X. Hint: Use Chebyshev’s inequality:

µ(Sε) ≤ σ2(f)
ε2

where σ2(f) = 〈f, f〉− (
∫

fdµ)2 and Sε = {x ∈ X : |f(x)− ∫
f dµ| > ε}.
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II.3 Ergodicity of Translations
and Linear Maps of the Torus

In Chapter I (section 4) we introduced the translations and linear maps of
the torus T| n = S1 × · · · × S1. A translation Lk : T| n → T| n, where
k = (k1, . . . , kn), was defined by Lk(x) = (k1x1, . . . , knxn). Linear maps
of T| n were defined as maps f : T| n → T| n for which there exists a
surjective linear map f̃ : IRn → IRn, called the linear lifting of f, such
that f̃(ZZn) ⊂ ZZn (i.e. the entries of the matrix of f̃ are integers
and det f̃ 6= 0) and fπ(x) = πf̃(x), where π : IRn → ZZn is the
projection map defined by π(x1, . . . , xn) = (exp(2πx1i), . . . , exp(2πxni)).
The eigenvalues of f are the eigenvalues of f̃ .

Let λ be the Lebesgue probability on T| n (which, as we proved, is
invariant under both translations and linear maps) and denote by L2(T| n)
the space of complex valued functions on T| n that are L2 with respect
to λ, endowed with its usual structure of Hilbert space.

Theorem II.3.1 A linear map f : T| n → T| n is ergodic if and only if
none of its eigenvalues is a root of unity.

Theorem II.3.2 If x ∈ IRn, then the translation Lπ(x) : T| n → T| n is
ergodic if and only if 〈k, x〉 6∈ ZZ for any k ∈ ZZn, k 6= 0.

The proofs utilize the orthonormal basis of L2(T| n) obtained from
the Fourier basis {e2πi〈k,x〉| k ∈ ZZn} of L2([0, 1] × · · · × [0, 1]). The
formal description of this basis and its basic properties are the subject of
the following lemma.

Lemma II.3.3 There exists an orthonormal basis {φk| k ∈ ZZn} of
L2(T| n) such that

(a) φ0 = 1;

(b) For every linear map f : T| n → T| n we have

φk ◦ f = φf̃∗(k)

where f̃∗ is the adjoint of f̃ .

(c) For every x ∈ IRn the translation Lπ(x) satisfies

φk ◦ Lπ(x) = ei〈k,2πx〉φk
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Proof. For each ψ : IRn → C|| satisfying ψ(x) = ψ(x + m) for
all x ∈ IRn, m ∈ ZZn, there exists a unique ψ̌ : T| n → C|| such that
ψ̌ ◦ π = ψ. Let ψk := IRn → C|| be defined by ψk(x) = ei〈k,2πx〉 and
φk : T| n → C|| by φk = ψ̌k. Then

φk ◦ f ◦ π = ψ̌k ◦ f ◦ π = ψ̌k ◦ π ◦ f̃ = ψk ◦ f̃ = ψf̃∗(k)

proving part (b). Now, for x ∈ IRn,

φk ◦ Lπ(x) ◦ π = φk ◦ π ◦ Lx = ψk ◦ Lx = ei〈k,2πx〉ψk

giving part (c). It remains to prove that {φk| k ∈ ZZn} is an orthonormal
basis of L2(T| n). Since π : [0, 1] × · · · × [0, 1] → T| n is a measure-
preserving map, we have

〈ψ1, ψ2〉 = 〈ψ1 ◦ π, ψ2 ◦ π〉
for every ψ1, ψ2 ∈ L2(T| n); here the inner products are taken in L2(T| n)
and L2([0, 1] × · · · × [0, 1]), respectively. Thus, for any ψ ∈ L2(T| n)
satisfying

〈ψ, φk〉 = 0

for all k ∈ ZZn, it follows that

〈ψ ◦ π, φk ◦ π〉 = 〈ψ ◦ π, ψk〉 = 0

for all k ∈ ZZn. This shows that ψ ◦ π = 0, because {ψk| k ∈ ZZn} is
the the orthonormal Fourier basis of L2([0, 1] × · · · × [0, 1]). Since π is
surjective, we get ψ = 0. 2

Proof of Theorem II.3.1. Since f is measure-preserving, we have

〈ψ1 ◦ f, ψ2 ◦ f〉 = 〈ψ1, ψ2〉
for every ψ1, ψ2 ∈ L2(T| n). Thus, for φ ∈ L2(T| n) such that φ ◦ f = φ,
we get

〈φ ◦ f, φf̃∗(k)〉 = 〈φ ◦ f, ψk ◦ f〉 = 〈φ, φk〉
Thus, for every k ∈ ZZn and i ≥ 0

〈φ ◦ f, φf̃∗i(k)〉 = 〈φ, φk〉 (II.3.1)

There are two possibilities for the sequence {f̃∗i(k)} – either all of its
elements are distinct, or, for some i, we have f̃∗i(k) = k. If k 6= 0 the

72



second case means that 1 is an eigenvalues of f̃∗i, hence of f̃ i, and so
f has a root of unity as an eigenvalue. Thus, if no eigenvalue of f is a
root of unity, we can only have the first case, and

‖φ‖2 =
∑

k∈ZZn

|〈φ, φk〉|2 ≥
∑

i∈ZZ
|〈φ, φf̃∗i(k)〉|2

In the latter sum all terms are equal, and thus zero since the sum is finite.
Thus, for all k 6= 0 we have 〈φ, φk〉 = 0, showing that φ is a.e. equal to
〈φ, φ0〉φ0, a constant, so f is ergodic.

Conversely, assume that f has a root of unity as an eigenvalue. Then,
for some i ≥ 0, we have det(f̃∗i − I) = 0. Since the components of the
matrix f̃∗i − I are integers, there exists some 0 6= k ∈ ZZn such that
f̃∗i(k) = k. Setting

φ :=
i−1∑

j=0

φ∗j
f̃

(k)

we conclude that

φ ◦ f =
i−1∑

j=0

φf̃∗j(k) ◦ f =
i−1∑

j=0

φj̃∗j+1(k) = φ

showing that f is not ergodic. 2

Proof of Theorem II.3.2. Let φ ∈ L2(T| n) and φ ◦ Lπ(x) = φ. Then

〈φ, φk〉 = 〈φ ◦ Lπ(x), φk〉 = 〈φ, φk ◦ Lπ(−x)〉 = e−i〈k,2πx〉〈φ, φk〉
Thus if 〈k, x〉 6∈ ZZ for every 0 6= k ∈ ZZn, we have 〈φ, φk〉 = 0 for all
0 6= k ∈ ZZn, i.e. φ is a constant. On the other hand, if there exists
0 6= k0 ∈ ZZn such that 〈k0, x〉 ∈ ZZ, then the function φk0 satisfies
φk0 ◦ Lπ(x) = φk0 . 2

II.4 Ergodic Hierarchy

In Section I.2 we proved that a measure-preserving map T of a probability
space (X,O, µ) is ergodic if and only if, for every A,B ∈ O

lim
m→∞

1
m

m−1∑

j=0

µ(T−j(A) ∩B) = µ(A)µ(B)
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In this case, if the limit of µ(T−j(A)∩B) as j →∞ exists, its value must
be equal to µ(A)µ(B).

Definition. A measure preserving endomorphism T of a probability
space (X,O, µ) is said to be mixing if for any pair A,B ∈ O

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B)

A pictorial example in a classical book by Arnold and Avez [AA] ex-
plains what a mixing map does. Suppose a cocktail shaker M, µ(M) = 1
is filled by 85% of pisco and 15% of lemon juice. Let A be the part of
the cocktail shaker originally occupied by the juice and B any part of
the shaker. Let T : M → M be the transformation of the content of the
shaker made during one move by the bartender (who is shaking the cock-
tail repeatedly). Then after n moves the fraction of juice in the part B
will be µ(Tn(A) ∩B)/µ(B). As the bartender keeps shaking the cocktail
(n →∞), the fraction of juice in any part B approaches µ(A) = 15%, i.e.
the lemon juice will spread uniformly in the mixture.

We note that the definition we gave for a mixing map is good for both
invertible and noninvertible maps (endomorphisms).

Proposition II.4.1 Any mixing map is ergodic.

Proof. Let A be any T -invariant measurable set, then T−n(A) = A
and µ(A ∩ B) = limn→∞ µ(T−n(A) ∩ B) = µ(A)µ(B). In particular, for
A = B we have µ(A) = µ2(A). This means µ(A) = 0 or 1, hence T is
ergodic. 2

We note that not all ergodic maps are mixing, see Exercise II.4.1. There-
fore, mixing is a stronger property than ergodicity.

Definition. If X is a topological space, a transformation T : X → X
is topologically mixing if for any pair of open sets U, V ⊂ X there exist
N ∈ IN such that T−n(U) ∩ V 6= ∅ for all n ≥ N.

Proposition II.4.2 If X is a topological space, O is the Borel σ-
algebra and µ a probability measure positive on open sets, then whenever
T : X → X is mixing, it is also topologically mixing.

Proof. Since, for any open sets U, V we have limn→∞ µ(T−n(U) ∩ V ) =
µ(U)µ(V ) 6= 0 it results that, for all n ≥ N, µ(T−n(U) ∩ V ) 6= 0, hence
T−n(U) ∩ V 6= ∅. 2
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Definition. A measure preserving automorphism T of a probability space
(X,O, µ) is Bernoulli if it is equivalent to a Bernoulli shift. See Example 3
in Section I.4 and Section I.8 (the shifts can be defined on a probability
space).

It can be proved that every Bernoulli automorphism is mixing, but
not vice versa. All these results are discussed in the book by Mañe [Mn],
Sections II.8 and II.11. It proves that there is the so called ergodic hierarchy:

Bernoulli ⇒ Kolmogorov (or K−mixing) ⇒ Mixing ⇒ Ergodic (II.4.1)

Each word in this row represents the set of measure preserving maps of
a probability space (X,O, µ) that satisfy the corresponding definition.
We do not provide the definition of K-mixing maps, because it is quite
complicated.

We note that all the implications in (II.4.1) are one-way only, none of
them can be reversed. This means that ergodicity does not imply mixing
(as noted above), mixing does not imply K-mixing, etc.

Exercises:

II.4.1. Let λ be the Lebesgue probability measure on the unit circle S1.
Prove:

(a) Irrational rotations of S1 are ergodic.

(b) Rotations of S1 are never mixing.
Hint: let, for example Rω be the rotation of S1 through an angle
0 < ω < 1/2. Take two arcs A,B of length πω. Then note that if
R−n

ω A ∩B 6= ∅, then R−n−1
ω A ∩B = ∅.

II.5 Statistical Properties of Dynamical Sys-
tems

For those familiar with probability theory we present an additional discus-
sion here. This section can be safely ignored, since it is not essential for
further reading.

In the language of probability theory, a Bernoulli shift represents a se-
quence of independent random variables. This immediately follows from
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the product formula (I.4.1) in Chapter I. For this reason the Bernoulli
property is regarded as a statistical property of a dynamical system. It es-
tablishes an equivalence between a dynamical system and a purely random
sequence of independent trials - a canonical model in probability theory.

This a a very interesting and important observation. A dynamical sys-
tem T : X → X is, by nature, completely deterministic. This means that
if you have a point x ∈ X, its entire future {Tnx}, n ≥ 1, is uniquely
determined and can be computed precisely. When the map T is invertible,
the past {Tnx}, n ≤ −1, is uniquely determined and computable, too. One
can look at it this way: knowing the present state of a dynamical system
(given by x ∈ X), one can determine its future and, often, its past. This is
the precise meaning we give to the word “deterministic”.

On the other hand, in a sequence of independent trials the outcome
of any trial gives no clue of what the outcomes of other trials would be
(or have been). So, knowing the present state tells just nothing about the
future or the past, the outcome of every trial being completely random
and unpredictable2. A paradox? In a sense, it is, and there are relevant
discussions in physics where the theory of dynamical systems finds most
applications. We do not elaborate on this topic here. See [Lb1, Lb2].

We do make a few extra comments, though. While the Bernoulli prop-
erty is a manifestation of an utter randomness or chaoticity, strangely, it
has little relevance to direct physical applications. Why? Because the
equivalence between a dynamical system and a Bernoulli shift is, usually,
given by just a measurable map with a very complicated structure, not at
all smooth or even continuous. In physics, on the other hand, the laws
of motion are usually specified by differential equations (like Newton or
Hamiltonian equations), and all interesting functions (such as tempera-
ture, energy, pressure) are smooth as well. Hence, only the properties of
dynamical systems expressed by smooth maps and smooth functions are
relevant in physics.

For these reasons, assuming that X is a manifold, T : X → X a smooth
map preserving a probability µ and f : X → IR a smooth function, one can
characterize the system in a physically meaningful way as follows. Consider

Sn = f + f ◦ T + f ◦ T 2 + · · ·+ f ◦ Tn−1 (II.5.1)

The quotient Sn/n is called the time average of the function f . Adopting
physical notation, we denote by 〈·〉 the expected value of a function with

2We note that despite this fact, the long time behavior of a sequence of independent
trials can be quite accurately described by the laws of probability theory.
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respect to µ, e.g. 〈f〉 =
∫

X
f dµ. The integral 〈f〉 is also called the space

average of f .
Now the Birkhoff Ergodic Theorem asserts that if T is ergodic, then

Sn/n converges almost everywhere to 〈f〉 as n → ∞. In physical lan-
guage, it means that time averages converge to space averages. In
probability theory, this fact is also called the strong law of large numbers.

An important characteristic of a dynamical system is the time correla-
tion function

Cf (n) = 〈f · (f ◦ Tn)〉 − 〈f〉2. (II.5.2)

If the map T is mixing, one can show that Cf (n) → 0 as n → ∞ (see Ex.
II.5.1), i.e. the correlations decay, as physicists call it. The asymptotic
speed of convergence Cf (n) → 0 characterizes the “speed of mixing” in the
system. See [Vi, Ba, CY]

Next, we say that f satisfies the central limit theorem if

lim
n→∞

µ

{
x:

Sn(x)− n〈f〉√
n

< z

}
=

1√
2πσ

∫ z

−∞
e−

s2

2σ2 ds (II.5.3)

for all −∞ < z < ∞. Here σ = σf ≥ 0 is a constant related to the
correlation function:

σ2
f = Cf (0) + 2

∞∑
n=1

Cf (n) (II.5.4)

Equation (II.5.3) is equivalent to the convergence of (Sn − n〈f〉)/√n in
distribution to the normal random variable N(0, σ2

f ). We remark that the
central limit theorem is considerably more refined than the Birkhoff Ergodic
Theorem; it tells us that the distribution of the deviations of the time aver-
age Sn/n from its limit value 〈f〉, when scaled by 1/

√
n, is asymptotically

Gaussian.
It is clear from (II.5.4) that the central limit theorem only holds if∑

n |Cf (n)| < ∞. Actually, the proof of this theorem requires even a more
rapid convergence of Cf (n) to zero. For these (and other) reasons the
speed of that convergence is regarded as an important statistical character-
istic of the system. Two main types of convergence are exponential, when
|Cf (n)| < const · e−an, a > 0, and polynomial, when |Cf (n)| < const ·n−b,
b > 0. Systems with exponential decay of correlations are the “most
chaotic”, they possess many features necessary for applications in statistical
physics. Systems with polynomial decay are regarded as being intermedi-
ate (“intermittent”) between “regular” and “chaotic”, and their behavior
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is very sensitive to the exact value of the power b > 0 and other factors
which may limit their applications in statistical physics.

It is also interesting to note that if one relaxes the requirement that
the function f in (II.5.2) be smooth, then one totally loses control over
the decay of correlations. In all known mixing dynamical systems, the
convergence Cf (n) → 0 is indeed arbitrarily slow for generic integrable
functions, even for generic continuous functions. So, the smoothness of f
is essential.

On the other hand, quite surprisingly, for many interesting dynamical
systems one can actually prove the above central limit theorem, and obtain
good estimates on the decay of correlations for smooth functions f . This
opens the door to close interaction between the theory of dynamical systems
and probability theory and statistical mechanics, which is currently a very
active area of research.

Exercises:

II.5.1. Let T : X → X be a mixing map preserving a probability µ.
Prove that for any f, g ∈ L2(X)

∫

X

f(Tnx)g(x) dµ →
∫

X

f(x) dµ ·
∫

X

g(x) dµ

Hint: first consider two simple functions f, g, and then approximate L2

functions by simple ones.

II.5.2. Under the conditions of Poincaré recurrence theorem, assume that
f : X → C|| is a measurable function such that f(x) 6= 0 almost every-
where. Show that the sequence Sn(x) defined by (II.5.1) diverges almost
everywhere. Hint: consider the sets An = {x ∈ X: |f(x)| > 1/n}.
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Chapter III

Lyapunov exponents.
Pesin Theory

III.1 Lyapunov Exponents

Let p be a fixed point of a diffeomorphism f : A → A of an open
set A ⊂ IRd. We want to study the behaviour of fn (n ∈ ZZ) in a
neighborhood of p. As a first approximation to f we consider its linear
part (i.e., the derivative) f ′p : IRd → IRd.

Let
α1, α2, . . . , αr, αr+1, ᾱr+1, . . . , αs, ᾱs

be all the distinct roots of the characteristic polynomial of f ′p. In this
sequence, we denoted by α1, . . . , αr all the real roots and by αj , ᾱj ,
r + 1 ≤ j ≤ s, all the conjugate pairs of complex roots. Let also m̃j ,
1 ≤ j ≤ s, be the respective multiplicities. The theorem of Jordan (real
canonical form) says that the roots (eigenvalues of f ′p) are associated to
f ′p-invariant generalized eigenspaces Ẽj , 1 ≤ j ≤ s, whose respective
dimensions equal m̃j for 1 ≤ j ≤ r and 2m̃j for r < j ≤ s (in the latter case
the space Ẽj is associated to the pair αj , ᾱj). Moreover, IRd = ⊕s

j=1Ẽj .
Note that since f is a diffeomorphism, then det f ′p 6= 0, hence we have
αj 6= 0 for all j.

If vi is an eigenvector of Ẽi, then (fn)′pvi = αn
i vi, hence

log ‖(fn)′pvi‖ = n log |αi|+ log ‖vi‖
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for all n ∈ ZZ. While this is not true for any vector vi ∈ Ẽi, it is true that

lim
n→±∞

1
n

log ‖(fn)′p vi‖ = log |αi| (III.1.1)

for every ~0 6= vi ∈ Ẽi, see Exercise III.1.1. This shows that when |αi| >
1, the vector (fn)′p vi grows exponentially fast as n → ∞ and shrinks
exponentially as n → −∞. If |αi| < 1, then it is vice versa. If |αi| = 1,
then there is no exponential growth or contraction, but there might be a
slow (e.g., linear in n) growth or contraction of the vector (fn)′p vi.

The equation (III.1.1) suggests that we study not the eigenvalues αi,
but the logarithms of their moduli,

λi = log |αi|

which are called the Lyapunov exponents of the map f at the fixed point
p. We note that some distinct eigenvalues αi 6= αj correspond to the same
Lyapunov exponent if |αi| = |αj |. In this case each nonzero vector of the
direct sum of the corresponding subspaces Ẽi⊕Ẽj satisfies (III.1.1). So, we
have a decomposition of IRd as a direct sum of subspaces E1⊕· · ·⊕Em(p)

such that if ~0 6= vi ∈ Ei, then

lim
n→±∞

1
n

log ‖(fn)′p vi‖ = λi(p) (III.1.2)

where λi(p) is the Lyapunov exponent associated to Ei.
Moreover, if we suppose that there are no zero Lyapunov exponents at

the fixed point p (we will say that such a point p is hyperbolic), we can sum
all the subspaces with negative Lyapunov exponents and all the subspaces
with positive Lyapunov exponents to obtain, respectively, subspaces Es

and Eu, such that
(E1) IRd = Es ⊕ Eu,
(E2) f ′p(E

s) = Es and f ′p(E
u) = Eu

(E3) there exist λ > 0 and n0 ≥ 1 such that for all |n| ≥ n0

1
n

log ‖(fn)′p v‖ ≤ −λ v ∈ Es, ‖v‖ = 1

and
1
n

log ‖(fn)′p v‖ ≥ λ v ∈ Eu, ‖v‖ = 1
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This means that the vectors of Es are contracted by forward iterations
of f ′p and expanded by backward iterations of f ′p. It is vice versa for the
vectors of Eu. We note that it might happen that Eu = {~0} or Es = {~0}.
We will be primarily interested in the study of hyperbolic points.

The theorem of Grobman-Hartman assures that at a hyperbolic fixed
point p the behaviour of f is similar to its linear part. Precisely, to
(f ′p)-invariant subspaces Es, Eu there correspond f -invariant submanifolds
W s(p), Wu(p) ⊂ A (differentiably immersed in A) such that
(W1) TpW

s(p) = Es and TpW
u(p) = Eu,

(W2) there is a neighborhood U(p) ⊂ A such that f(W s(p)∩U(p)) ⊂ W s(p)
and f(Wu(p) ∩ U(p)) ⊂ Wu(p) and
(W3) we have

lim
n→∞

fn(y) = p y ∈ W s(p)

and
lim

n→∞
f−n(y) = p y ∈ Wu(p)

We refer to [PM, KH] for a proof, and only note that the idea is representing
f in a local coordinate system at p, associated with Es and Eu, and
then constructing W s(p) as a graph of a function in those coordinates by
successful iterations of f−1. The result for Wu follows by substitution of
f for f−1.

The above results easily extend to any diffeomorphism f : A → A of an
open subset A ⊂ M of a Riemannian manifold M , rather than A ⊂ IRd. A
Riemannian structure in M is necessary for the norm ‖·‖ to be well defined.
The proofs are essentially the same as in the case of IRd. Henceforth we
assume that f is defined on an open subset of a Riemannian manifold.

It is necessary for our subsequent study to specify the speed of con-
vergence in (W3). We denote by dist(·, ·) the distance on the Riemannian
manifold M . Let λ > 0 be such that no Lyapunov exponent lies in the
interval (−λ, λ). Then we can specify (W3) as
(W3’) we have

dist(fn(y), p) ≤ Ce−λn y ∈ W s(p)

and
dist(f−n(y), p) ≤ Ce−λn y ∈ Wu(p)

for all n ≥ 0 and some constant C > 0.
If p is not a fixed point, but a periodic one, with period k, all these

results apply to the map fk : A → A.
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If p is not a periodic point, we still can define Lyapunov exponents in a
similar way:

Definition. Let the map fn be differentiable at a point p ∈ M for all
n ∈ ZZ. Assume that the tangent space TpM is a direct sum of subspaces
E1 ⊕ · · · ⊕ Em(p) such that if ~0 6= vi ∈ Ei, then

lim
n→±∞

1
n

log ‖(fn)′p vi‖ = λi(p) (III.1.3)

Then the values λi(p) are called Lyapunov exponents at the point p, whose
multiplicities are dim Ei.

We note that the existence of the limit (III.1.3) is not guaranteed for
any point p ∈ A, we will return to this issue in the next section. For now,
we will say that p has all Lyapunov exponents if the above limits exist.

If a point p has all Lyapunov exponents and none of them is zero, we call
p a hyperbolic point. For a hyperbolic point p ∈ M , we have TpM = Es

p⊕Eu
p ,

where
Es

p = ⊕λi(p)<0Ei and Eu
p = ⊕λi(p)>0Ei (III.1.4)

All the above results apply to hyperbolic (nonperiodic) points, including
the existence of submanifolds W s(p) and Wu(p), but the property (W3’)
above has to be modified accordingly:
(W3”) we have

dist(fn(y), fn(p)) ≤ Ce−λn y ∈ W s(p)

and
dist(f−n(y), f−n(p)) ≤ Ce−λn y ∈ Wu(p)

for all n ≥ 0 and some constant C > 0.
Let us look at the above properties closely. They mean that the forward

orbits of the points of W s(p) are getting close to each other (converge)
exponentially fast. For this reason W s(p) is called the stable manifolds (the
term comes from differential equations, where the convergence of solutions
is interpreted as stability). The forward orbits of the points of Wu(p) get
separated (diverge) exponentially fast, and for this reason Wu(p) is called
the unstable manifold. Note, though, that the backward orbits of Wu(p)
converge, and the backward orbits of W s(p) diverge.

We see that the orbits of all the points near a hyperbolic point p are
very unstable: they diverge (get separated) exponentially fast either in the
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future or in the past, or both. Indeed, if dimW s(p) 6= 0 and dim Wu(p) 6= 0,
then for any point y close to p and not exactly lying on Wu(p) or W s(p),
the trajectory of y separates from that of p both in the future and in the
past! That exponential separation of trajectories is the main source of
instability, turbulence, mixing – all that we call chaos.

The studies of dynamical systems with hyperbolic points have began
long ago. Around 1900 J. Hadamard proved the hyperbolicity for geodesic
flows on manifolds of constant negative curvature. In the 1930s J. G. Hed-
lund and E. Hopf studied the ergodic properties of these flows.

Based on the studies of geodesic flows, in the 1960s D. Anosov (and
S. Smale, in a different form) introduced general classes of diffeomorphisms
with hyperbolic points. We provide the definition of what is now called an
Anosov diffeomorphism (which Anosov himself originally called “diffeomor-
phisms with a condition”, or C-diffeomorphisms, C stands for “condition”).

Definition. A diffeomorphism f : M → M of a compact Riemannian
manifold is said to be Anosov if there are constants K > 0, λ > 0 such
that at each point p ∈ M a decomposition TpM = Es

p ⊕Eu
p exists with the

properties
(A1) Es

p and Eu
p are f ′-invariant, i.e. f ′p(Es

p) = Es
f(p) and f ′p(Eu

p ) = Eu
f(p),

(A2) for all n ≥ 0

‖(fn)′pv‖ ≤ Ke−nλ‖v‖ v ∈ Es
p

‖(f−n)′pv‖ ≤ Ke−nλ‖v‖ v ∈ Eu
p

(A3) the spaces Es
p and Eu

p depend on p continuously.

The condition (A3) is included by tradition, it actually follows from the
other two.

Note that Anosov’s conditions (A1) and (A2) are actually weaker than
the requirements in the definition of Lyapunov exponents. Indeed, Lya-
punov exponents need not exist at all points for an Anosov diffeomorphism.
Nonetheless, the conditions (A1) and (A2) capture the essence of hyperbol-
icity, in particular at all p ∈ M there exist stable and unstable manifolds
W s(p) and Wu(p) satisfying (W3”), and their tangent planes are Es

p and
Eu

p , respectively. For these reasons, points that satisfy the conditions (A1)
and (A2) are frequently called hyperbolic (even when Lyapunov exponents
technically do not exist there). This may seem a confusing terminology,
but it will be essentially clarified in the next section.
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Remark. The constant K in the condition (A2) obviously plays an aux-
iliary role. It is remarkable that one can always change the Riemannian
metric on M so that the condition (A2) will hold with K = 1, i.e. the
constant K can be dropped. In this case the contraction of stable vectors
v ∈ Es

p and the expansion of unstable vectors v ∈ Eu
p under (fn)′p will

be monotonic in n. Such a metric, in which K = 1, is called the adapted
metric or Lyapunov metric.

Exercises:

III.1.1. Verify the formula (III.1.1). Assume, for simplicity, that dim Ẽi =
2. There are two cases here. If αi is a real root of multiplicity 2, then f ′

restricted to Ẽi is given by a Jordan matrix J =
(

αi 1
0 αi

)
. Verify that

Jn =
(

αn
i nαn−1

i

0 αn
i

)
for all n ∈ ZZ and then derive (III.1.1). If αi = a+bi

is a complex root, b 6= 0, then the corresponding Jordan canonical form is

J =
(

a b
−b a

)
. Verify that Jn = |αi|n

(
cosnϕ sin nϕ

− sin nϕ cos nϕ

)
for some

ϕ ∈ [0, 2π) and all n ∈ ZZ, and then derive (III.1.1).

III.2 Oseledec’s Theorem

Here we are concerned with the existence of Lyapunov exponents, in other
words the existence of the limit (III.1.3). The following example shows that
there may be plenty of points where Lyapunov exponents fail to exist.

Example. Let f : S1 → S1 be a circle diffeomorphism given by f(x) =
x+ 1

3π sin 2πx, where 0 ≤ x < 1 is the cyclic coordinate on S1. We have two
fixed points here, x0 = 0 and x1 = 1/2, both with Lyapunov exponents:
λ(x0) = log f ′(x0) = log(5/3) > 0 and λ(x1) = log f ′(x1) = log(1/3) < 0.
Since λ(x0) > 0, the point x0 is unstable (a repeller), likewise, x1 is a stable
point (an attractor). For any point p ∈ (0, 1/2) we have fn(p) → 1/2 and
f−n(p) → 0 as n → ∞. Hence, by the chain rule, for any nonzero vector
v ∈ Tp(S1) we have

log(5/3) = lim
n→−∞

1
n

log ‖(fn)′pv‖ 6= lim
n→∞

1
n

log ‖(fn)′pv‖ = log(1/3)
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This shows that the limit in (III.1.3) does not exist. The same conclusion
holds for any p ∈ (1/2, 1).

We now see that Lyapunov exponents only exist at two fixed points, x0

and x1, and nowhere else on S1. Hence, it seems like Lyapunov exponents
are “very rare” in any reasonable sense: by simple count, topologically, with
respect to the Lebesgue measure... But stop! Why should we care about
the Lebesgue measure, if it is not invariant under f? The measure-theoretic
point of view developed in Chapter II prescribes to study f with the help
of invariant measures. It is not hard to find all the invariant measures
of the map f here (see Ex. III.2.1). Any invariant measure is supported
by the two point set {x0, x1}. So, with respect to any invariant measure,
Lyapunov exponents exist almost everywhere!

It is remarkable that the above fact is very general, and this is the
content of Oseledec1 multiplicative ergodic theorem, which we call shortly
Oseledec’s theorem. The version of that theorem which we state below is
sufficient for all piecewise smooth maps studied in this book, including bil-
liards in Chapter IV, but there is a more general version involving cocycles
that we will not discuss.

First, we introduce a general class of maps that are called smooth maps
with singularities.

Definition. Let M be a finite union of compact Riemannian manifolds
M1,M2, . . . , Ms (perhaps with boundaries and with corners), all of the
same dimension d ≥ 2, glued along a finite number of C1 submanifolds of
positive codimensions. These submanifolds are contained in G, the union
of a finite number of C1 compact submanifolds of positive codimension in
M1, . . . , Ms. Then V = M \ G is an open dense subset of M . Lastly, let
N ⊂ V be an open set and f : N → V a Cr diffeomorphism (r ≥ 1)
between N and its image, i.e. a diffeomorphic embedding of N into V . We
call f a smooth map with singularities.

Note that the inverse map f−1 is well defined on the open set f(N).
Hence, f−1 is also a smooth map with singularities. We denote by

H = ∩∞n=−∞fnN

the set of points where all the iterates of f are defined.

1The name is pronounced Oseledets.
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Theorem III.2.1 (Oseledec, [Os]) Assume that the map f : N → V
preserves a Borel probability measure µ on M and µ(H) = 1. If

∫

M

log+ ‖(f)′p‖ dµ(p) < ∞ and
∫

M

log+ ‖(f−1)′p‖ dµ(p) < ∞

where log+ s = max{log s, 0}, then there exists an f -invariant set E ⊂ H,
µ(E) = 1, such that for every point p ∈ E all the Lyapunov exponents exist.

In other words, Lyapunov exponents exist almost everywhere (with re-
spect to any invariant measure). Since it is standard in ergodic theory
to ignore sets of zero measure, we can simplify matters by thinking that
“Lyapunov exponents always exist”. This explains why the points satisfy-
ing Anosov’s conditions (A1) and (A2) in the previous section are said to be
hyperbolic - the mere existence of Lyapunov exponents (almost everywhere)
is guaranteed by Oseledec’s theorem.

For p ∈ Γ we denote by λ1(p) > λ2(p) > · · · > λm(p)(p) all distinct Lya-
punov exponents and by E1(p), . . . , Em(p)(p) the corresponding subspaces
in the tangent space TpM . For any real number κ ∈ IR and p ∈ Γ denote

E−
p,κ = ⊕λi(p)≤κEi(p) E+

p,κ = ⊕λi(p)>κEi(p)

(this is a generalization of Es
p and Eu

p from the previous section).

Remark. Oseledec’s theorem also includes the following fact, which we
state separately. Let γκ(p) denote the angle between the spaces E−

p,κ and
E+

p,κ. Then

lim
n→±∞

1
n

log γκ(fn(p)) = 0 (III.2.1)

i.e. the angle γκ(fn(p)) slowly changes with n (more slowly than any
exponential function).

Let p ∈ N be a periodic point of period k and µ the atomic invari-
ant measure supported by the finite set {p, f(p), . . . , fk−1(p)}, i.e. let
µ(f i(p)) = 1/k for 0 ≤ i < k. Then the hypotheses of Osedelec’s The-
orem are satisfied, hence all the Lyapunov exponents exist at the points
p, f(p), . . . , fk−1(p). So, this theorem includes the results obtained in the
previous section for periodic points as a particular case.

The proof of Oseledec’s theorem is very difficult, and we omit it.
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The existence of Lyapunov exponents leads the following question: can
we construct stable and unstable manifolds as we did for fixed points in
the previous section? In the next section we give an affirmative answer in
a somewhat different context.

Exercises:

III.2.1. In the example f : S1 → S1 discussed in the beginning of this
section, find all f -invariant probability measures on S1. Hint: consider a
small interval I = (a, b) ⊂ (0, 1/2) such that f(I) ∩ I = ∅ and show that
µ(I) = 0 for any invariant probability µ.

III.2.2. In the context of Oseledec’s Theorem, prove that m(p) and λ1(p),
. . .,λm(p)(p) are f -invariant functions and f ′p(Ei(p)) = Ei(f(p)) for all 1 ≤
i ≤ m(p). This has an important implication: if the measure µ is ergodic,
then all the Lyapunov exponents are constant almost everywhere.

III.3 Pesin Theory. Nonuniform Hyperbolic-
ity

We now turn back to the notion of hyperbolicity introduced in Section III.1.
Recall that a point p is hyperbolic if it has all Lyapunov exponents and none
of them equals zero. In addition, we agreed to call a point p hyperbolic if it
satisfied Anosov’s conditions (A1) and (A2) given in the end of Section III.1.
We said that while those conditions technically did not imply the existence
of Lyapunov exponents, they guaranteed that those exponents are different
from zero (and are at least λ in absolute value!) whenever they existed.

It is now important to notice that the conditions (A1) and (A2) are
actually much stronger than mere hyperbolicity, because the constant K
is the same for all p ∈ M . Indeed, if we just assume that a point p is
hyperbolic and none of its Lyapunov exponents lie in an open interval
(−λ, λ), then we can only deduce (see Exercise III.3.1) that for any ε > 0
there is a K(p, ε) > 0 such that for all n ≥ 1

‖(fn)′pv‖ ≤ K(p, ε) e−n(λ−ε)‖v‖ v ∈ Es
p (III.3.1)

‖(f−n)′pv‖ ≤ K(p, ε) e−n(λ−ε)‖v‖ v ∈ Eu
p (III.3.2)
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where Es
p and Eu

p are defined by (III.1.4).
It is important that the constant K(p, ε) above depends, generally, on

the point p. In other words, it is the uniformity of the factor K in the
conditions (A1)-(A2) that distinguishes Anosov diffeomorphisms from more
general hyperbolic maps. Accordingly, maps that satisfy the conditions
(A1)-(A2) with a uniform constant K for all points, are called uniformly
hyperbolic. More general hyperbolic maps, which only satisfy the conditions
(III.3.1)-(III.3.2) above, are called nonuniformly hyperbolic.

We note that when K(p, ε) is large, then the effect of contraction of
stable vectors and that of expansion of unstable vectors can only be seen
for large enough n. So, the contraction and expansion are only asymptotic,
and for arbitrarily long periods of time neither may occur. Moreover, stable
vectors may temporarily expand under (fn)′p. This is all very characteristic
to nonuniformly hyperbolic systems.

A systematic study of nonuniformly hyperbolic diffeomorphisms with
absolutely continuous invariant measures was done by Ya. Pesin in mid-
seventies [Pe1, Pe2]. In the eighties, Pesin’s theory was extended to more
general nonuniformly hyperbolic maps by F. Ledrappier, A. Katok, D. Ru-
elle, and L.-S. Young, among others. We follow the exposition by A. Katok
and J.-M. Strelcyn [KS] that covers a large class of nonuniformly hyperbolic
maps with singularities. That class includes physically important billiard
models, which we will study separately in Chapter IV.

Let f be a smooth map with singularities as defined in the previous
section. We will use the same notation M, G, V, N, and H. Let µ be an
f -invariant measure satisfying the conditions of Oseledec’s theorem. We
additionally require that the class of smoothness of f be at least r ≥ 2.
The set S := M \ N where the map f is not defined will be called the
singularity set.

Let d(x, S) = inf{dist(x, y) : y ∈ S} be the distance from x ∈ N
to S. For x ∈ N , we denote by expx: TxN → N the exponential map
(it is defined by expx(v) = γ(x, v, 1), where γ(x, v, t) is the geodesic in N
defined by γ(x, v, 0) = x and γ̇(x, v, 0) = v). Let R(x,N) be the radius of
injectivity of the map expx: TxN → N , i.e. R(x,N) = sup{r: expx is one-
to-one on the ball Br(0) ⊂ TxN}. The map expx is defined and injective
on the ball Br(x,N)(0) ⊂ TxN where r(x,N) = min{R(x,N), d(x, S)}.

We define fox = exp−1
f(x) ◦f ◦ expx. This is a proper way to represent f

in a linear coordinate system near the point x. This map is well defined in
a neighborhood of 0 ∈ TxN .
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We now make two additional assumptions made by Katok and Strelcyn
[KS]:
(KS1) There are constants C1 > 0 and a > 0 such that for all ε > 0 the
µ-measure of the ε-neighborhood of S satisfies

µ(Uε(S)) ≤ C1 εa

i.e. the measure µ does not build up too much near the singularity set S.
(KS2) There are constants C2 > 0 and b > 0 such that for every x ∈ N
and v ∈ TxN , ‖v‖ ≤ r(x,N) we have

‖f ′′ox(v)‖ ≤ C2 d(expx(v), S)−b

i.e. the second derivative f ′′ox does not grow too fast near the singularity
set S.

Oseledec’s theorem implies that µ-almost every point x ∈ H has all
Lyapunov exponents λ1(x) < · · · < λm(x)(x). The set of all hyperbolic
points in N is often called the Pesin region of f :

Σ(f) = {x ∈ H : λi(x) 6= 0, for every i = 1, . . . , m(x)}

We note that the Pesin region Σ(f) is invariant under f . At every point
x ∈ Σ(f) we have the usual subspaces Es

x and Eu
x defined by (III.1.4), and

let
λ+(x) = min{λi(x) > 0} and λ−(x) = max{λi(x) < 0}

be the smallest (in absolute value) positive and negative exponents, respec-
tively.

The following theorem is, in fact, a generalization of our early conditions
(III.3.1), (III.3.2), cf. also Exercise III.3.1.

Theorem III.3.1 Given ε > 0, there is a measurable function C(x, ε) on
Σ(f) such that for all x ∈ Σ(f), n ≥ 1 and m ∈ ZZ

‖(fn)′fmxv‖ ≤ C(x, ε) eλ−(x)n+εn+ε|m|‖v‖ v ∈ Es
x

‖(fn)′fmxv‖ ≥ C−1(x, ε) eλ+(x)n−εn−ε|m|‖v‖ v ∈ Eu
x

and the angle γ(fmx) between Es
fmx and Eu

fmx satisfies

γ(fmx) ≥ C−1(x, ε)e−ε|m|
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This theorem allows us to use the same argument as in Grobman-
Hartman theorem and construct stable and unstable manifolds:

Theorem III.3.2 For µ-almost every x ∈ Σ(f) there is a δ(x) ∈ (0, r(x,N))
such that for any small ε > 0 the set

W s(x) = {y ∈ expx Bδ(x)(0): lim sup
n→∞

1
n

log dist(fn(x), fn(y)) ≤ λ−(x) + ε}

is a Cr differentiable (stable) manifold. Similarly,

Wu(x) = {y ∈ expx Bδ(x)(0): lim inf
n→−∞

1
n

log dist(fn(x), fn(y)) ≥ λ+(x)− ε}

is a Cr differentiable (unstable) manifold. We also have

TxW s(x) = Es
x and TxWu(x) = Eu

x

We note that the stable and unstable manifolds at x are transversal,
i.e. they intersect in the point x alone and the angle between them is
positive. We also note that W s(x) and Wu(x) exist almost everywhere,
but not necessarily everywhere, on Σ(f). Their existence is an important
issue, so we provide some more details. These manifolds fail to exist at
points x ∈ Σ(f) whose trajectories approach the singularity set S too fast.
More specifically, let

d(fnkx, S) < βnk for some β < e−λm(x)(x)

and for some infinite sequence nk →∞. Then W s(x) cannot exist. Indeed,
if it did exist, it would have contracted too slowly under the iterates of f
and so would hit the set S sooner or later, i.e. for some nk > 0 we would
have fnk(W s(x)) ∩ S 6= ∅, which is impossible by the definition of W s(x)
given in the above theorem.

Fortunately, our assumption (KS1) guarantees that for almost every
point x ∈ N there are c(x) > 0 and κ > 0 such that

d(fn(x), S) > c(x) |n|−κ

for all 0 6= n ∈ ZZ (see Exercise III.3.2). This fact, in turn, can be used to
derive the existence of W s(x) and Wu(x) and even estimate their size, we
omit further details.
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Stable and unstable manifolds can be efficiently used in the study of
ergodic properties of the map f . We explain how it goes. Let B ⊂ H
be an f -invariant set such that µ(B) > 0. Then the map fB := f |B (the
restriction of f to B) preserves the probability µB , which is obtained by
conditioning the measure µ on B. We recall that the map fB :B → B is
ergodic iff every function g ∈ L1(B) that is fB-invariant is constant almost
everywhere on B, cf. Section II.2.

A classical method to construct a set B on which the map fB is ergodic
(with respect to the measure µB) uses stable and unstable manifolds and
goes back to E. Hopf. Take any point x ∈ Σ(f) and its stable and unstable
manifolds W s(x), Wu(x). Let g be an f -invariant function, and assume,
for simplicity, that it is continuous on M (integrable functions then can
be approximated by continuous ones, but this step is purely technical, and
we omit it). Then one can show that g is constant on Wu(x) ∪ W s(x),
see Exercise III.3.3. Since this fact applies to any other point of the set
Σ(f) as well, we can proceed as follows. Start by fixing x ∈ Σ(f) and
construct a set B1 (a first approximation to B) as the union of all unstable
manifolds Wu(y), y ∈ W s(x), and all stable manifolds W s(z), z ∈ Wu(x).
The function g then must be constant on B1.

We can defining sets Bn, n ≥ 2, recursively by

Bn = ∪{Wu(y) ∪W s(y) : y ∈ Bn−1}
One can easily show, by induction on n, that the function g is constant
on Bn for each n. We now put B∞ = ∪nBn. Clearly, the function g is
constant on the entire set B∞. Then it is enough to put

B = ∪∞n=−∞fn(B∞) (III.3.3)

and the map fB : B → B will be ergodic.
We now describe the set B∞. One can easily verify that B∞ consists

of all the points y ∈ Σ(f) for which there exists a finite sequence x =
z0, z1, . . . , zk−1, zk = y with the property that for all 0 ≤ i ≤ k − 1 either
W s(zi) ∩Wu(zi+1) 6= ∅ or Wu(zi) ∩W s(zi+1) 6= ∅ (clearly, all zi ∈ B∞).
In other words, for any y ∈ B∞ there is a chain of stable and unstable
manifolds that joins the point y with the original point x. Such a chain is
usually called Hopf chain or a zig-zag. Now one can say that the set B∞ is
the union of all Hopf chains (or zig-zags) starting at x.

Now let us look how big the set B∞ is. The stable and unstable mani-
folds, W s(y) and Wu(y), are transversal to each other at any y ∈ Σ(f), i.e.
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the angle between them is positive (and, in fact, it is bounded away from
zero in a neighborhood of x). Note also that dim W s(y)+dim Wu(y) =
dim M by hyperbolicity. Assume for simplicity that all the stable and un-
stable manifolds W s(y), Wu(y) in a neighborhood of x are large enough,
say, let dist(y, ∂W s(y)) ≥ c and dist(y, ∂Wu(y)) ≥ c for some constant
c > 0 and all y close to x. Then one can easily prove that the set B∞
contains an open neighborhood of x in the Pesin region Σ(f). This fact is
called local ergodicity (or sometimes local ergodic theorem). We will return
to local ergodicity in the next section.

In systems with singularities, though, stable and unstable manifolds
can be arbitrarily short. This happens for the same reason as why they
sometimes fail to exist at all, as we have shown above. Hence, B∞ may
not cover any open neighborhood of x in Σ(f), i.e. there might be some
tiny islands left out arbitrarily close to x. But it is still possible to show
that the set B∞ has a positive µ measure. The set B defined by (III.3.3)
is called an ergodic component of the map f . The following theorem given
without proof summarizes our discussion:

Theorem III.3.3 (Pesin [Pe2]) Let µ(Σ(f)) > 0. There exist sets Σi ⊂
Σ(f), i = 0, 1, 2, . . . , J (J ≤ +∞) such that
(i) Σi ∩ Σj = ∅ for i 6= j and ∪iΣi = Σ(f);
(ii) µ(Σ0) = 0 and µ(Σi) > 0 for i > 0;
(iii) f(Σi) = Σi for i ≥ 0
(iv) f |Σi is ergodic with respect to µΣi for i > 0.
Furthermore, for every i > 0 we have Σi = Σi,1 ∪ · · · ∪ Σi,J(i) with some
1 ≤ J(i) < ∞ such that
(v) Σi,j ∩ Σi,k = ∅ for j 6= k;
(vi) f(Σi,j) = Σi,j+1 for 1 ≤ i < J(i) and f(Σi,J(i)) = Σi,1;
(vii) the map fJ(i) restricted to Σi,j is mixing for every 1 ≤ j ≤ J(i).

According to a tradition, the partition of Σ(f) into the sets Σi,j is
called spectral decomposition. The above statement is referred to as the
spectral decomposition theorem. This name comes from the fact that the
numbers J and J(i), i ≥ 1, determine the leading eigenvalues (those, whose
absolute values equal one), and their multiplicities, of the unitary operator
associated with the map f on Σ(f), as defined in Section I.8.

Definition. If µ(Σ(f)) = 1, that is, if the Pesin region has full measure
in N , we will say the map f is nonuniformly hyperbolic, or has chaotic
behaviour.
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Next, we state two other important theorems in the Pesin theory. They
involve the entropy and periodic points of the map f . Their proofs, even
on a heuristic level, are beyond the scope of this book, so we omit them
completely.

We learned in Section I.9 that the entropy is a numerical characteristic
of a chaotic dynamical system. It represents the exponential rate of growth
of the complexity of the map fn as n →∞. Now we also know that posi-
tive Lyapunov exponents characterize the exponential rate of separation of
trajectories under fn as n → ∞. It should then come as no surprise that
the entropy hµ(f) is closely related to the positive Lyapunov exponents of
f , as stated below:

Theorem III.3.4 (Pesin Formula) Assume that the measure µ is abso-
lutely continuous with respect to the Lebesgue measure on N , and assume
an extra technical condition (KS3) stated below. Then the entropy of f with
respect to the measure µ is

hµ(f) =
∫

H

∑

λi(x)>0

λi(x) · dim Ei(x) dµ (III.3.4)

i.e. the entropy equals the average sum of all positive Lyapunov exponents,
counting multiplicities.

The extra technical condition in the theorem is this:
(KS3) there exist C3 > 0 and c > 0 such that for every x ∈ N we have

‖f ′x‖ < C3 d(x, S)−c

It somewhat strengthens the assumptions of Oseledec’s theorem, but not
very much.

Remark. Actually, Theorem III.3.4, as stated, is the original version of
Pesin’s formula. Later (III.3.4) has been extended to measures µ that are
not absolutely continuous on N but whose conditional measures on unstable
manifolds are absolutely continuous. The latter means the following: if we
take a measurable partition ξ of N such that each atom (element) A ∈ ξ is
a domain on an unstable manifold, i.e. A ⊂ Wu(x) for some x ∈ N , then
the conditional measure µ|ξ is absolutely continuous with respect to the
Lebesgue measure on unstable manifolds. Such measures are now usually
called Sinai-Ruelle-Bowen measures2 (or SRB measures).

2These measures were first studied by Sinai [Si3], Ruelle [Ru1] and Bowen [Bo2] in
the seventies.
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Pesin formula (III.3.4) implies that if µ(Σ(f)) > 0, then hµ(f) > 0 for
absolutely continuous (and SRB) measures. Katok showed that this fact is
actually more general:

Proposition III.3.5 (Katok [Ka]) Assume that the measure µ has no
atoms, i.e. µ({x}) = 0 for every point x ∈ N . If µ(Σ(f)) > 0 and the
restriction of f to the Pesin region Σ(f) is ergodic, then hµ(f) > 0.

Another theorem in the Pesin theory involves periodic points of the map
f . Let

Pn(f) = #{x ∈ N : fn(x) = x}
be the number of periodic points of period n (more precisely, this is the
number of fixed points for fn) We also denote by supp µ the support of
the measure µ (i.e. the minimal closed set of full measure), defined by
supp µ = ∩{E:µ(E) = 1 and E is closed}.

Theorem III.3.6 (Katok [Ka]) If µ(Σ(f)) = 1, then
(a) Periodic points are dense in the set supp µ;
(b) lim supn→∞

log Pn(f)
n ≥ hµ(f)

Katok’s theorem III.3.6 implies that the number of periodic points
Pn(f) grows at least exponentially in n, and the exponent is at least the
entropy of f . We note that for Anosov diffeomorphisms defined in Sec-
tion III.1 a more precise result holds:

Theorem III.3.7 (Bowen [Bo1]) If f : M → M is an Anosov diffeo-
morphism of a compact manifold M , then

lim
n→∞

log Pn(f)
n

= h(f) := sup
µ

hµ(f)

where the supremum is taken over all f-invariant measures on M . The
quantity h(f) is independent of a measure and called the topological entropy
of f .

One might wonder what makes periodic points so interesting in the
theory of smooth dynamical systems, because in most cases there are only
countably many of periodic points in M and their measure is zero. So, from
the measure-theoretic point of view, they seem to mean nothing. However,
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periodic points play an important role in physical and experimental works,
and there are several reasons why they are so relevant.

First, periodic orbits are very simple – they are completely specified by
finite iterations of the map – which makes numerical calculations of their
Lyapunov exponents and other characteristics feasible with high accuracy.
Second, they are relatively easy to find in physically interesting examples
– given n, a computer program can find all periodic points of period n.
Third, by part (a) of Katok’s theorem III.3.6, any finite orbit {f i(x)},
1 ≤ i ≤ n, can be arbitrarily well approximated by a periodic orbit, i.e. for
any ε > 0 there is a periodic point y such that dist(f i(x), f i(y)) < ε for all
1 ≤ i ≤ n. The last property actually allows to approximate any invariant
measure µ by measures supported on periodic orbits. Such approximations
were found by Bowen for Anosov diffeomorphisms and later have been
used quite efficiently in physical and experimental studies of other chaotic
systems.

To summarize it, periodic points allow us to study many delicate prop-
erties of smooth chaotic systems. Said H. Poincaré in 1892: “What makes
these periodic solutions so precious to us is that they are, so to speak, the
only breach through which we may attempt to penetrate an area hitherto
deemed inaccessible”, see [Po], Vol 1 ,#36.

We finally discuss relations between three most important properties in
the theory of smooth chaotic dynamical systems:
1. Hyperbolicity (i.e., nonvanishing of all Lyapunov exponents, when
µ(Σ(f)) = 1);
2. Positivity of entropy: hµ(f) > 0;
3. Ergodicity (and its stronger version - mixing).

Each of these properties represents chaos in dynamical systems in some
way. Even though there is no commonly adopted definition of the term
chaos, each of the above properties could be (and at times, was) regarded
as a possible formal definition of chaos.

However, these properties are not equivalent, and in fact, none of them
logically implies any of the other two (even though, under some conditions,
the hyperbolicity does imply the positivity of entropy, as in Pesin’s The-
orem III.3.4 and Katok’s Proposition III.3.5). But it is more important
for us to realize that these three properties characterize different aspects
of chaotic behavior of dynamical systems. The positivity of entropy is the
most local characteristic of all – even a tiny f -invariant subset E ⊂ M of
a small but positive measure, µ(E) > 0, can be used to make hµ(f) > 0,
while on the rest of the space M \ E the map f may not be chaotic in
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any sense. The hyperbolicity is also a local condition (it characterizes the
separation of nearby trajectories), but at least it must hold almost every-
where, since it requires µ(Σ(f)) = 1. Still, there is no guarantee that a
hyperbolic map f is ergodic or mixing – according to the spectral decom-
position theorem III.3.3, the Pesin region Σ(f) can be decomposed into up
to a countably many noninteracting subregions!

The ergodicity is the most global property of the three. However, er-
godicity alone does not imply hyperbolicity, or chaos for that matter. For
example, consider a circle rotation T : S1 → S1 through an irrational angle
θ > 0. It is ergodic, see Exercise II.4.1a, but it is not truly chaotic – its only
Lyapunov exponent is obviously zero, and so is its entropy (see Exercise
I.9.3).

One final remark. The failure of ergodicity in systems with positive
entropy and large Pesin regions is a fairly common phenomenon in Hamil-
tonian systems. It was extensively studied by Kolmogorov, Arnold and
Moser, whose theory is now called KAM theory. They discovered that for
typical Hamiltonian maps f : M → M , there are some f -invariant regions
D ⊂ M of positive measure where the dynamics is very stable. This means
that all Lyapunov exponents in D are zero and each region D contains a
subset of positive measure, which is the union of f -invariant curves or tori
(those are called KAM tori) – a feature that makes the dynamics inside D
almost integrable. Such stable regions occur around periodic points p ∈ M ,
fn(p) = p, when the spectrum of the derivative (fn)′p: TpM → TpM lies
on the unit circle (there are some other technical conditions that we omit).
Such periodic points are called elliptic (as opposed to hyperbolic), and the
stable regions around them are called elliptic islands or stability islands. In
a typical Hamiltonian system, stability islands coexist with a large Pesin
region Σ(f) of positive measure. The Pesin region is sometimes called the
chaotic sea. In that sea, one can find small stable islands separated from
Σ(f) by some f -invariant curves. Such a picture is typical as various nu-
merical experiments show. The phenomenon of coexistence of chaotic and
stable behavior in dynamical systems is not very well understood yet, and
it is one of the most intriguing issues in modern mathematical physics.

Exercises:

III.3.1. Derive the conditions (III.3.1)-(III.3.2) from the definition of Lya-
punov exponents (III.1.3). Hint: first show that for any given nonzero
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vector v ∈ Es
p (resp., v ∈ Eu

p ), there is a K(p, ε) that satisfies (III.3.1)-
(III.3.2), but depends on v. Then pick an orthonormal basis e1, . . . , ek in
Es

p (resp., Eu
p ), ensure (III.3.1)-(III.3.2) with the same constant K(p, ε)

for all vectors e1, . . . , ek and use the triangle inequality to derive (III.3.1)-
(III.3.2) for an arbitrary vector v.

III.3.2. Let Hκ = {x ∈ H: d(fn(x), S) > c(x) |n|−κ for some c(x) > 0
and all 0 6= n ∈ ZZ}. Show that µ(Hκ) = 1 for some κ > 0. Hint: note
that the set H̃κ,n := {d(fn(x), S) < |n|−κ} coincides with f−n(U|n|−κ(S)),
hence µ(H̃κ,n) = µ(U|n|−κ(S)). Now put κ = 2/a and use (KS1) to prove
that

∑
n µ(H̃κ,n) < +∞. Notice that Hκ consists of points that belong to

only finitely many sets H̃κ,n.

III.3.3. Let g be a continuous f -invariant function on M . Show that g is
constant on every stable and unstable manifold. Hint: Since M is compact,
the function g is uniformly continuous. Then use the fact that fn(W s(x))
and f−n(Wu(x)) shrink as n →∞.

III.4 Sufficient Conditions for Hyperbolicity
and Ergodicity in Smooth Maps with
Singularities

In this section we continue studying smooth maps with singularities and
using the same notation M,G, V, N,H, µ, f as in the previous sections.

Here we describe sufficient conditions under which two main chaotic
properties – hyperbolicity and ergodicity – hold. These conditions are
simple enough to verify, so that they have been successfully used in the
studies of many physically interesting models. The next chapter presents
our main class of examples – billiards.

Quadratic forms. We recall that a quadratic form B in IRd is a function
B : IRd → IR such that B(u) = Q(u, u), where Q is a bilinear symmetric
function on IRd × IRd. Equivalently, B : IRd → IR is a quadratic form if
there exists a symmetric matrix A such that B(u) = utAu for u ∈ IRd (here
ut means transposition of a column-vector u). A quadratic form B on M
is a function B : TM → IR such that its restriction Bx to TxM at every
point x ∈ M is a quadratic form in the usual sense.
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We say that a quadratic form B is nondegenerate at x if Bx(u) 6= 0
for every nonzero vector u ∈ TxM , u 6= 0 (equivalently, det A 6= 0 for the
corresponding symmetric matrix A). We say that B is positive (nonegative)
if at every point x the form Bx is positive definite (positive semidefinite),
i.e. Bx(u) > 0 (respectively, Bx(u) ≥ 0) for all 0 6= u ∈ TxM . For a form B
and x ∈ M , let KB(x) be the number of positive eigenvalues of the matrix
that defines the form Bx (i.e., the maximal dimension of a subspace of TxM
on which the form is positive).

If f : M → M is a diffeomorphism, we denote by f#B (the pull back
of B by f) the quadratic form (f#B)xu = Bf(x)(f ′xu). One can easily
verify that f#B is also a quadratic form, and that f#B is nondegenerate
at x iff B is nondegenerate at f(x). We note that

P = f#B −B

is a quadratic form, too.
For a quadratic form B defined on the orbit of a point x, we put

Sx := {u ∈ TxM : B((fn)′xu) < 0, n ≥ 0}

Ux := {u ∈ TxM : B((fn)′xu) > 0, n ≤ 0}

Theorem III.4.1 (Markarian [Ma6]) Let B : TM → IR be a nonde-
generate quadratic form such that
(i) Bx depends measurably on x,
(ii) For every x ∈ H we have 0 < KB(x) < dim M and KB(fn(x)) =
KB(x) for all n ∈ ZZ .
(iii) Px = (f#B −B)x is positive for every x ∈ H;
Then µ(Σ(f)) = 1, i.e. the map f is nonuniformly hyperbolic. Moreover,
for every x ∈ Σ(f) we have Sx = Es

x and Ux = Eu
x .

We outline the proof for the case dim M = 2 in Exercise III.4.1.

Remark. The condition (iii) can be slightly relaxed: it is enough to require
that P ≥ 0 and P is positive eventually, i.e. for almost every x ∈ M there
exists k = k(x) ∈ IN such that B((fk+1)′u) − B((fk)′u) > 0 for every
non zero vector u ∈ TxM.

We note that the requirement KB(fn(x)) = KB(x) in hypothesis (ii) is
automatically satisfied in two important cases:
(a) M has dimension 2. In that case KB(x) = 1 for all x ∈ H;
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(b) B is continuous on M , and M is connected. In this case KB(x) is a
continuous integral-valued function on M , hence it is constant.

If the quadratic form is continuous on M , the spaces Eu
x and Es

x depend
on x continuously. In this case the theorem was proved in [Ma1].

Note that the converse also holds:

Theorem III.4.2 (Markarian [Ma6]) If µ(Σ(f)) = 1, there exist a
quadratic form B : TM → IR such that the conditions (i) - (iii) of Theo-
rem III.4.1 are satisfied.

Cones. Let L ⊂ IRd be a subspace, and α > 0. Denote by L⊥ the
orthogonal complement to L. The set

C = {u + v : u ∈ L, v ∈ L⊥, ‖u‖ ≥ α‖v‖}
is called a cone and L its axis. In the case d = 3 and dim L = 1, it is the
union of two symmetric circular cones with the common axis L. In the case
d = 2 and dim L = 1 the cone C is the union of two symmetric sectors,
hence C is also called a sector in this case.

Let C be a cone in IRd. Note that the complement IRd \C is a set whose
closure is also a cone (called the complementary cone, C−), whose axis is
L⊥. The set

∂C = {u + v : u ∈ L, v ∈ L⊥, ‖u‖ = α‖v‖}
is the common boundary of C and C−.

Now let a cone C(y) be defined in TyM for almost every point y ∈ M .
We call the collection {C(y)} a cone field on M . The cone field is invariant
under f if

f ′y(C(y)) ⊂ C(f(y)) (III.4.1)

for almost every y ∈ M . It is eventually strictly invariant under f if for
almost every y ∈ M there exist n = n(y) such that

(fn)′y(C(y)) ⊂ intC(fn(y)) (III.4.2)

In a similar way, the invariance and eventual strict invariant under f−1 is
defined, by replacing f ′ with (f−1)′ in (III.4.1) and (fn)′ with (f−n)′ in
(III.4.2).

We say that a cone field {Cu(x)} is unstable if it is invariant and even-
tually strictly invariant under f and for almost every x ∈ M

‖f ′x(u)‖ > ‖u‖ for all u ∈ intCu(x) (III.4.3)
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We say that a cone field {Cs(x)} is stable if it is invariant and eventually
strictly invariant under f−1 and for almost every x ∈ M

‖(f−1)′x(u)‖ > ‖u‖ for all u ∈ intCs(x) (III.4.4)

For a stable cone field {Cs} defined on the orbit of a point x, we put

Sx := ∩n≥0(f−n)′x[Cs(fnx)]

For an unstable cone field {Cu} defined on the orbit of a point x, we put

Ux := ∩n≥0(fn)′x[Cu(f−nx)]

Theorem III.4.3 Let {Cu(x)} be an unstable cone field and {Cs(x)} a
stable cone field, both depending measurably on x. Let dim Lu(x)+dim Ls(x)
= dim M for almost every x, where Lu(x) and Ls(x) are the axes of Cu(x)
and Cs(x), respectively. Then µ(Σ(f)) = 1. Moreover, for almost every
x ∈ Σ(f) we have Sx = Es

x and Ux = Eu
x .

The proof of this theorem is outlined in Exercises III.4.1 and III.4.2.
We can relax the requirement of eventual strict invariance of the cone

fields if, instead, assume the expansion (III.4.3) for all vectors u ∈ Cu(x)
and the backward expansion (III.4.4) for all vectors u ∈ Cs(x).

Theorem III.4.3 and its various versions have been used in the studies
of physical models since early seventies. A nice touch to this technique was
done by M. Wojtkowski in [W1, W2]:

Theorem III.4.4 (Wojtkowski [W1]) Let dim M = 2 and the invari-
ant measure µ absolutely continuous with respect to the Lebesgue measure
on M . If there exists an invariant and eventually strictly invariant cone
field C(x) on M depending measurably on x, then µ(Σ(f)) = 1.

Note: in this theorem no requirement is made on the expansion (or
contraction) of vectors in the cone C(x)! The expansion of the vectors
u ∈ C(x) under (fn)′x for large n > 0 follows from the eventual strict
invariance of the cone field and the absolute continuity of the invariant
measure. Wojtkowski and Liverani [LW] also generalized Theorem III.4.4 to
multidimensional maps, dim M > 2, but then a special additional structure
– an f -invariant symplectic form – is necessary. We omit this case.

Ergodicity of piecewise smooth hyperbolic maps. We now assume
that the map f is hyperbolic, i.e. µ(Σ(f)) = 1, and describe sufficient
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conditions under which f is ergodic. As we have seen in Theorem III.3.3,
this is generally false – the Pesin region Σ(f) only decomposes into finite or
countable number of subregions Σi on which the restriction of f is ergodic.
The sets Σi are called the ergodic components of f . Generally, they can be
rather complicated and disconnected.

Under certain additional conditions, one can prove that f is ergodic,
i.e. there is exactly one ergodic component Σ1 ⊂ Σ(f) and µ(Σ1) = 1.
We assume that µ is absolutely continuous with respect to the Lebesgue
measure on M . We also assume that the diffeomorphism f : N → f(N) ⊂
V is regular in the following sense:
(R1) the sets N and f(N) are dense in M ;
(R2) the boundaries ∂N and ∂f(N) consist of of a finite number of C1

submanifolds of codimension one;
(R3) on each connected component of N the map f can be extended by
continuity to the boundary ∂N , and on each connected component of f(N)
the inverse map f−1 can be extended by continuity to the boundary ∂f(N).

For technical reasons,we restrict ourselves to 2-dimensional maps, i.e.
assume dim M = 2. Hence, the sets ∂N and ∂f(N) are one-dimensional,
i.e. consist of smooth compact curves.

To visualize such a map f , let us imagine a unit square M = [0, 1]×[0, 1].
We set V = int M and G = ∂M . Let us partition M into finitely many
open domains in two ways:

M = B+
1 ∪ · · · ∪B+

r = B−
1 ∪ · · · ∪B−

r

so that the boundaries ∂B±
i are made by finitely many compact C1 curves.

The map f is defined separately on each domain B+
i , 1 ≤ i ≤ r, so that f

is a Cr (r ≥ 2) diffeomorphism of the interior of B+
i onto the interior of

B−
i and a homeomorphisms of B+

i onto B−
i . Then we have N = ∪i intB+

i

and f(N) = ∪i intB−
i .

Such maps as above are called piecewise smooth. We will see more
examples of this sort in the next chapter.

We have assumed that f is hyperbolic, i.e. µ(Σ(f)) = 1. Hence, at
almost every point x ∈ M the stable and unstable spaces Es

x and Eu
x exist

(both are one-dimensional, since dim M = 2). For simplicity, we assume
that stable and unstable vectors expand monotonically, i.e.

‖f ′x(u)‖ ≥ ‖u‖, u ∈ Eu
x and ‖(f−1)′x(u)‖ ≥ ‖u‖, u ∈ Es

x (III.4.5)

It is often possible to define the Riemannian metric on M so that (III.4.5)
holds (such a metric is called adapted or Lyapunov metric, cf. Remark
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at the end of Section III.1). In some cases, a pseudo-metric satisfying
(III.4.5) suffices, we will show this in Chapter IV. For now, we assume that
an adaptive metric exists.

Definition. A point x ∈ V is said to be u-essential if for any A > 1 there
exist an n ≥ 1 and a neighborhood U of the point x such that for all y ∈ U

‖(fn)′y(u)‖ > A‖u‖, u ∈ Eu
y

(whenever the space Eu
y exists). Similarly, s-essential points are defined

(by replacing fn with f−n and Eu
y with Es

y).

Definition. A point x ∈ V is said to be sufficient if there exist A > 1 and
two integers n < m, such that fn(x) is defined, and there is a neighborhood
U of the point fn(x) such that for all y ∈ U we have

‖(fm−n)′y(u)‖ > A‖u‖, u ∈ Eu
y and ‖(fm−n)′y(v)‖ < A−1‖v‖, v ∈ Es

y

(whenever the spaces Eu
y , Es

y exist).
Let us also denote by S+ = ∂N the singularity set for the map f

and by S− = ∂f(N) the singularity set for the map f−1. For n ≥ 1
we put S+

n = f−n+1(S+), this is the singularity set for fn, and similarly
S−n = fn−1(S−), the singularity set for f−n. Note that all these sets consist
of compact C1 curves.

Now we state five technical conditions for proving ergodicity:
Property 1 (“double singularities”). For any n ≥ 1 the intersection

S+
n ∩ S−n is a finite or countable set.

Property 2 (“thickness of neighborhoods of singularities”). For any
δ > 0 let Uδ be the δ-neighborhood of the set S+ ∪ S−. Then µ(Uδ) ≤
const · δ.

Property 3. The families of stable and unstable subspaces Es
x and Eu

x

are continuous on their domains3. Furthermore, the limit spaces limy→x Eu
y

and limy→x Es
y are always transversal to each other at every sufficient point

x, even if Eu
x or Es

x does not exist.
Property 4 (“ansatz”). Almost every point of S+ (with respect to

the Lebesgue length on it) is u-essential, and almost every point of S− is
s-essential.

3This condition is automatically satisfied if the dependence of the quadratic form or
the cone field on x ∈ H is continuous.
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Property 5. At almost every point x ∈ S+ the subspace Eu(x) is
defined and transversal to S+, and at almost every point x ∈ S− the
subspace Es(x) is defined and transversal to S−.

Theorem III.4.5 (Local ergodic theorem) Under the above conditions,
every sufficient point x has an open neighborhood U that belongs to one er-
godic component, i.e. there is a component Σi ⊂ Σ(f) such that µ(U \Σi) =
0.

The first version of this theorem was obtained by Sinai [Si2] in 1970
in the studies of mathematical billiards. Then it was improved by Sinai
and Chernov [SC2] in 1987. Later it was generalized by Kramli, Simanyi
and Szasz [KSS2], Liverani and Wojtkowski [LW], and Markarian [Ma4] to
other classes of hyperbolic systems of physical origin. In the most general
form it was stated by Chernov [C1].

The idea of the proof of this theorem is essentially described in Sec-
tion III.3: given a sufficient point x, one must connect it with almost all
points y ∈ U by Hopf chains. In other words, the union of all stable and
unstable manifolds in U must be an arcwise connected subset of U of full
measure.

One should remember, though, that stable and unstable manifolds (and,
hence, Hopf chains) can be arbitrary short in M due to the singularities of
f . In fact, the union of all singularity sets ∪nS±n is dense in M , hence stable
and unstable manifolds can break or terminate abruptly anywhere. This is
a serious problem in the proof of the local ergodic theorem III.4.5, which
was first solved by Sinai in the context of billiards. He called his version of
Theorem III.4.5 the fundamental theorem in the theory of billiards. Now the
local ergodic theorem still remains one of the most advanced and difficult
results in the theory of hyperbolic maps with singularities.

We now proceed to the proof of ergodicity of f . The local ergodic
theorem essentially shows that the ergodic components Σi consist of open
balls around sufficient points. Now we make the last assumption:

Property 6 (“abundance of sufficient points”). The set R ⊂ M of
sufficient points is arcwise connected and has full measure.

Theorem III.4.6 (Global ergodic theorem) Under all the above con-
ditions, the map f is ergodic, i.e. µ(Σ1(f)) = 1.
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Proof. Let x, y ∈ R. By the property 6, there is a continuous curve γ ⊂ R
that joins x and y. By the local ergodic theorem, for every point z ∈ γ there
is a neighborhood U(z) that belongs in one component Σp (which yet may
depend on z). Since γ is compact, it can be covered by a finite number of
such open neighborhoods, i.e. there are z1, . . . , zk such that γ ⊂ ∪k

i=1U(zi).
The neighborhoods U(zi) obviously overlap, hence they must belong to one
ergodic component Σp, which then contains both x and y. Since R has full
measure, Σp is the only ergodic component, and µ(Σp) = 1. 2

In practice, one has to verify the properties 1-6 to ensure the ergodicity
of a hyperbolic map. This may not be so easy, but it was done successfully
for many physically interesting systems.

Exercises:

III.4.1. Here we outline the proof of Theorem III.4.1 in dimension d = 2.
The proof consists of several steps whose verification is left as an exercise:
(a) Let x ∈ H and put xn = fn(x) for n ∈ ZZ. For each n > 0, pick a vector
wn ∈ TxnM such that Bxn(wn) < 0. Put vn = (f−n)′xn

wn. As P > 0, it
results that Bx(vn) < 0. Then the sequence of normalized vectors vn/‖vn‖
has a subsequence that converges to a unit vector v ∈ TxM . One can now
verify that v ∈ Sx;
(b) In a similar way we construct a unit vector u ∈ Ux. Hence both sub-
spaces Ux and Sx exist, and so they must be one-dimensional;
(c) Given a > 0, denote by Da ⊂ M the set of points y ∈ M such that
aBy(w) ≤ min{‖w‖2, Py(w)} for all w ∈ TyM . If a is small enough, then
µ(Da) > 0, and in fact lima→0 µ(Da) = 1;
(d) By Birkhoff-Khinchin ergodic theorem applied to the indicator func-
tion IDa (see Exercise II.1.2b), for almost every point x ∈ Da we have
limn τ(x,Da, n)/n = τ(x,Da) > 0, where τ(x, Da, n) = #{0 ≤ j < n :
f j(x) ∈ Da};
(e) From the positivity of P it now follows that B((fn)′xu) ≥ (1+a)τnB(u)
for u ∈ Ux, where τn = τ(x,Da, n). Hence, lim infn n−1 log ‖(fn)′xu‖ ≥
log(1 + a)τ(x,Da)/2 > 0. Therefore, x has a positive Lyapunov exponent
and Eu

x ⊃ Ux almost everywhere in Da, hence in M ;
(f) Similarly, Es

x ⊃ Sx almost everywhere.

III.4.2. By following the lines of the previous exercise, prove Theorem III.4.3.
Hint: due to the eventual strict invariance of the cone field {Cu(x)}, for
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almost every x ∈ M there is a k = k(x) such that (fk)′f−kx(Cu(f−kx)) ⊂
intCu(x); therefore, there is an a = a(x) > 0 such that for every u ∈
(fk)′f−kx(Cu(f−kx)) we have ‖f ′x(u)‖ ≥ (1 + a)‖u‖.
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Chapter IV

Billiards

Here we get to the main objective of this book. We describe a class of
dynamical systems called billiards. It illustrates all the concepts and phe-
nomena discussed in the previous chapters: invariant measures, ergodicity
and mixing, Lyapunov exponents and singularities. The study of billiards
is especially important because they have plentiful applications in physics.

The popularity of billiards among mathematicians and physicists alike
is also due to relative simplicity of the rules defining the billiard dynamics.
As one mathematician, A. Katok, put it, billiards are a playground for
researchers. Here one can play all kinds of games and everyone can have
fun...

IV.1 Planar Billiards

Imagine a particle (a point mass) moving freely (without friction) on a
table and bouncing off the edges of the table elastically. The table is just
a bounded region of the plane.

To some extend, this model resembles a popular game of billiards (or
pool) where a few balls are pushed by a cue in order to drive some of
them into netted pockets in the corners of the table. But our model looks
much simpler - we only have one ball, the ball is just a dimensionless
pointlike particle, it moves without friction, and the table has no pockets,
just edges. On the other hand, the shape of our table is not necessarily
rectangular. It can be rather arbitrary, and that is what actually makes
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this model interesting – the shape of the table determines the character of
the dynamics and all its properties.

Billiard table. We denote by Q ⊂ IR2 an open bounded connected do-
main, which we call a billiard table. Its boundary Γ = ∂Q is supposed to
be a finite union of smooth (Ck, k ≥ 3) compact curves:

∂Q = Γ = Γ1 ∪ · · · ∪ Γs (IV.1.1)

which are disjoint but may have common endpoints. For example, is Q is
a polygon, then Γi are its sides. The set

Γ∗ = ∂Γ1 ∪ · · · ∪ ∂Γs (IV.1.2)

of the endpoints of our curves will play an important role. Normally, the
set Γ∗ consists of the corner points of the table Q.

The moving particle has position q ∈ Q and velocity vector v ∈ IR2,
which are functions of time. If q ∈ Q, then the particle moves freely, i.e.

q̇ = v and v̇ = 0 (IV.1.3)

where dots indicate the derivative with respect to time. We can assume that
the particle has mass one, then its momentum is p = v, and the above equa-
tions are Hamiltonian ones, with Hamiltonian function H(p, q) = ‖p‖2/2.
When q ∈ ∂Q, the velocity v of the particle changes discontinuously, ac-
cording to the classical rule the angle of incidence is equal to the angle of
reflection. So, the new (outgoing) vector v+ is related to the old (incoming)
vector v− by

v+ = v− − 2〈v−, n(q)〉n(q) (IV.1.4)

Here 〈·, ·〉 stands for the scalar product and n(q) is the inward unit normal
vector to the boundary ∂Q of the table Q at the point q.

To use the reflection rule (IV.1.4), we need the normal vector n(q),
hence the rule cannot be applied at points q ∈ Γ∗, where such a vector
fails to exist. To be precise, one might define n(q) by continuity at points
of Γ∗, but this would give more than one normal vector n(q) at every
corner point of the table, where two different curves Γi,Γj ⊂ Γ meet, hence
the dynamics would be multiply defined. This is not good. We adopt a
standard convention that the reflection is not defined at any q ∈ Γ∗. Hence,
whenever the moving particle hits a point of Γ∗ (called the singular set of
the boundary), it stops and ceases to exist.
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Example. Define a domain Q in polar coordinates ρ, θ by Q = {0 < ρ <
1, θ 6= 0}. This is a unit circle with one radial segment removed. In this
case ∂Q = {ρ = 1}∪{θ = 0} consists of two smooth curves, and Γ∗ consists
of two points: the origin ρ = 0 and the point (ρ = 1, θ = 0). Note that the
line θ = 0 is an “inner boundary” – billiard trajectories bounce off it on
both sides.

There is one more reason why the dynamics may not be defined. This
is quite peculiar. If the particle experiences infinitely many reflections on a
finite interval of time, then its motion cannot be defined beyond the point
where the reflections accumulate. Weird as it sounds, this phenomenon
can indeed occur, either near some corner points of the table or even when
∂Q is entirely smooth (Halpern, 1977). We will discuss the effect of this
strange fact later.

Phase space. We now construct the phase space of the system. The
dynamics (IV.1.3)-(IV.1.4) preserves the norm ‖v‖, hence we can set ‖v‖ =
1 throughout. Then the phase space of the system will be M = Q̄ × S1.
Here Q̄ stands for the closure of the billiard table Q, and S1 is the unit
circle of all velocity vectors1. For each q ∈ ∂Q the points (q, v−) and (q, v+)
related by (IV.1.4) are identified2. The resulting one-parameter group of
transformations (flow) on M is denoted by Φt, where t ∈ IR is time.

It is standard in ergodic theory to reduce the study of flows to maps
by constructing a cross-section. The latter is a hypersurface transversal
to the flow. For the flow Φt, a hypersurface in M can be very naturally
constructed with the help of the boundary of the table Q. Let

M = {x = (q, v) ∈M: q ∈ ∂Q, 〈v, n(q)〉 ≥ 0} (IV.1.5)

This is a two-dimensional submanifold in M. It consists of all possible
outgoing velocity vectors resulting from reflections at ∂Q. Clearly, any
trajectory of the flow Φt crosses the surface M every time it reflects at ∂Q.
This defines the return map T :M → M by Tx = Φτ(x)+0x where

τ(x) = min{t > 0 : Φt+0x ∈ M} (IV.1.6)

The map T is often called the billiard map or billiard ball map.
1In the literature, a billiard table Q is sometimes defined as the closure of an open

domain. There is slight problem with that definition, since it would not allow ∂Q to
have “inner” lines like one in the above example.

2On“inner boundary” lines the identification must be defined separately on each side
of the line.
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We introduce coordinates r, ϕ on M , where r stands for the arclength
parameter on ∂Q and ϕ ∈ [−π/2, π/2] for the angle between v and n(q).
These coordinates are oriented as shown on Fig. IV.1, and the reference
point on ∂Q (where r = 0) can be chosen arbitrarily.

ππ

φ

r

/2/2

=0

+
_

Q

Figure IV.1: The orientation of the coordinates r and ϕ.

If the boundary ∂Q is one closed curve (this is the case when Q is
as a polygon or a disk), then M is, topologically, a cylinder M = ∂Q ×
[−π/2, π/2], and r is a cyclic coordinate. If ∂Q consists of several closed
curves (this happens when Q is not simply connected), then M is a union
of several cylinders. In all cases ∂M = {|ϕ| = π/2}. Let

S0 = {|ϕ| = π/2} ∪ {(q, v): q ∈ Γ∗}
This is the set where the return map T has singularities:

Lemma IV.1.1 Let the boundary ∂Q consists of Ck smooth curves. Then
the map T is Ck−1 at every point x ∈ M \ S0 such that Tx ∈ M \ S0.

Proof. Let x = (r, ϕ) ∈ M and Tx = (r1, ϕ1). Denote, as in (IV.1.6), by
τ = τ(x) the return time (travel time) between x and Tx, and by K = K(r)
the curvature of the boundary ∂Q at r (so that the angle between normal
vectors n(r) and n(r + dr) equals K dr + o(dr)). To fix the sign of K,
we assume that K(r) > 0 if ∂Q is concave (convex inward) at r (as in
Fig. IV.2) and K(r) < 0 if ∂Q otherwise. Similarly, we put K1 = K(r1).

A detailed (but elementary) geometric analysis illustrated on Fig. IV.2
gives the derivative of T :

DT (x) = − 1
cosϕ1

(
τK + cosϕ τ

τKK1 + K cosϕ1 + K1 cosϕ τK1 + cosϕ1

)

(IV.1.7)
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Note that, since cosϕ1 6= 0 and cos ϕ 6= 0, this matrix is defined and is
nonsingular. Also, since the first derivative of T involves the curvature K
of ∂Q (related to the second derivative of Γi’s), then the smoothness of T
is only Ck−1. 2

φ
φ φ

φ

φ φα
r

n(r)

h
h

r

r+dr
+d

1

r +dr1 1

1

1
1 1+d

τ

Q

Figure IV.2: The calculation of DT : note that, infinitesimally, h = dr cos ϕ,
h1 = −dr1 cosϕ1, α = dϕ + K dr (where α is the angle between the lines
from r to r1 and r + dr to r1 + dr1), h1 = h + τα and dϕ1 = K1 dr1 − α.

Remark. It is easy to compute that |detDT (x)| = cos ϕ/ cos ϕ1.

Invariant measures. The Hamiltonian equations (IV.1.3) preserve the
Liouville measure dq dv on the phase space M, where dq and dv are uni-
form measures on Q and S1, respectively. One can check by direct inspec-
tion (which we omit) that this measure is also invariant under reflections
(IV.1.4). Since the table Q is compact, the measure dq dv on M is finite
and can be normalized, so we get a probability measure

dµ = cµ dq dv (IV.1.8)

where
cµ = (2π|Q|)−1 (IV.1.9)

and |Q| stands for the area of the domain Q.
The invariant measure µ induces a T -invariant measure on the surface

M . To find it, we introduce a special coordinate system on the space M.
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For every point x = (q, v) ∈ M let s(x) = −max{t < 0:Φt+0x ∈ M} and
y = (q′, v′) = Φ−s(x)+0x. Plainly, s(x) is the time elapsed since the last
reflection, q′ ∈ ∂Q is the point of that reflection, and v′ is the outgoing
velocity vector. We note that v′ = v, and the point q′ and the value of s
can be determined uniquely by solving the equation q − sv ∈ ∂Q. Let r, ϕ
be the coordinates of the point (q′, v′) ∈ M . Now the manifold M can be
parametrized by three new coordinates r, ϕ, s.

v

Q

dr

dx
dy

n

q

s

r φ

Figure IV.3: The coordinates r, ϕ, s.

It takes a little geometric reasoning (illustrated on Fig. IV.3) to ver-
ify that the infinitesimal volume in M can be represented as dq dv =
cos ϕdr dϕ ds. Hence, the measure µ on M satisfies

dµ = cµ cosϕ dr dϕ ds (IV.1.10)

It is now easy to conclude that since the flow Φt has constant speed (it
equals one), the measure cos ϕdr dϕ is invariant for the map T : M → M .
We normalize it and get a probability

dν = cν cosϕ dr dϕ (IV.1.11)

where
cν = (2|∂Q|)−1 (IV.1.12)

and |∂Q| stands for the total length of the boundary ∂Q (perimeter of Q).
We note that the invariance of the measure (IV.1.11) under T also follows
from the remark after Lemma IV.1.1, as one can see by making change of
variables in direct integration over any Borel set U ⊂ M :

ν(T (U)) = cν

∫

T (U)

cosϕ1 dr1 dϕ1 = cν

∫

U

cos ϕ1
cosϕ

cosϕ1
dr dϕ = ν(U)
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Lemma IV.1.2 There is a subset M ′ ⊂ M of full measure, i.e. ν(M ′) =
1, on which the map Tn is defined for all n ∈ ZZ. Likewise, there is a subset
M′ ⊂M of full measure, i.e. µ(M′) = 1, on which the flow Φt is defined
at all times t ∈ IR.

Proof. The map T is not defined at x ∈ M only if the next reflection
occurs at some q ∈ Γ∗. Such points x belong to a finite or countable
union of smooth curves in M . Hence, the points x ∈ M whose forward or
backward images under T ever hit the singular set Γ∗ lie on a countable
union of smooth curves in M , hence their total measure is zero. This proves
the first part of the lemma.

The flow Φt is not defined at x ∈M if the trajectory of x either (i) hits
a singularity point q ∈ Γ∗ or (ii) experiences infinitely many reflections on
a finite interval of time. The set of points of type (i) has zero measure by
the first part of the lemma. It turns out, that the set of points of type (ii)
also has zero measure, see Exercise IV.1.1. 2

Billiards on a torus. An interesting (and very popular in physics) modi-
fication of billiard model is obtained by taking a table Q on a unit 2-D torus
T| 2, instead of the plane IR2. For example, let D ⊂ T| 2 be a small disk and
Q = T| 2 \ D. Such a system can be thought of as a billiard inside a unit
square with periodic boundary conditions, as shown on Fig IV.4. In this
case the return time τ(x), as a function on M , is unbounded. However, the
map T : M → M is still well defined, i.e. if x ∈ M then the point Tx ∈ M
always exists, see Exercise IV.1.2.

Q

Figure IV.4: A billiard on a torus.
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Involution. The dynamical system (M′, µ, Φt) has an interesting property
called involution: for any x = (q, v) ∈ M′ the point I(x) = (q,−v) ∈ M ′

satisfies
Φt(I(x)) = I(Φ−tx)

for all t ∈ IR. Hence, the involution I:M′ → M′ anticommutes with the
dynamics Φt, which we can write as Φt ◦ I = I ◦ Φ−t. Note that the map
I also preserves the measure µ.

The map T : M ′ → M ′ also admits an involution, I1, defined by
(r, ϕ) 7→ (r,−ϕ). It anticommutes with T , i.e. T k ◦ I1 = I1 ◦ T−k for
all k ∈ ZZ. We also note that the map I1 : M → M preserves the measure
ν.

Lyapunov exponents. We now prove that Oseledec’s Theorem III.2.1
applies to the billiard map T .

Theorem IV.1.3 If the absolute value of the curvature of ∂Q is uniformly
bounded, then Osedelec’s theorem applies to the billiard map T .

Proof. We need to verify that the functions log+ ‖DT (x)‖ and log+ ‖DT−1(x)‖
have finite integrals over M . By the involution property, it is enough to do
this only for DT (x). It follows from (IV.1.7) that ‖DT (x)‖ ≤ C/ cos ϕ1,
where C > 0 is a constant. Then

cν

∫

M

log+ ‖DT (x)‖ dν ≤ cν

∫

M

| log C + log cos ϕ1| cos ϕdϕdr

≤ | log C|+ cν

∫

M

| log cos ϕ| cosϕdϕ dr

where we have used the invariance of the measure ν. Finally,

∫

M

| log cos ϕ| cosϕdϕ dr = |∂Q|
∫ π/2

−π/2

| log cos ϕ| cosϕdϕ

= |∂Q| (2− log 4) < ∞

The theorem is proved. 2

Remark. The condition on the curvature of ∂Q is necessary. Katok and
Strelcyn [KS] give an example of a simply connected billiard table whose
boundary is C∞ everywhere, except for one point, at which the curvature
turns infinite, for which

∫
M

log+ ‖DT (x)‖ dν = ∞.
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The above theorem ensures the existence of two Lyapunov exponents,
λ1(x) and λ2(x), and the corresponding invariant subspaces, E1(x) and
E2(x), at almost every point x ∈ M ′. We note also that if λ1(x) 6= λ2(x),
then the angle λ(x) between the lines E1(x) and E2(x) is defined. By a
remark in Section III.3,

lim
n→±∞

1
n

log γ(Tnx) = 0 (IV.1.13)

Corollary IV.1.4 We have λ1(x) + λ2(x) = 0 almost everywhere on M .

Proof. Let Π be a parallelogram in TxM with sides s1, s2 parallel to E1(x)
and E2(x), respectively. Then its area is |Π| = s1s2 sin γ(x). Its image
under DTn is a similar parallelogram in TT nxM with sides that we call
s1(n), s2(n). Therefore,

‖DTn(x)‖ =
sin γ(Tnx)
sin γ(x)

s1(n)
s1

s2(n)
s2

(IV.1.14)

We also note that

lim
n→±∞

1
n

log
si(n)

si
= λi(x) (IV.1.15)

for i = 1, 2. Consider the point Tnx = (rn, ϕn). It follows from the remark
after Lemma IV.1.1 that ‖DTn(x)‖ = cos ϕ/ cosϕn. Hence, ‖DTn(x)‖
stays bounded away from 0 and infinity most of the time. Now taking
logarithm in (IV.1.14), dividing by n, taking a limit as n → ±∞, and using
(IV.1.13) and (IV.1.15) proves the corollary. 2

We see that almost every point x ∈ M either has both zero Lyapunov
exponents or else is completely hyperbolic.

A mechanical model. Consider a system of two point particles of masses
m1 and m2 on a unit interval 0 ≤ x ≤ 1. The particles move freely
and collide elastically with each other and with the “walls” at x = 0 and
x = 1. Let x1, x2 be the positions of the particles and u1, u2 their velocities.
Assume that x1 ≤ x2. When a particle collides with a wall, it simply
reverses its velocity. When the two particles collide with each other, they
preserve the total momentum m1u1 + m2u2 and the total kinetic energy
(m1u

2
1 + m2u

2
2)/2.

Now we introduce new variables:

qi = xi
√

mi and vi = q̇i = ui
√

mi (IV.1.16)
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for i = 1, 2. Then the state of the system is described by a point q =
(q1, q2) ∈ IR2 (called the configuration point) and its velocity vector v =
(v1, v2). The set of all configuration points (called the configuration space)
is the right triangle

Q = {q = (q1, q2) : 0 ≤ q1/
√

m1 ≤ q2/
√

m2 ≤ 1} (IV.1.17)

One can check by direct inspection (we leave it to the reader) that the
trajectory of the system in Q is governed by the billiard rules (IV.1.3) and
(IV.1.4). The only nontrivial part here is to show that collisions between
the particles correspond to specular reflections at the hypotenuse of the
triangle Q. This was the reason why the multipliers

√
mi, i = 1, 2, are

introduced in (IV.1.16).
Therefore, the study of this mechanical model reduces to the study of

billiard dynamics in the triangle Q. We will see more examples of such
reduction in the next section.

Exercises:

IV.1.1. Show that for µ-almost every point x ∈ M and every T > 0 the
segment Φtx, 0 < t < T , contains finitely many reflections at ∂Q. Hint: it
is enough to show the same property for ν-almost every x ∈ M , which can
be done with the help of Poincaré recurrence theorem applied to the map
T : M → M .

IV.1.2. Let Q ⊂ T| 2 be any billiard table on a torus. Prove that for
every point x ∈ M its future semiorbit Φtx, t > 0, necessarily crosses ∂Q,
hence the point Tx exists (even though it may belong to the singular set
S0). Hint: if the semiorbit did not cross ∂Q, it would be either periodic or
dense on the torus, see [PM] or [KH].

IV.2 Billiards in Higher Dimensions

This section is more advanced than the previous one. For a novice, a slow
pace is recommended. It is also possible to skip this section and move
to the following one, but later come back, if necessary, and cover selected
topics from this section.

Let Q be an open bounded domain in a d-dimensional space IRd or in a
d-dimensional torus T| d. Assume that the boundary ∂Q = Γ either is a Ck
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(k ≥ 3) smooth (d−1)-dimensional surface or consists of Ck a finite number
of smooth (d − 1)-dimensional surfaces Γ1, . . . , Γs with boundary, so that
(IV.1.1) again applies. For example, if Q is a d-dimensional polyhedron,
then ∂Q consists of (d−1)-dimensional faces, whose boundaries are (d−2)-
dimensional edges. The set Γ∗ given by (IV.1.2) is again called the singular
set of ∂Q.

The billiard particle moves freely inside Q according to the equations
(IV.1.3) and reflects elastically off the boundary ∂Q by the equation (IV.1.4),
unless q ∈ Γ∗, in which case the reflection is not defined. These equations
preserve the norm ‖v‖, and we set ‖v‖ = 1. The domain Q is called now
the configuration space of the billiard system.

Many results of the previous section extend to multidimensional bil-
liards with obvious modifications. We repeat those results briefly, empha-
sizing the differences between planar and spatial billiard.

The phase space is M = Q̄× Sd−1, where Q̄ is again the closure of the
billiard domain Q, and Sd−1 is now the (d− 1)-dimensional unit sphere of
all velocity vectors. At each q ∈ ∂Q the points (q, v−) and (q, v+) related
by (IV.1.4) are identified.

The billiard dynamics induces a flow Φt on the space M that has in-
variant measure dµ = cµdq dv, where dq and dv are the Lebesgue measures
on Q and Sd−1, respectively, and cµ is the normalizing factor. It is easy to
see that

cµ = (|Q| · |Sd−1|)−1 (IV.2.1)

where |Q| is the d-dimensional volume of the domain Q and |Sd−1| is the
(d− 1)-dimensional volume of the sphere Sd−1.

The measure dµ can be represented in a new coordinate system in a
way similar to (IV.1.10):

dµ = cµ〈v, n(q) 〉 dr dv ds (IV.2.2)

where r and s are shown on Figure IV.3 in Section IV.1. Note that the
coordinate ϕ in (IV.1.10) is replaced by v ∈ Sd−1, and cos ϕ by 〈v, n(q)〉.

The cross-section M of the phase space M is still defined by (IV.1.5).
Note that dimM = 2d − 2. The billiard map T : M → M and the return
time function τ(x) on M are defined naturally, in the same way as in
Section IV.1. If the smooth components of the boundary ∂Q are of class
Ck, then the map T is Ck−1 smooth at all points x ∈ M \ S0 such that
Tx ∈ M \ S0. Here

S0 = {(q, v) ∈ M : 〈v, n(q)〉 = 0} ∪ {(q, v) ∈ M : q ∈ Γ∗}
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The billiard map T : M → M preserves the measure

dν = cν〈v, n(r)〉 dr dv

where dr and dv are the Lebesgue measures on ∂Q and Sd−1, respectively,
and cν is the normalizing factor. By a direct integration over M one can
compute cν :

cν = (|∂Q| · |Bd−1|)−1 (IV.2.3)

where |∂Q| is the (d − 1)-dimensional volume of ∂Q and |Bd−1| is the
(d − 1)-dimensional volume of the unit ball Bd−1 ⊂ IRd−1. We leave the
computation of cν as an exercise.

There is a subsetM′ ⊂M of full µ-measure where the flow Φt is defined
at all times t ∈ IR. Likewise, there is a subset M ′ ⊂ M of full ν-measure
where the map T k is defined for all k ∈ ZZ.

The involution I : M′ →M′ is defined by I(q, v) = (q,−v) as before.
It anticommutes with the flow (Φt ◦I = I ◦Φ−t) and preserves the measure
µ.

The map T : M ′ → M ′ also admits an involution, I1, defined by
(r, v−) 7→ (r, v+) in the notation of (IV.1.4). The involution I1 anticom-
mutes with T , i.e. T k ◦ I1 = I1 ◦ T−k for all k ∈ ZZ, and preserves the
measure ν.

If the absolute value of all sectional curvatures of ∂Q is uniformly
bounded, then Osedelec’s theorem applies to the billiard map T and en-
sures the existence of 2d− 2 Lyapunov exponents {λ1(x), . . . , λ2d−2(x)} at
almost every point x ∈ M . As in Corollary IV.1.4, their sum vanishes:

λ1(x) + · · ·+ λ2d−2(x) = 0 (IV.2.4)

Remark. A much stronger fact than (IV.2.4) can be derived by means of
symplectic geometry. Every billiard is a Hamiltonian system and preserves
a naturally defined symplectic form, we refer the reader to [LW] for details.
It then follows that if we order the set of Lyapunov exponents, λ1(x) ≥
· · · ≥ λ2d−2(x), then

λi(x) + λ2d−1−i(x) = 0

for all 1 ≤ i ≤ 2d−2 and almost every x ∈ M . This fact is usually referred
to as the symmetry of Lyapunov exponents.

A mechanical model. This is a generalization of the 2-particle system
from Section IV.1. Consider n point particles of masses m1, . . . , mn on a
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unit interval 0 ≤ x ≤ 1. The particles move freely and collide elastically
with each other and with the “walls” at x = 0 and x = 1. Let x1, . . . , xn be
the positions of the particles and u1, . . . , un their velocities. Assume that
the particles are ordered so that x1 ≤ · · · ≤ xn.

We introduce new variables:

qi = xi
√

mi and vi = q̇i = ui
√

mi

for i = 1, . . . , n. Then the state of the system is described by a point
q = (q1, . . . , qn) ∈ IRn (called the configuration point) and its velocity
vector v = (v1, . . . , vn). The set of all configuration points (called the
configuration space) is a right pyramid in IRn:

Q = {q : 0 ≤ q1/
√

m1 ≤ · · · ≤ qn/
√

mn ≤ 1}

As in Section IV.1, one can check by direct inspection that the trajectory
of the system in Q is governed by the billiard rules (IV.1.3) and (IV.1.4).
Therefore, the study of the mechanical model on n particles on an interval
can be reduced to the study of billiard dynamics in the pyramid Q.

This reduction has many interesting implications. For example, recall
that the invariant measure dµ is a product of the Lebesgue measures on
both the pyramid Q and the (n − 1)-dimensional sphere Sn−1

v of velocity
vectors. Hence, for every particle i the distribution of its velocity vi is a
marginal measure of the uniform distribution on the sphere Sn−1

v . Let us
set the norm of the velocity vector v so that

v2
1 + · · ·+ v2

n = Kn, K = const (IV.2.5)

Then the distribution of each vi has a limit as n → ∞. This limit is a
Gaussian measure with zero mean and variance K, i.e. vi ∼ N(0,K) as
n → ∞. Normal distribution of velocity vectors is known as Maxwellian
distribution in statistical mechanics, and it is characteristic for molecules
in gases and fluids.

Note that (IV.2.5) can be translated into the original variables qi, ui,
and turns to be a condition on the total kinetic energy:

m1u
2
1

2
+ · · ·+ mnu2

n

2
=

Kn

2

Note that K/2 is the mean kinetic energy per particle. Now, since v2
i has

the same probability distribution for all i, so does the kinetic energy miu
2
i /2
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of every particle. This is an important fact: each particle (independently
of its mass) has the same distribution (and, of course, the same mean
value, equal to K/2) for its kinetic energy. This fact is known in statistical
mechanics as equipartition of energy – the total energy in a multiparticle
system is equally divided between the particles.

Gases of hard disks and balls. The system of particles moving on an
interval discussed above is a very simplified model of a gas. Consider a
more realistic model of n disks moving on a plane, or n balls moving in
space. These two models are very similar, so that we can discuss them
in parallel. For simplicity, let all the disks (balls) have the same radius r
and the same mass m. Each ball (disk) moves freely, i.e. with constant
velocity, until it hits another moving ball. When two balls (disks) collide,
they change their velocities according to the laws of elastic collision.

This law means the following. Let two balls collide. Denote by q1 and
q2 their centers and by v1 and v2 their velocity vectors at the moment of
collision. Let L be the line through the centers q1 and q2. We decompose

vi = v0
i + v⊥i

for i = 1, 2, where v0
i is the component of the vector vi parallel to L and

v⊥i is the one perpendicular to L. Then the new, outgoing, velocities of the
balls are

vnew
1 = v⊥1 + v0

2 and vnew
2 = v⊥2 + v0

1

In other words, the balls exchange the velocity components parallel to
the center line L and retain the orthogonal components. We note that
the laws of elastic collision imply preservation of the total kinetic energy∑

m‖vi‖2/2 and the total momentum
∑

mvi of the system of n balls
(disks). We also note that a collision of two hard balls with centers q1

and q2 can only occur if dist(q1, q2) = 2r, i.e. ‖q1 − q2‖2 = (2r)2.
The system of n balls (disks) moving in the open space (or on the

plane) without walls is dynamically not very interesting. As it is intuitively
clear (and proven mathematically, see below), the total number of collisions
between balls is always finite, and after the last collision the balls will fly
freely forever. Furthermore, the number of collisions between n balls in the
open space is uniformly bounded by a constant that only depends on n.
This last fact was proved very recently – in 1998 – by Burago, Ferleger and
Kononenko [BFK2], see Corollary IV.2.4 below.

Let us consider n balls or disks enclosed in a bounded domain R, called
a container (or reservoir). The balls (disks) collide elastically with each
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other and with the walls of the container. Precisely, if a ball with center
q hits a wall at a point w ∈ ∂R, then we decompose its velocity vector as
v = v0 +v⊥, where v0 is the component parallel to the line passing through
q and w, and v⊥ is perpendicular to that line. The new, outgoing, velocity
of the ball is vnew = v⊥−v0. Note that this rule preserves the total kinetic
energy of the system, but not its total momentum.

Now we reduce the system of n hard balls in a container R to a bil-
liard. We denote by qi = (q1

i , q2
i , q3

i ) the center of the ith ball and by
vi = (v1

i , v2
i , v3

i ) its velocity vector, 1 ≤ i ≤ n. For disks on a plane, we
have two coordinates instead of three, of course. Now the entire system
can be described by a configuration point

q = (q1
1 , q2

1 , q3
1 , q1

2 , . . . , q2
n, q3

n) ∈ IR3n

and its velocity vector

v = (v1
1 , v2

1 , v3
1 , v1

2 , . . . , v2
n, v3

n) ∈ IR3n (IV.2.6)

(for systems of disks, we need to replace 3n by 2n).
We note that q ∈ Rn = R×· · ·×R. It is also important to observe that

not the entire region Rn is available for the configuration point q. By the
rules of elastic collisions, the balls cannot overlap – the moment they bump
into each other, they collide. This rule requires exclusion of configurations
that satisfy

(q1
i − q1

j )2 + (q2
i − q2

j )2 + (q3
i − q3

j )2 < (2r)2 (IV.2.7)

for some 1 ≤ i < j ≤ n (here r is the radius of the balls). The inequality
(IV.2.7) specifies a spherical cylinder in IR3n, which we denote by Cij . For
the model of hard disks on a plane, we get a circular cylinder Cij in IR2n.
The cylinders Cij , 1 ≤ i < j ≤ n, contain all forbidden configurations of
the balls (disks), hence they must be removed from the available space. As
a result, we get a smaller domain

Q = Rn \ ∪i 6=jCij

This domain Q is called the configuration space of the system.
Now one can check by direct inspection (we leave it to the reader as an

exercise, rather tedious one, though) that the trajectory of the configuration
point q in Q is governed by the billiard rules (IV.1.3) and (IV.1.4). Specular
reflections at the surface of a cylinder Cij correspond to collisions between
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the balls i and j. Thus, the study of the mechanical model of n balls or
disks is reduced to the study of billiard dynamics in the domain Q. We note
that the conservation of the total kinetic energy

∑
i m‖vi‖2/2 is equivalent

to the preservation of the norm ‖v‖ of the velocity vector (IV.2.6).
The singularity set Γ∗ contains all intersection of the cylindrical sur-

faces ∂Cij with each other. Such intersections correspond to simultaneous
collisions of three or more balls. The outcome of such multiple collisions
is not defined. It is our general rule, though, to ignore billiard trajectories
that hit Γ∗.

The gas of hard balls is a classical model in statistical physics. Its
study goes back to L. Boltzmann in the XIX century. Many physical laws
have been first established for gases of hard balls, and then experimentally
verified for other gases. Boltzmann was first to state the celebrated ergodic
hypothesis. He assumed that gases of hard balls are, in general, ergodic
and used this assumption to justify the laws of statistical mechanics (on a
“heuristic” level). Since then, it remains a major challenge for physicists
and mathematicians to prove this hypothesis, as well as to make use of the
ergodicity to build the mathematical foundation of statistical mechanics.

In early sixties, Ya. Sinai studied a specific version of Boltzmann’s model
– the gas of n hard balls (or disks) on a torus T| d, d ≥ 2. In that case the
container R is a torus, so there are no walls (i.e., ∂R = ∅). Hence, the balls
only collide with each other. Therefore, in addition to the total kinetic
energy, the total momentum is conserved. Sinai conjectured that if one
sets the total momentum to zero and fixes the center of mass, then the
resulting reduced system would be ergodic.

Attempts to prove the Boltzmann-Sinai conjecture spanned almost 40
years, and they had a colorful and sometimes dramatic history described
in [Sz1]. See also [Sz2]. It appears that the problem is almost solved by
now due to very recent works of N. Simanyi and D. Szasz [SS1, Sm]. But
that solution is beyond the scope of this book.

Lorentz gas. Here is another popular physical model. Imagine a point
particle moving between fixed rigid balls in space IR3. The balls are of the
same radius r. They can be positioned either randomly or make a regular
crystalline-like structure (for example, their centers may be located at cites
of the lattice ZZ3). The balls do not move, only one point particle moves in
between and collides with the balls elastically. The balls act like obstacles
(like bumps in a pinball machine).

This model was introduced by H. Lorentz in 1905 [Lo] in the study of
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electrons in metals. The moving pointlike particle represented an electron,
and the balls played the role of molecules in metal. When the balls are
located at cites of a regular lattice, the Lorentz gas is said to be periodic
(as opposed to random). We only discuss periodic Lorentz gases here.

Instead of balls, we can place other identical bodies at the lattice cites,
and require the moving particle bounce off the boundaries of the obstacles
elastically. The bodies may have cubical or more general polyhedral shape.
Various modifications of this model are studied in physics [Hg]. One can
also define a Lorentz gas on a plane, in this case 2-D obstacles are placed
at cites of a 2-d lattice, e.g., ZZ2.

Figure IV.5: A periodic Lorentz gas.

We now reduce the Lorentz gas to a billiard. It is already “almost”
a billiard, except that the available domain for the moving particle is un-
bounded and has infinite volume. This can be fixed easily. Since the
obstacles are located at the cites of a lattice, their structure is periodic,
and one can find a fundamental domain D, i.e. the domain whose parallel
translations will cover the whole space. The domain D contains just a few
(sometimes just one) obstacle, and all the other obstacles are obtained by
parallel translations of those in D. Fig. IV.5 shows a periodic Lorentz gas
on a plane, where fixed disks make a periodic array, and the fundamental
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domain is just a square containing one disk.
Now the motion of the particle can be projected down to the fundamen-

tal domain D, and we get a billiard system in D with periodic boundary
conditions, i.e a billiard on a torus T| d, d = 2, 3. The billiard domain Q
is obtained by removing one or several obstacles from the torus. Such an
example was already shown on Fig. IV.4 in Section IV.1.

We conclude this section by two properties of billiards that have geo-
metric, rather than dynamical, nature.

Mean free path. Recall that the function τ(x) on M is the return time
for the map T : M → M , or the time elapsed between reflections at the
points x and Tx. Since the speed of the billiard particle is set to one, τ(x)
also equals the distance in Q between these points of reflection, which is
called the free path of the billiard trajectory. We now want to estimate the
mean free path, i.e. the asymptotic of value

τ̄(x) = lim
n→∞

τ(x) + τ(Tx) + · · ·+ τ(Tn−1x)
n

(IV.2.8)

By the Birkhoff ergodic theorem, the value τ̄(x) exists almost everywhere
in M and its average value is

τ̄ :=
∫

M

τ̄(x) dν(x) =
∫

M

τ(x) dν(x) (IV.2.9)

If the billiard map T is ergodic, then, furthermore, the function τ̄(x) is
constant almost everywhere, and it equals τ̄ .

The calculation of τ̄ , in terms of geometric characteristics of the domain
Q, is remarkably simple. We write

τ(x) =
∫ τ(x)

0

ds

where s is the parameter introduced in (IV.2.2), and then

τ̄ =
∫

M

τ(x) dν(x) = cν

∫

M

∫ τ(x)

0

〈v, n(r)〉 ds dr dϕ

Then we use the identity (IV.2.2) and get

τ̄ =
cν

cµ

∫

M
dµ =

cν

cµ
(IV.2.10)
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Now using (IV.2.1) and (IV.2.3) completes the calculation:

τ̄ =
|Q| · |Sd−1|
|∂Q| · |Bd−1| (IV.2.11)

We note that the mean free path between collisions only depends on the
volume of the domain Q and the surface area of its boundary, but not on
its shape.

In particular, for planar billiards d = 2, and we have |S1| = 2π, |B1| = 2,
hence the formula (IV.2.11) turns very simple:

τ̄ =
π |Q|
|∂Q| (IV.2.12)

The formula (IV.2.11) is well known in geometric probability and inte-
gral geometry. Its planar version (IV.2.12) is often referred to as Santalo
formula, since it was first given in Santalo’s book [Sa].

For example, consider again a billiard table Q on a unit torus T| 2 where
a small disk D of radius r is removed, as shown on Fig. IV.4. Clearly,
for small r the billiard particle can move freely for a long time between
collisions with the disk D, and the function τ(x) can take arbitrarily large
values. The Santalo formula (IV.2.12) gives its mean value:

τ̄ =
π(1− πr2)

2πr
=

1− πr2

2r

i.e. the mean free path is asymptotically equal 1
2r as r → 0. We will see

later that the map T is ergodic in this example, so that τ̄(x) = τ̄ almost
everywhere.

As a far more complicated example, consider a system of N hard balls
on a unit (d-dimensional) torus. It reduces to a billiard in multidimensional
domain Q whose boundary consists of cylinders (note: dim Q = Nd). The
mean free time between collisions can now be estimated by (IV.2.11). This
requires computing the volume of Q and surface area of its boundary. This
is a difficult but feasible job, which was done in [C5]. Quite remarkably,
the final expression coincided with the classical Boltzmann’s formula for
the mean intercollision time used in statistical physics for decades. We
refer the interested reader to [C5] and references therein.

Estimates for the number of reflections. Here we consider the follow-
ing problem: given a piece of a billiard trajectory of length L, how many
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reflections at ∂Q can be there on that piece? In particular, can the number
of reflections, n, be infinite? We showed in Sect. IV.1 that n < ∞ with
probability one. But, from the geometric point of view, one would like to
know if n can ever be infinite, and how large n can be. These questions
also arise in the studies of ergodic properties of billiards.

We start with a simple case - a billiard trajectory moving between
two lines, l1 and l2, which intersect at a point A at angle α > 0, see
Fig. IV.6. We call Q the (infinite) domain bounded by these lines. When
the trajectory hits either line, say l1, it gets reflected, but its mirror image
across l1 will continue moving straight on the other side of l1. We will
follow that mirror image, rather than the trajectory itself. It will continue
moving in the domain Q1 that is the mirror images of Q across the line l1.
When our trajectory hits the other line l2, its mirror image also hits the
other side of the domain Q1, etc. We will keep reflecting the domains Qi

across their sides and following the straight line made by the mirror images
of our trajectory. This will look like a mirror room in an amusement park,
with multiple reflections in different mirrors. This method of reflecting the
billiard table Q across its sides and following the images of the trajectory
is called unfolding. The result is shown on Fig. IV.6.

Q
α

Q

Q

l

l

A

1

2

1

2

Figure IV.6: The unfolding of a billiard trajectory.

It is clear from Fig. IV.6 that the total angle made by the unfolding
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images Q1, Q2, . . ., between the first reflection and the last one, cannot
exceed π, hence

n <
π

α
+ 1

This simple estimate gives an upper bound on the number of reflections
in Q. We note that this bound is uniform, i.e. the same for all billiard
trajectories in Q.

The above estimate has a multidimensional version. Suppose that sev-
eral hyperplanes in IRd, d ≥ 2, intersect at one point A, so that they make a
“polyhedral angle” with vertex at A. Ya. Sinai proved in 1978 [Si4] that the
number of reflections experienced by any billiard trajectory inside such an
angle is uniformly bounded, the bound only depends on the configuration
of the hyperplanes.

It is more difficult to estimate the number of reflections in billiard do-
mains with curvilinear boundary. Here we have two distinct cases. One is
a billiard domain Q with a convex boundary, such as a disk on a plane or a
ball in IRd. Near a convex boundary ∂Q, a short piece of trajectory clearly
can experience arbitrary many reflections. This happens when the velocity
vector v at a point of reflection q ∈ ∂Q is almost tangent to the boundary
∂Q. Such a trajectory would simply “slide” along ∂Q experiencing many
“grazing” collisions with ∂Q in rapid succession.

It is even possible to construct convex billiard tables Q ⊂ IR2 where
a short piece of trajectory experiences infinitely many reflections accumu-
lating at a point of ∂Q where the curvature vanishes. Such “anomalous”
examples were found by Halpern [Hn].

On the contrary, when the boundary of Q is concave (i.e., convex in-
ward), the number of reflections can be well bounded. To picture a billiard
table with concave boundary, take a polygon and bow each side inward a
bit. Or recall the table on a torus where a disk is removed, Fig. IV.4.

It is clear that near one smooth concave piece of ∂Q any short billiard
trajectory can only have one reflection. Consider now a corner point, i.e.
a vertex A where two (or more) concave pieces of ∂Q meet. Estimates
on the number of reflections near such corners have been extensively stud-
ied by Galperin [Ga], Vasserstein [Va] and others. Here we present the
most general estimate obtained by Burago, Ferleger & Kononenko in 1998
[BFK2].

To define a corner point with concave walls in IRd, one can consider
finitely many closed convex subsets Bi ⊂ IRd, i = 1, . . . , n, whose bound-
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aries are C1 hypersurfaces and define a billiard domain by

Q = IRd \ (∪n
i=1Bi) (IV.2.13)

It is clearly enough to assume that

B := Q̄ ∩ (∩n
i=1Bi) 6= ∅

and consider short billiard trajectories near B (the set B plays the role of
a vertex).

For any two points X, Y ∈ Q we denote by T (X,Y ) the piece of billiard
trajectory starting at X and ending at Y (if one exists), and by |T (X, Y )|
its length. The following lemma compares |T (x, y)| to the distance from X
and Y to the “bottom of the corner” – the set B.

Lemma IV.2.1 (Comparison Lemma) For every X,Y ∈ Q and every
A ∈ B

|XA|+ |AY | ≥ |T (X, Y )|
The inequality is strict if one of the reflections occurs at a strictly concave
part of the boundary of Q.

Proof. Denote by Xi ∈ ∂Q, i = 1, . . . , k, the reflection points of the
trajectory T (X, Y ) and put X0 = X, Xk+1 = Y . Consider the tri-
angulated surface made by the triangles AXiXi+1, i = 0, . . . , k. Let
A′X ′

0X
′
1 · · ·X ′

k+1 ⊂ IR2 be the unfolding (or development) of this sur-
face made by putting those triangles on a plane with adjacent sides, see
Fig. IV.7. In Exercise IV.2.1, it is proved that the curve γ = X0 · · ·Xk+1 is
convex: for any i = 0, . . . , k it lies on one side of the line XiXi+1 (opposite
to the point A′). The convexity of γ implies

|XA|+ |AY | = |X ′
0A

′|+ |A′X ′
k+1|

≥
k∑

i=0

|X ′
iX

′
i+1| =

k∑

i=0

|XiXi+1| = |T (X, Y )| 2

Theorem IV.2.2 ([Ga], [Va]) For any billiard trajectory of finite length
in Q the number of reflections is finite.
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Figure IV.7: The development of a triangulated surface on a plane.

Proof. Assume the opposite – a trajectory T starting at X ∈ Q has in-
finitely many reflection points that accumulate at a point A ∈ B (if A /∈ B,
we can remove some Bi’s from our construction). Let X1, X2, . . . be the
points of reflection, and Xi → A as i → ∞. Clearly the length of the
straight segment X1A is smaller than the length |T (X1, A)| of the entire
trajectory between X1 and A. Therefore we can find Xk sufficiently close
to A so that |X1A|+ |AXk| < |T (X1, Xk)|, which contradicts to the com-
parison Lemma. 2

A uniform bound on the number of reflections requires some extra condi-
tions on the billiard domain. Indeed, if a corner point A of a planar billiard
table Q ⊂ IR2 with concave boundary is a cusp, i.e. made by two concave
curves tangent to each other at A, then a short billiard trajectory can ex-
perience arbitrary many reflections near A, see Exercise IV.2.2. Therefore,
some sort of transversality of Bi’s at their intersection B is necessary. Such
a condition was found in [BFK2]:

Definition. A billiard domain Q given by (IV.2.13) is nondegenerate in a
subset U ⊂ IRd with constant C > 0 if for any I ⊂ {1, · · · , n} and for any
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y ∈ (U ∩Q) \ (∩i∈IBi)

max
k∈I

dist(y,Bk)
dist(y,∩i∈IBi)

≥ C

whenever ∩i∈IBi is nonempty.
Roughly speaking, this means that if a point is d-close to all the walls

from I, then it is d/C-close to their intersection.

Theorem IV.2.3 ([BFK2]) Let a semidispersing billiard Q be nondegen-
erate in an open domain U ⊂ IRd. Then for any point x ∈ U there exist
a number Mx < ∞ and a smaller neighborhood Ux of x such that every
billiard trajectory entering Ux leaves it after making no more than Mx col-
lisions with the boundary ∂Q.

Corollary IV.2.4 ([BFK2]) The system of N hard balls of arbitrary masses
and arbitrary radii in an open space IRd can experience no more than a cer-
tain number, M < ∞, collisions. Here

M =
(

32
√

mmax

mmin

rmax

rmin
N

3
2

)N2

where mmax and mmin are the maximum and minimum masses and rmax

and rmin are the maximum and minimum radii of the balls, respectively.

It is remarkable that all the above facts admit rather elementary and ge-
ometrically explicit proofs, see [BFK2]. Those are, however, quite involved
to be included in this book.

Exercises:

IV.2.1. Prove that the curve γ = X ′
0 · · ·X ′

k+1 defined in the proof of
Comparison Lemma is indeed convex. Hint: observe the relation between
the “development” of the tangent line at Xi and the unfolding line A′X ′

i

and use the fact that the angle of reflection is equal to the angle of incidence.

IV.2.2. Let Q ⊂ IR2 be a billiard table with a corner point A at which
two concave components γ1, γ2 ⊂ ∂Q of the boundary meet and make a
cusp (i.e., intersect at zero angle). Show that a short billiard trajectory
can experience arbitrary many reflections at ∂Q near the point A. Hint:
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consider a common tangent line L to γ1 and γ2 at A and start the tra-
jectory on L ∩ Q with an initial velocity vector pointing almost (but not
exactly) into A. Show that at each reflection the velocity vector turns by
an arbitrary small amount, hence it may take arbitrary many reflections to
turn the trajectory around and drive it away from A.

IV.3 Simple Examples

In the study of billiards, even simple examples may exhibit surprisingly
rich dynamical properties.

Circles. We start with a circular billiard table: let Q be a disk of radius
one. The surface M = ∂Q × [−π/2, π/2] (with the coordinates r, ϕ) is a
cylinder whose base is a circle of length 2π and whose height is π.

To see how the map T : M → M acts, let x = (r, ϕ) ∈ M . The next
reflection occurs at the point Tx = (r + π− 2ϕ,ϕ), and the n-th reflection
at

Tnx = (r + n(π − 2ϕ), ϕ)

In this formula r is assumed to be a cyclic coordinate, i.e. r + n(π− 2ϕ) is
taken modulo 2π. Two conclusions immediately follow.

(i) The angle of reflection ϕ is preserved by the map T , i.e. every curve
ϕ = const in M is invariant under T . Each such curve is a circle parallel
to the base of the cylinder M .

(ii) The map T restricted to any curve ϕ = const rotates it through a
constant angle, π−2ϕ. Hence, T acts as a circle rotation on each invariant
curve.

We also note that the return time function τ(x) = 2 cos ϕ is constant
on each invariant circle ϕ = const. All the links of a billiard trajectory
starting with a given angle ϕ are tangent to one circle of radius R = sinϕ
concentric to the billiard table, see Fig. IV.8.

If the angle of rotation π − 2ϕ is a rational multiple of π, i.e. if

π − 2ϕ

2π
=

m

n

with m,n ∈ ZZ, then the map T on the circle ϕ = const is periodic with
period n. Moreover, each point on this circle is periodic with the same
period.
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If the angle of rotation π − 2ϕ is irrational, i.e. if ϕ/π is an irrational
number, then the circle rotation is ergodic and every trajectory is dense and
uniformly distributed on the circle. In this case the links of any billiard
trajectory densely fill a ring on the billiard table with the inner radius
R = sin ϕ (see Fig. IV.8).

Figure IV.8: Links of a nonperiodic trajectory.

One can clearly see on Fig. IV.8 that the links look denser near the
inner circle of the ring. In other words, the links focus on the inner circle.
If our billiard trajectory were the path of a laser ray and the border of the
billiard table Q were a perfect mirror, then it would feel “very hot” there,
on the inner circle. For this reason, the inner circle is called a caustic (which
means “burning”). In general, a caustic for a billiard is a curve such that
if one link of a billiard trajectory is tangent to it, then every other link (or
the line that contains that link) of the same trajectory is tangent to the
caustic.

Since the surface M is foliated by invariant curves ϕ =const, the map
T is not ergodic. Any measurable set that is a union of invariant curves will
be T -invariant. Another way to see nonergodicity is to find a nonconstant
invariant function. Here the function F : M → IR defined by F (r, ϕ) = ϕ is
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a smooth nonconstant function invariant under T , i.e. it satisfies F (Tx) =
F (x) for all x ∈ M .

Definition. If a smooth dynamical system T : M → M on a manifold M
admits a smooth nonconstant function invariant under T , then F is called
a first integral and T is said to be integrable.

If T : M → M is integrable, then every level surface Sc = {F (x) =
c} is T -invariant, i.e. M can be foliated by invariant hypersurfaces. If
dim M = d and T : M → M admits d − 1 independent first integrals
F1, . . . , Fd−1, then M can be foliated by one-dimensional T -invariant sub-
manifolds {F1(x) = c1, . . . , Fd−1(x) = cd−1}, where c1, . . . , cd−1 ∈ IR.

Definition. If M can be foliated by one-dimensional T -invariant subman-
ifolds (curves), then T is said to be completely integrable.

The billiard in a circle is then completely integrable.
The derivative of our map T is

DT (x) =
(

1 −2
0 1

)
(IV.3.1)

(this follows from (IV.1.7), where we need to set ϕ1 = ϕ, τ = 2 cos ϕ and
K = −1). Hence,

DTn(x) =
(

1 −2n
0 1

)

for all n ∈ ZZ. This easily implies that both Lyapunov exponents equal
zero at every point x ∈ M . As a result, the entropy of the map T is zero
as well. Hence, by all standards, the map T is not chaotic.

Note, however, that typical tangent vectors do grow under DTn as
n → ∞, but only linearly in n (rather than exponentially). Such maps,
where the separation of nearby trajectories is typically linear, are usually
said to exhibit parabolic behavior (as opposed to hyperbolic one that we
learned in Chapter III).

Ellipses. Consider now a billiard system inside an ellipse

x2

a2
+

y2

b2
= 1 (IV.3.2)

with some a > b > 0. The surface M is then a cylinder with base (IV.3.2)
and height π.
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The billiard inside ellipse has many nice geometric properties. We refer
to [CFS, Ta1, Bi] for proofs, which are all very elementary but sometimes
a little involved. One can also use the methods of projective geometry (the
so called Poncelet theorem) to derive all these properties.

Denote by F1 and F2 the foci of the ellipse (IV.3.2), note that they lie
on the x axis. If a billiard trajectory passes through one focus, then it
reflects at ∂Q and passes through the other focus, and so on (see Exercise
IV.3.2). The trajectories that pass through the foci are special. They make
a closed curve on the surface M (the ∞-shaped curve shown on Fig. IV.9).

r

θ

Figure IV.9: The surface M for the elliptic billiard.

If a trajectory crosses the segment F1F2 joining the foci, then it reflects
at ∂Q and crosses this segment again. Such trajectories fill two domains in
M bounded by the ∞-shaped curve (marked grey on Fig. IV.9).

The remaining trajectories never cross the segment F1F2. Every time
such a trajectory crosses the major axis (the x axis), the intersection point
lies away from F1F2 (alternatively, to the left and to the right of the segment
F1F2). Such trajectories fill two domains in M (white area above and below
the ∞-shaped curve on Fig. IV.9).

There are two distinguished periodic orbits - one lying on the major
axis (it is represented by the points of intersection of the two branches of
the ∞-shaped curve) and one lying on the minor axis (represented by the
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centers of the two parts of the ∞-shaped domain).
Every billiard trajectory in ellipse not passing through the foci and dif-

ferent from the distinguished periodic orbits has a caustic. For trajectories
crossing the segment F1F2 the caustics are hyperbolas confocal to the ellipse
(IV.3.2). For the other trajectories the caustics are ellipses confocal to the
given ellipse (IV.3.2) and lying inside that ellipse (those elliptical caustics
generalize concentric circles in the circular billiard discussed above).

All the trajectories tangent to one elliptic caustic lie on a curve in
M that is invariant under T (horizontal “waves” in the white area on
Fig. IV.9). Those invariant curves appear as deformations of the invariant
lines ϕ =const in the circular billiard. All the trajectories tangent to one
hyperbolic caustic lie on two closed curves in M , one inside each half of
the ∞-shaped domain, each curve being invariant under T 2. Therefore,
the surface M is completely foliated by invariant curves. In this sense,
the elliptical billiard is similar to the circular one – both are completely
integrable.

On each invariant curve the map T (or T 2) is conjugate to a rigid circle
rotation through some angle (called the rotation number). That number
changes continuously and monotonically with the invariant curve. The
special ∞-shaped curve that separates the two regions with different types
of caustics (hyperbolic and elliptic) is called a separatrix. It is also invariant
under T , but it does not rotate. Instead, every trajectory starting on the
separatrix converges (both in the future and in the past) to a 2-periodic
orbit lying on the major axis.

The formula for the derivative of the map T in the r, ϕ coordinates is
complicated and would not tell us much. But one can choose a special
curvilinear coordinate system in M (apart from the separatrix) with one
axis along an invariant curve, in which the matrix DT will be triangular and
have ones on the diagonal. Then one can easily derive that the Lyapunov
exponents are zero (since they do not depend on the choice of the coordinate
system or even the metric). Hence, the entropy of the map T is zero as
well. Again, by all our standards, the map T is not chaotic.

The dynamical behavior of the map T , apart from the separatrix and the
distinguished periodic orbits, is parabolic, as in the case of circular billiard.
But there is more to the picture now. The periodic trajectory lying on the
major axis is hyperbolic, and its stable and unstable manifolds lie on the
separatrix, see Exercise IV.3.4. The other distinguished periodic trajectory,
lying on the minor axis (the y axis) is neither hyperbolic nor parabolic.
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Definition. Let x be a periodic point, i.e. Tnx = x for some n ≥ 1. If the
derivative DTn(x) has only simple complex (nonreal) eigenvalues lying on
the unit circle, then the point x is said to be elliptic.

When dim M = 2, then the derivative map DTn is just a rotation
through some angle. In that case a neighborhood of x often contains many
Tn-invariant closed curves (ellipse-like ovals, hence the term elliptic). This
fact is related to the KAM theory mentioned at the end of Section III.3. Our
periodic trajectory lying on the minor axis is elliptic, and its neighborhood
is completely foliated by T 2-invariant ovals, see Exercise IV.3.3.

Hence, the the billiard inside an ellipse displays a combination of parabolic,
hyperbolic and elliptic structures.

Smooth convex tables. One may wonder if there are completely inte-
grable billiards other than the circular and elliptic ones. This question is
known as

Birkhoff conjecture. The only completely integrable billiards are those in
circles and ellipses.

Surprisingly, this conjecture is still open. Most mathematicians believe
that it is correct, though.

On the other hand, billiards in general oval-shaped tables, even if not
completely integrable, have many common features with billiards in ellipses.
In 1973 Lazutkin [La] proved: if Q is a strictly convex domain (the cur-
vature of the boundary never vanishes) with sufficiently smooth boundary,
then there exists a positive measure set N ⊂ M that is foliated by invariant
curves. The set N accumulates near the boundary ∂M . All trajectories
starting in the set N have caustics, which are convex closed curves lying
inside Q. Of course, the billiard cannot be ergodic since ν(N) > 0. The
Lyapunov exponents for points x ∈ N are zero. However, away from N the
dynamics might be quite different.

Originally Lazutkin demanded 553 continuous derivatives in his the-
orem, but later R. Douady [Dy] proved that 6 are enough (therein it is
conjectured that the curve may be C4). This improvement was a conse-
quence of the improvements in the KAM theorem. There exist examples
that show that at least two derivatives are necessary for the existence of
caustics3. Also, J. Mather [Mz] proved that even a single point on the

3Convex billiard tables whose boundaries are C1 curves were studied by Hubacher
[Hu]. Their second derivatives exist and are continuous except for a finite set of points
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boundary of a C2 convex table where the curvature vanishes prevents the
existence of caustics near ∂Q.

Stadium. We will now modify a little our circular billiard table. Take
two semicircles of radius one, put them together so that they make a whole
circle and then move them slightly apart, by a distance 2ε. The resulting
domain can be described as

Q = {|y| < 1, |x| < ε +
√

1− y2}

This is a convex domain with C1 (but not C2) boundary. It resembles a
stadium.

L. Bunimovich first introduced and studied stadia in the seventies [Bu2].
He discovered a striking fact: the billiard in a stadium has nonzero Lya-
punov exponents a.e., i.e. it is completely hyperbolic. Its entropy is pos-
itive. Moreover, it is ergodic, mixing and isomorphic to a Bernoulli shift.
Hence, one can perturb a completely integrable circular billiard by an ar-
bitrary small amount to get a fully chaotic dynamical system.

Similar modifications can be done with ellipses. Let us cut the ellipse
along its minor axis, move the two halves of the ellipse apart in the direction
of the major axis, and joint both parts by two segments of length equal
2h. We obtain the elliptical stadium. It is also hyperbolic an ergodic for
h > hmin > 0, where hmin depends on the eccentricity of the ellipse.

There is another way of modifying circular and elliptic billiards to obtain
a chaotic system. Take a circle and cut a slice of it along a chord (which can
be arbitrarily small). The billiard in such a “truncated” circle is hyperbolic
and ergodic, as Bunimovich showed in [Bu1]. Or take the ellipse (IV.3.2)
and cut two symmetric slices along the lines y = ±(b− h). The billiard in
such a truncated ellipse is hyperbolic and ergodic, too [De].

We note that all the billiards mentioned above are convex with C1 (but
not C2) boundary. The map T : M → M is continuous but not always
differentiable. There are points where DT does not exist (singular points).
These are points x ∈ M such that Tx ∈ Γ∗. It appears that the singularities
of T always exist in chaotic billiards.

where one-sided limits exist, but the curvature function is discontinuous at those points.
It is proved that caustics do not exist in a vicinity of the boundary, but it is observed
that they could exist away from the boundary.
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Exercises:

IV.3.1. Let Q be a ring – a domain bounded by two concentric circles.
Describe the phase space M of the billiard in Q. Note that the map T :
M → M is not continuous.

IV.3.2. Let Q be an ellipse with foci F1 and F2. Let A ∈ ∂Q and L
the tangent line to ∂Q at A. Prove that the segments AF1 and AF2 make
equal angles with the line L (this fact is known in projective geometry as
Poncelet theorem). Hint: use the characteristic property of the ellipse: the
sum |AF1|+ |AF2| does not depend on A.

IV.3.3.
(a) Let x be a 2-periodic point for the billiard map T . Note that in this case
cos ϕ = cos ϕ1 = 1 in the formula (IV.1.7). Then show that the eigenvalues
of the map DT 2 are complex (nonreal) if and only if

τKK1 + K + K1 < 0 and (τK + 1)(τK1 + 1) > 0

in the notation of (IV.1.7).
(b) Prove that the periodic orbit along the minor axis of the ellipse is
elliptic.

IV.3.4. Prove that the periodic orbit along the major axis of the ellipse is
hyperbolic. Describe precisely its stable and unstable manifolds.

IV.4 Dispersing Billiards

From now on we will study chaotic billiards only. They are characterized,
first of all, by non-zero Lyapunov exponents, and then by positive entropy,
ergodicity and mixing. For simplicity, we will restrict ourselves to planar
billiards, i.e. assume d = 2.

Wave fronts. Recall that Lyapunov exponents for a map T : M → M
are characteristics of tangent vectors u ∈ TM . Tangent vectors admit an
explicit geometric representation in billiard systems. First, a tangent vector
u ∈ TxM at a point x = (q, v) ∈ M can be represented by an infinitesimal
curve γ ⊂ M passing through x in the direction of u. The trajectories of
the points y ∈ γ, when they just leave the boundary ∂Q and enter the
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domain Q, make a one-parameter family of oriented lines, which we call a
bundle of rays.

It is actually more convenient to work with a bundle of rays in the
domain Q rather than with the curve γ in M . Let us take an orthogonal
cross-section of that bundle, which passes through the point x = (q, v). We
call that cross-section Σ, see Fig. IV.10. It is a curve in Q that intersects
every ray of our bundle perpendicularly. Velocity vectors of the points on
that curve are thus normal vectors to it. Hence, Σ is smooth curve equipped
with a family of normal vectors pointing in the direction of motion. We
call Σ a wave front, the term borrowed from physics.

Σ

x

Figure IV.10: A divergent wave front in Sinai billiard.

The curvature of the front Σ plays a crucial role in our analysis. The
sign of the curvature is chosen according to the following rule. If the front Σ
is divergent, as the one shown on Fig. IV.10, then its curvature is positive.
If the front is convergent, its curvature is negative. If the front is made by
parallel rays (Σ is then a perpendicular line), then the curvature is zero,
and such fronts are said to be neutral.

The curvature of the boundary ∂Q will play an equally important
role. Remember our convention in Section IV.1 (made in the proof of
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Lemma IV.1.1): the curvature of the boundary is positive if it is concave
(convex inward), and negative if the boundary is convex.

Definition. A smooth component of the boundary Γi ⊂ ∂Q is said to be
dispersing, if its curvature is positive, focusing if its curvature is negative
and neutral if its curvature is zero.

If the curvature of Γi changes sign, we divide it into smaller components
whose curvature has constant sign. So, we assume that the boundary ∂Q
consists of the components of the above three types – dispersing, focusing
and neutral.

Definition. If all the components of the boundary ∂Q are dispersing, the
billiard is said to be dispersing. If ∂Q consists of dispersing and neutral
components, the billiard is said to be semidispersing.

Dispersing billiards are also known as Sinai billiards, since Ya. Sinai
introduced them in 1970 and thus began mathematical study of chaotic
billiards. Dispersing and semidispersing billiards make the main (but not
only) classes of chaotic billiards.

It is geometrically evident that when a neutral (parallel) bundle of rays
falls upon a dispersing boundary, then the outgoing rays (after the reflec-
tion) make a divergent bundle. It is also easy to see that at the subsequent
reflections at dispersing boundaries that bundle “opens up” even more,
and its rays rapidly diverge from each other, see Fig. IV.10. This is the
main reason of exponential growth of wave fronts in dispersing billiards,
which will translate into the existence of a positive Lyapunov exponent.
We know from Section IV.1 that the sum of the two Lyapunov exponents
of the map T : M → M is zero, hence the other Lyapunov exponent will
be automatically negative.

It is interesting that one can explicitly construct the wave front Σ−(x)
corresponding to the negative Lyapunov exponent at x ∈ M . It must
exponentially converge, i.e. shrink, as time goes on. The existence of
such a front is reminiscent the idea of stability in the theory of differential
equations. Recall that a trajectory (a solution of a differential equation) is
said to be stable if all the nearby trajectories do not deviate too far from
it in the future. Next we will construct Σ−(x).

Let x = (q, v) ∈M. Take a large t > 0 and consider the point (qt, vt) =
Φt(q, v), i.e. a distant image of the point (q, v). Reverse the time by using
the involution, i.e. take the point (qt,−vt) = I(qt, vt). Consider a neutral
wave front Σ+

t passing through (qt,−vt), i.e. a parallel bundle of rays
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around qt moving in the direction of −vt. Then, by the main property of
the involution, the image Φt(Σ+

t ) will be a wave front containing the point
(q,−v) = I(q, v). Its involution Σ−t = I(Φt(Σ+

t )) will then contain the
original point (q, v).

Now, in Sinai billiards (as we remarked above) parallel wave fronts
become divergent and grow exponentially fast in time. Hence, the front
Φt(Σ+

t ) will be exponentially (in t) longer than the front Σ+
t (remember

that all our fronts are infinitesimally small anyway). Therefore, the front
Φt(Σ−t ) will be exponentially shorter than the front Σ−t . This gives us a
wave front starting at the given point (q, v) that shrinks exponentially fast
during the time interval (0, t). It remains to take the limit t →∞ and get
a front Σ−(x) := limt→∞ Σ−t that shrinks exponentially fast all the time.
This is our stable family of trajectories that correspond to the negative
Lyapunov exponent at the point (q, v). Note that the fronts Σ−t and the
limit front Σ−(x) are convergent (have negative curvature).

In addition to the stable families represented by convergent wave fronts,
we will need their “reversed” counterparts. Given a point x = (q, v) ∈
M, let Σ−(I(x)) be the stable family constructed for the point I(q, v) =
(q,−v). Then the wave front Σ+(x) := I(Σ−(I(x))) will be divergent
(have positive curvature). It will grow exponentially fast in the future and
contract exponentially fast in the past. Thus, its Lyapunov exponent will
be positive.

We now turn to exact equations describing the dynamics of wave fronts
in billiards.

Let Σ0 be a wave front, i.e. a C1 arc equipped with normal vectors
pointing in the direction of motion. Let (q, v) ∈ Σ0 be one of its elements.
Denote by χ0 the curvature of the front at the point q whose sign is set
by the above rules. Consider the front Σt = Φt(Σ0), t > 0, it contains the
point (qt, vt) = Φt(q, v). We will compute the curvature χt of the front Σt

at the point qt.
Assume first that t is small enough, so that during the time interval

(0, t) no reflections at ∂Q occurred. Then Φt is just a free motion. In that
case the equation is very simple:

χt =
1

t + 1/χ0
(IV.4.1)

It is well known in geometric optics. One can verify it directly, paying
attention to the sign rules for the curvature. (Note: it is enough to approx-
imate Σ0 by a circular arc, then |χ0| is the reciprocal of its radius.)
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When the wave front bounces off the boundary ∂Q, its curvature in-
stantaneously jumps. One can say that the curvature of the boundary is
then “combined” with the curvature of the front itself. The following is
one of the basic laws of geometric optics known as mirror equation. De-
note by χ− and χ+ the curvature of the front before and after reflection,
respectively. Also, let K1 be the curvature of the boundary at the point
of reflection (whose sign is set by the above mentioned rules), and ϕ1 the
angle of reflection, see Section IV.1. Then the mirror equation reads

χ+ = χ− +
2K1

cosϕ1
(IV.4.2)

The proof is left as an exercise (see Exercise IV.4.1) . It is quite involved,
but we advise the reader to attempt it anyway – it can help to “see” better
what is going on.

By combining Eqs. (IV.4.1) and (IV.4.2), one can compute the curva-
ture of the wave front at any time t.

Continued fractions. For the purposes of describing stable and unstable
wave fronts (as outlined above), it is more sensible to express χ0 in terms
of χt, t > 0. That is what we do next. Denote by χ1 is the curvature of
the wave front right after its first reflection at ∂Q. Then

χ0 = − 1

τ + 1
2K1

cos ϕ1
− χ1

, (IV.4.3)

where τ is the time of the first reflection. Furthermore, the value χ1 can
be in turn expressed through the curvature after the second reflection, etc.
Proceeding in this way to the following reflections and repeating the same
trick we will append more and more alike fractions to our main fraction in
Eq. (IV.4.3) extending it downward. The limiting fraction will be infinite.
Such expressions are called continuous fractions. Their value is defined
as the limit (if one exists) of a sequence of finite, truncated, fractions. If
x = (q, v) ∈ M , then our continuous fraction is

κs(x) = − 1

b1(x) + 1
b2(x)+ 1

b3(x)+ 1
b4(x)+···

(IV.4.4)
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b2k(x) =
2K(T kx)

cosϕ(T kx)
, b2k+1(x) = τ(T kx), k ∈ IN. (IV.4.5)

Here K(T kx) is the curvature of the boundary at the point T kx of the k-th
reflection, and ϕ(T kx) is the angle of that reflection. Also, τ(T kx) is the
free path between the kth and (k + 1)st reflections.

The fraction in Eq. (IV.4.4) has an alternating structure – the odd
components are τ ’s and the even ones are fractions 2K/ cosϕ. This reflects
the natural alteration of free paths and reflections along the trajectory.

We remark that if one truncates the infinite fraction (IV.4.4) at an even
term, adding zero, the value of the truncated fraction is the curvature of
the front Σ−t constructed above, with t being the time of the corresponding
reflection.

For Sinai billiards, the components of the boundary are dispersing,
hence K(T kx) > 0 by the sign rules for the curvature. Since τ(T kx) > 0
and cos ϕ(T kx) > 0 in any case, then all the terms of our fraction κs(x)
are positive. This simplifies the verification of its convergence. This fact
was first observed in [Si2]; see Exercise IV.4.2.

The limit value of the fraction in (IV.4.4) is then positive, thus κs(x) is
negative. We see, once again, that a stable wave front in Sinai billiards is
convergent.

Let

κu(x) = a0(x) +
1

a1(x) + 1
a2(x)+ 1

a3(x)+ 1
a4(x)+···

(IV.4.6)

for (x, v) ∈ M , where

a2k(x) =
2K(T−k(x))

cosϕ(T−k(x))
, a2k+1(x) = τ(T−k(x)), k ≥ 0 (IV.4.7)

The continuous fraction (IV.4.6) is the curvature of the unstable wave front
at x. It can be deduced in a similar way as we deduced (IV.4.4) working
towards the past (with negative iterations of T ). The extra term a0(x) ap-
pears due to the mirror equation (IV.4.2). The convergence of the fraction
(IV.4.6) depends on the same factors. For dispersing billiards it is always
convergent and κu(x) is now positive, i.e. the unstable front is divergent.

Theorem IV.4.1 In dispersing billiards, the fractions (IV.4.4) and (IV.4.6)
converge at every point x ∈ M′. The value κs(x) < 0 gives the curvature
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of the stable wave front. The value κu(x) > 0 gives the curvature of the
unstable wave front.

In semidispersing billiards, the curvature of the neutral components of
the boundary is zero, hence some even terms in (IV.4.4) and (IV.4.6) may
vanish, see also Exercise IV.4.5. This does not affect convergence, hence
κs(x) and κu(x) still exist at every point x ∈ M ′. However, they may
be equal to zero. If κs(x) = 0 or κu(x) = 0, they no longer represent
stable or unstable wave fronts. In this case the Lyapunov exponents at x
either vanish or do not exist. In particular, when ∂Q consists of neutral
components only (i.e., Q is a polygon), then κs(x) = κu(x) = 0 at every
x ∈ M ′, and both Lyapunov exponents vanish everywhere.

In fact, the convergence of the continuous fractions (IV.4.4) and (IV.4.6)
does not imply hyperbolicity or even existence of the Lyapunov exponents.
For example, those fractions converge for the circular billiards (see Exercise
IV.4.4) and elliptical ones, their values are nonzero, but the Lyapunov
exponents vanish a.e.. L. Bunimovich proved that those fractions converge
for very large classes of billiards, chaotic and nonchaotic. In fact, there are
no examples of a billiard table where those fractions fail to converge on a
set of positive measure.

On the other hand, for all chaotic billiards the above fractions (IV.4.4)
and (IV.4.6) do represent the curvature of stable and unstable fronts, re-
lated to the negative and positive Lyapunov exponent, respectively.

Equations for wave fronts and their transversality. We now derive
equations for the tangent subspaces corresponding to the positive and neg-
ative Lyapunov exponents in TM . We will call them unstable and stable
subspaces, respectively, and denote by Eu and Es.

Let x = (q, v) ∈ M be a point having coordinates (r, ϕ) and u =
(dr, dϕ) ∈ TxM a tangent vector at x. Note that dr and dϕ are infinitesimal
quantities. As we explained above, every tangent vector u 6= 0 can be
represented by a curve in M , for example (r+s dr, ϕ+s dϕ), where 0 < s < ε
is a small parameter. This curve gives a bundle of outgoing trajectories,
whose cross-section is a wave front Σ passing through the point q. The
curvature of this front, call it χ, at the point q can be now computed as

χ =
1

cos ϕ

(
dϕ

dr
+ K(r)

)
(IV.4.8)

This follows from infinitesimal analysis like we used in the calculation of
the derivative DT of the billiard map – see Lemma IV.1.1, we leave it as
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an exercise (see Exercise IV.4.3). Note that the front Σ is not uniquely
defined by the vector u, but the curvature χ is completely determined by
u. Also, χ only depends on the direction of u, and not on its length.

Solving the equation (IV.4.8) for dϕ/dr gives

dϕ

dr
= −K(r) + χ cosϕ

Therefore, the unstable subspace Eu is spanned by a vector (dru, dϕu) that
satisfies

dϕu

dru
= −K(r) + κu cosϕ

and the stable subspace Es is spanned by a vector (drs, dϕs) that satisfies

dϕs

drs
= −K(r) + κs cosϕ

where κu is given by (IV.4.6) and κs by (IV.4.4).
For simplicity, we assume that the curvature of dispersing and focusing

components of ∂Q is bounded above and below, i.e.

Kmax = max
r
|K(r)| < ∞

and
Kmin = min

r
|K(r)| > 0

where the minimum is taken over dispersing and focusing components.
We note that in Sinai billiards κs < 0 and K(r) > 0, hence dϕs/drs < 0,

and moreover
dϕs

drs
< −K(r) ≤ Kmin < 0 (IV.4.9)

Also, according to (IV.4.6), we have κu ≥ 2K(r)/ cos ϕ, hence

dϕu

dru
> K(r) ≥ Kmin > 0 (IV.4.10)

In other words, unstable directions are always positive, or increasing (in
the r, ϕ coordinates), and stable directions are negative, or decreasing.
Moreover, both are bounded away from the horizontal direction dϕ = 0.

They may not be bounded from the vertical direction, though, i.e. the
derivatives (IV.4.10) and (IV.4.9) may be arbitrarily large. But in typical
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cases they are bounded: one can easily see that |κs(x)| < 1/τ(x) and
|κu(x)− a0(x)| < 1/τ(x). Therefore,

∣∣∣∣
dϕa

dra

∣∣∣∣ ≤ max
r
|K(r)|+ 1

minx τ(x)

for a = u, s.
Our analysis shows that the lower and upper bounds on the function

τ(x) are involved in the studies of Sinai billiards. The following are simple
facts:
(i) if a Sinai billiard table has corner points (intersections of smooth com-
ponents of ∂Q where they make angles < π), then minx τ(x) = 0; otherwise
τmin = minx τ(x) > 0;
(ii) for any Sinai billiard table Q ⊂ IR2 we have τmax = maxx τ(x) < ∞;
(iii) for Sinai billiards on a torus, Q ⊂ T| 2, the value τmax may be either
finite or infinite. In the first case we say that Q has finite horizon.

We now see that the stable and unstable directions can approach the
vertical direction dr = 0 when τ(x) ≈ 0, which only occurs near the corner
points in Sinai billiard tables. If there are no corner points, τmin > 0 and
the derivatives (IV.4.10) and (IV.4.9) are bounded above. In that case
the stable and unstable subspaces, Es and Eu are uniformly transversal –
the angle between them is bounded away from zero. In this respect, Sinai
billiards are similar to Anosov diffeomorphisms.

We say that a Sinai billiard table with corner points is a proper table if
all the corners have positive angles, i.e. the sides of ∂Q intersect each other
transversally. Originally, Sinai and his school only studied proper billiard
tables. Improper tables, where some corners are cusps (making zero angle)
have somewhat different properties.

It is interesting that in proper Sinai billiard tables with corner points
the stable and unstable spaces Es and Eu cannot approach the vertical
direction dr = 0 simultaneously. There is a geometric argument described
in [BSC2] that prevents this anomaly. Therefore, the angle between Es

and Eu remains bounded away from zero for all proper Sinai billiards! The
transversality of Eu and Es plays an important role in the study of ergodic
properties of chaotic billiards.

Expansion and contraction rates of wave fronts. As we explained
above, in Sinai billiards divergent fronts constantly grow as they move
forward because of obvious geometric reasons. On the other hand, the
derivative DT of the map T , cf. Lemma IV.1.1, does not always expand
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unstable vectors u = (dru, dϕu), and we will see that shortly. This fact
suggests that the standard Euclidean norm |u| = [(dr)2 + (dϕ)2]1/2 of tan-
gent vectors may not be so convenient for the study of divergent fronts in
Sinai billiards. Indeed, it seems more natural to measure the length of a
tangent vector u = (dr, dϕ) by the width of the orthogonal cross-section Σ
associated to the wave front. This width is denoted by |u|p and called the
p-norm. One can easily see that

|u|p = cos ϕ |dr|

Strictly speaking, this is not a norm, since |u| = 0 for all vertical vectors
(0, dϕ). It should be then called a pseudonorm. But we have seen above
that stable and unstable vectors are never vertical, so they will always have
a positive p-norm. That justifies our interest in using the p-norm instead
of the Euclidean norm.

The p-norm of a tangent vector u ∈ TxM changes under DT by a simple
formula

|DT (u)|p
|u|p = |1 + τ(x)χ|

=
∣∣∣∣1 +

τ(x)
cosϕ

(
dϕ

dr
+ K(r)

)∣∣∣∣ (IV.4.11)

where χ is the curvature of the corresponding wave front at x.
In Sinai billiards, unstable vectors u satisfy (IV.4.10), hence the quan-

tity (IV.4.11) is always greater than one. In other words, unstable vectors
always expand under T in the p-norm, just as we expected. Moreover, if
there are no corner points on the table, then τ(x) ≥ τmin > 0, and the
quantity (IV.4.11) has a lower bound Λ > 1, i.e.

|DT (u)|p ≥ Λ|u|p, Λ > 1 (IV.4.12)

for all unstable vectors. This demonstrates uniform hyperbolicity of T in
the sense of Chapter III, another common feature between Sinai billiards
and Anosov diffeomorphisms.

It is interesting that proper Sinai billiard tables with corner points are
also uniformly hyperbolic, at least after some minor modifications. Indeed,
the number of rapid reflections near any corner point is uniformly bounded,
see Section IV.2. Hence, there is a constant m ≥ 1 such that no trajectory
can experience more than m reflections near any corner point. In that case
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the map Tm is uniformly hyperbolic, i.e. (IV.4.12) holds with T replaced
by Tm.

On the other hand, the expansion factor in the p-metric is unbounded.
If x lies near S0, where cos ϕ ≈ 0, then the quantity (IV.4.11) can be
arbitrarily large. This constitutes an important difference between Sinai
billiards and Anosov maps. It is also easy to see that in Sinai billiard tables
with finite horizon, cos ϕ ≈ 0 is the only reason why the quantity (IV.4.11)
may approach infinity. In other words, we have

c1/ cos ϕ ≤ |DT (u)|p/|u|p ≤ c2/ cos ϕ (IV.4.13)

with some constants c1, c2 > 0.
We note that in the study of statistical properties of Sinai billiards

(their decay of correlations and limit theorems, see Chapter II), a very
precise control on the expansion factor |DT (u)|p/|u|p is a necessity. The
above estimate shows that such a control is difficult in the vicinity of the
set ∂M = {cos ϕ = 0} = {|ϕ| = π/2}. In order to improve the control, one
can partition the surface M into countably many strips by the lines |ϕ| =
π/2−ak, with some ak → 0 as k →∞. For example, it is customary to set
ak = 1/k2. Then the critical area near the lines |ϕ| = π/2 is divided into
narrow strips where the expansion factor |DT (u)|p/|u|p can be controlled
easier. Those narrow regions are called homogeneity strips in the literature,
they were first introduced in [BSC2].

We now consider the evolution of tangent vectors in the standard, Eu-
clidean norm |u|. The relation between our two norms is

J(u) =
|u|p
|u| = cos ϕ

[
1 +

(
dϕ

dr

)2
]−1/2

(IV.4.14)

Then
|DT (u)|
|u| =

|DT (u)|p J(u)
|u|p J(DT (u))

(IV.4.15)

It is not hard to see that unstable vectors u may not be expanded by DT
in the Euclidean norm, if J(u) is small. Indeed, when cosϕ ≈ 0, and τ(x)
is small, then we may have |DT (u)|/|u| ≈ 0, i.e. the unstable vector u
may shrink by an arbitrarily large factor! This is definitely an undesirable
effect, again justifying our interest in the p-norm.

Invariant cones. In the above, we described the stable and unstable
subspaces, Es and Eu, at every point x ∈ M ′ for Sinai billiards. This
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was done along the lines of original Sinai’s studies of dispersing billiards.
Recently, however, the invariant cone techniques became very popular in
the studies of hyperbolic dynamics. We will construct invariant cones for
Sinai billiards now.

Let a point x = (q, v) ∈ M have coordinates (r, ϕ). Every tangent
vector u = (dr, dϕ) at x can be represented by a wave front Σ passing
through x and having curvature χ.

Definition. We define the stable cone at x as consisting of vectors such
that χ < 0, i.e. whose wave front Σ is convergent. The unstable cone
consists of vectors u for which the wave front Σ was divergent before the
reflection at the point x.

Hence, the unstable cone consists of vectors u such that χ− > 0, i.e.
χ− 2K(r)/ cos ϕ > 0, according to the mirror equation (IV.4.2).

Due to our equation (IV.4.8), the stable cone can be described by

Cs(x) = {u : K(r) ≤ dϕ/dr < ∞}

and the unstable cone is similarly described by

Cu(x) = {u : −∞ < dϕ/dr ≤ −K(r)}

Hence, in the r, ϕ coordinates, the unstable cone lies in the first and third
quadrants (increasing directions) and the stable cone lies in the second
and fourth quadrants (decreasing directions). For this reason, sometimes
unstable directions are called increasing and stable – decreasing, in the
studies of dispersing billiards [BSC2].

It follows immediately from our previous observations that the cone
families Cu(x) and Cs(x) are invariant:

DT (Cu(x)) ⊂ Cu(Tx) DT−1(Cs(x)) ⊂ Cs(T−1x)

In fact, they are strictly invariant in Sinai billiards.
We note that instead of Cu(x) and Cs(x) one can fix an m ≥ 1 and

consider the cone families DTm(Cu(x)) and (DT−m(Cs(x)). Those families
will be invariant, too, and for large m the cones can be made arbitrarily
narrow. And, of course, the angle between these cones will be positive for
any m ≥ 1.

Stable and unstable manifolds. In dispersing billiards, the map T :
M → M is uniformly hyperbolic in the sense of Chapter III, but not
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smooth. This last feature makes a sharp distinction between billiards and
Anosov diffeomorphisms. The map T is discontinuous at points x ∈ M
such that either x ∈ S0 or Tx ∈ S0, see Lemma IV.1.1. It is customary to
denote the discontinuity set by S−1 = S0 ∪ T−1S0.

Recall that M = ∂Q × [−π/2, π/2] is a two-dimensional manifold con-
sisting of smooth pieces Mk := Γk× [−π/2, π/2] for 1 ≤ k ≤ s, see (IV.1.1).
It is easy to see that ∂M = ∪s

k=1∂Mk = S0, i.e. the set S0 makes the
narural boundary of the manifold M .

The set T−1S0 has a more complicated structure. Without going into
detail, we claim that T−1S0 is a union of smooth compact curves in M .
(For billiards on the plane the number of curves is finite, but for billiards
on a torus, like the Lorentz gas, the number of curves may be infinite.)
Remark. It is important that all the curves in T−1S0 are decreasing, i.e.
are given by equations ϕ = f(r) with some f ′(r) < 0. They correspond
to convergent wave fronts. To see this, draw a dispersing billiard table Q
whose boundary contains a corner point and a family of rays starting out
on ∂Q and converging at the corner point.

Similarly, the map Tn, n > 0, has singularities on the set

S−n := S0 ∪ T−1S0 ∪ · · · ∪ T−nS0

which also is a union of decreasing curves in M . The map T−n for n > 0
has singularities on the set Sn defined similarly and consisting of increasing
curves.

In Section III.3 we introduced the general class of smooth maps with
singularities. The billiard map T : M → M always belongs to this class,
in particular satisfies the technical requirements by Katok and Strelcyn
(KS1), (KS2) and (KS3). In fact, the entire class was introduced by these
authors in [KS] with the main goal to cover billiard maps. The verification
of all technical conditions is not an easy task, though. It is done for general
billiards by Katok and Strelcyn in their fundamental book.

It now follows by Theorem III.3.2 that stable and unstable manifolds
for the map T exist at ν-almost every point x ∈ Σ(T ). For dispersing
billiards, ν(Σ(T )) = 1, hence stable and unstable manifolds exist almost
everywhere:

Theorem IV.4.2 In dispersing billiards, for ν-almost every point x ∈ M
there is a stable manifold W s(x) and an unstable manifold Wu(x) through
x.
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Those manifolds are one-dimensional curves in M . The curve W s(x)
corresponds to a convergent wave front (which, moreover, stays convergent
at all times). The curve Wu(x) corresponds to a divergent wave front
(which, moreover, stays divergent at all times).

Each stable manifold W s(x) and each unstable manifold Wu(x) is a
smooth compact curve of finite length. Its length is determined by the
iterations of x and how closely the images of x come to the singularity set
S0, see the discussion after Theorem III.3.2 . It is also true that the images
of the endpoints of W s(x) and Wu(x) hit the singular set S0.

Entropy. Other theorems stated in Section III.3 apply to billiards as well.
In particular, Pesin formula (Theorem III.3.4) expresses the entropy of the
billiard map T :

hν(T ) =
∫

M

λ+(x) dν(x) (IV.4.16)

where λ+(x) is the (only) positive Lyapunov exponent of the map T at x.
This formula has a definite theoretical value but practically is not always

convenient, since the Lyapunov exponent is defined by (III.1.3) in Chapter
III as a limit of an expression involving all iterates of the map T . There is
a remarkable simplification of the equation (IV.4.16).

For each point x ∈ M let

Du(x) = ||(DT )x(v)||/||v||, v ∈ Eu
x

be the expansion factor of unstable vectors v ∈ Eu
x . Then, by the chain

rule, the definition (III.1.3) in Chapter III can be rewritten as

λ+(x) = lim
n→∞

1
n

n−1∑

i=0

log Du(T ix) (IV.4.17)

Now combining (IV.4.16), (IV.4.17) and Birkhoff Ergodic Theorem gives

hν(T ) =
∫

M

log Du(x) dν(x) (IV.4.18)

The integral here does not depend on the metric used (see Exercise IV.4.6),
hence we can define Du(x) in the p-norm by (IV.4.11). This leads to the
following important
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Theorem IV.4.3 In dispersing billiards, the entropy is given by

hν(T ) =
∫

M

log |1 + τ(x)κu(x)| dν(x) (IV.4.19)

This theorem can be generalized to any billiard system in any dimension,
see [C5].

In dynamical systems, one can also define the entropy of a flow Φt. It
is defined to be the entropy of the map Φ1 (which is obtained by setting
t = 1; the map Φ1 is called “the time one map”), so

hµ({Φt}) := hµ(Φ1)

This definition is based on the standard fact that for any real t ∈ IR we
have hµ(Φt) = |t|hµ(Φ1), so h(Φt) is sufficient to determine h(Φt) for all t.

There is a relatively simple formula by Abramov [Ab] that relates the
entropy of the flow Φt to that of the map T :

hµ({Φt}) = hν(T )/τ̄

where τ̄ is the mean free path, see (IV.2.9) and (IV.2.10). Therefore, we
obtain

Theorem IV.4.4 In dispersing billiards,

hµ({Φt}) = hν(T )cµc−1
ν = hν(T ) |∂Q| (π|Q|)−1 (IV.4.20)

The above formulas for the entropy were essentially obtained by Sinai
in 1970 [Si2]. They were generalized to any dimensions by himself in 1979
[Si5]. For a more recent exposition and extensions to other classes of bil-
liards see [C5].

One can employ Eqs (IV.4.19) and (IV.4.20) to compute or estimate the
entropy of many physically interesting models, such as Lorentz gases and
hard ball systems. Some results were obtained in [C5, CM]. In particular,
for the d-dimensional Lorentz gas (d ≥ 2) with a single spherical obstacle
of a small radius r in the unit torus, the entropies are given by

hν(T ) = −d(d− 1) log r + O(1)

hµ({Φt}) = −d(d− 1) |Bd−1| rd−1 log r + O(rd−1)
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as r → 0. We note that the entropy of T grows to infinity, while that
of Φt vanishes. The same holds for the Lyapunov exponents of T and Φt,
respectively. We encourage the reader to find a qualitative explanation why
these Lyapunov exponents behave so differently as r → 0.

Exercises:

IV.4.1. Prove the equation (IV.4.2). Hint: fix the sign of K and χ−; for
example assume that K > 0 and χ− > 0, i.e. the fronts are divergent and
the boundary is dispersing.

IV.4.2. Prove the convergence of the continued fraction (IV.4.4) for dis-
persing billiards. Hint: Consider the truncated fractions at even and odd
components, call them A2n and A2n+1, respectively. Prove that A2n+2 <
A2n+4 < A2n+3 < A2n+1 for every n ≥ 0. Also observe that the sum of
all the odd terms is infinite. (The convergence of continued fractions with
positive elements is known as Seidel-Stern theorem.)

IV.4.3. Prove the equation (IV.4.8). Hint: the curve Σ can be approx-
imated by a an arc of a circle. Then if it is parameterized by arclength
s, then difference between normal vectors n(s) and n(s + ds) has length
κ(s) ds + o(ds) where κ(s) is the curvature at the point s.

IV.4.4. Prove that for the billiard in a circle of radius R the expression
(IV.4.6) converges to 1/ cos ϕ. (Recall that the Lyapunov exponents van-
ish!) Hint: a2k+1(x) = 2

R cos ϕ , a2k(x) = 2R cosϕ.

IV.4.5. In semidispersing billiards, some elements of the continued fraction
(IV.4.4) are zero. Precisely, b2k = 0 whenever the point T kx lies on a
neutral component of the boundary. Show that of b2k = 0, then we can
rewrite (IV.4.4) by skipping the k-th reflection and adding the free paths
τ(T k−1x) + τ(T kx). Therefore, one can just ignore reflections at neutral
components in (IV.4.4) altogether.

IV.4.6. Complete the details in the Proof of Theorem IV.4.3. In particular,
verify that the integral in (IV.4.18) does not depend on the metric. Hint:
use formula (IV.4.15) and the invariance of the measure ν.
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IV.5 Other Hyperbolic Billiards

Since Sinai’s discovery of dispersing billiards in 1970, they remained, for
several years, the only known class of chaotic billiards. Moreover, in 1973
Lazutkin proved that billiards in generic convex domains had caustics,
hence could not be chaotic, cf. Sect. IV.3. It seemed therefore that chaotic-
ity in billiards could only be produced by concave (dispersing) boundaries.
Or at least, if chaotic billiards with focusing boundary existed, they would
have to have a very special boundary, because in simple convex domains
– circles and ellipses – billiards are completely integrable (which is almost
opposite to chaotic).

It came then as a big surprise when in mid-seventies Sinai’s student
L. Bunimovich constructed chaotic billiards whose boundaries were focusing
and consisted of simple circular arcs!

Bunimovich billiard tables. Bunimovich’s construction is based on the
phenomenon of defocusing, which we describe below. Recall that in Sinai’s
billiards a neutral (parallel) wave front becomes divergent after colliding
with the boundary, and during free runs between collisions it stretches out
(grows in size). The factor of growth is given by

Λ = |1 + τχ| (IV.5.1)

where τ is the time of the free run between collisions and χ > 0 is the
curvature of the front at the beginning of the free run, see (IV.4.11).

Now, consider a billiard table with focusing boundary. A parallel wave
front colliding with a focusing component of the boundary will become
convergent, i.e. χ < 0. Then it will certainly shrink in size as it moves back
into Q. But it can focus (converge to a point inside Q) and then emerge
from the focusing point as a divergent wave front! This transformation of
convergent fronts into divergent ones is called defocusing. Then our front
will travel further and grow in size. When it reaches the boundary ∂Q and
gets reflected again, its size may be even larger than the size of the original
front, see Fig. IV.11. The factor of growth is still given by (IV.5.1). It is
true that χ < 0, hence Λ need not be greater than one. Nonetheless, we
have Λ > 1 under an additional condition τχ < −2, i.e. when

1/|χ| < τ/2 (IV.5.2)

It is clear that an infinitesimal convergent wave front whose curvature is
χ < 0 will focus (converge to a point) at time 1/|χ|. Hence, the above
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condition (IV.5.2) means that the wave front focuses before it reaches the
midpoint between collisions. And then Λ > 1, so our wave front will grow
before the following collision occurs. This is the key condition for the
hyperbolicity of the map T .

Q

Figure IV.11: Defocusing of a convergent front.

How can we ensure (IV.5.2) when constructing a billiard table with
focusing boundary? If Γi ⊂ ∂Q is a focusing component of the boundary,
then we do not want to position other components of ∂Q too close to Γi.
Indeed, wave fronts leaving Γi need to travel freely and defocus before they
hit ∂Q again, and they need enough room to grow after that. This explains
the requirement Ki ⊂ Q in the following definition by Bunimovich.

Definition. Let Q be a billiard table whose boundary consists of dispers-
ing, neutral and focusing components. Each focusing component Γi is an
arc of a circle, call that circle Ki and its radius Ri. Assume that Ki ⊂ Q.
Now, a tangent vector u ∈ TxM at a point x ∈ M represented by a wave
front Σ is called unstable if either
(i) x belongs to a dispersing or neutral component of ∂Q and Σ is divergent,
or
(ii) x belongs to a focusing component Γi ⊂ ∂Q and Σ is convergent, and
its curvature satisfies

χ < −(Ri cosϕ)−1 (IV.5.3)

One can easily see that (IV.5.3) is equivalent to (IV.5.2). The following is
the key theorem by Bunimovich.

Theorem IV.5.1 ([Bu1], [Bu2]) Let Q be a billiard table define above.
If u is an unstable tangent vector, then so is DT (u).

Proof. See Exercise IV.5.1. 2
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Therefore, the unstable tangent vectors make a cone field Cu(x) invari-
ant under DT . This indicates that the methods of Section III.4 apply and
give the hyperbolicity. However, the invariant cone field does not imply
hyperbolicity yet. Indeed, the above theorem, technically, holds in circu-
lar billiards, which are not at all hyperbolic. So, we may have an invariant
cone family but no hyperbolicity. The methods of Section III.4 require that
the cone field is strictly invariant, at least eventually. In the Bunimovich
billiards defined above, the strict invariance of the cones, i.e. the property

DT (Cu(x)) ⊂ int Cu(Tx) (IV.5.4)

holds in two cases: (a) the point x belongs to a dispersing component
of the boundary or (b) the point x belongs to a focusing component Γi,
but its image Tx belongs to any component Γj other than Γi. These
facts can be verified by direct inspection going slightly beyond the proof of
Theorem IV.5.1.

It must be checked now that almost every trajectory on a Bunimovich
billiard table does contain points of the above types (a) or (b). If it does,
we have hyperbolicity. A simple geometric analysis shows that there might
be two kinds of trajectories that fail to contain such points. We describe
them below:

A. These are trajectories which only reflect at the same focusing com-
ponent Γi.

B. These are trajectories which only reflect at neutral components of
∂Q.

One can easily show that type A trajectories are periodic and their total
measure is zero (one needs to remember that Γi is only an arc of a circle,
not an entire circle). Concerning type B, in particular examples it might
be easy to check that such trajectories make a set of zero measure. Such
are billiard tables that have one (or none) neutral component of ∂Q, or
two parallel neutral components, etc. However, in general it remains an
open (and challenging) problem to prove that the type B trajectories make
a null set, see some partial results in [CT2]. The following is a theorem
proved by Bunimovich:

Theorem IV.5.2 ([Bu1], [Bu2]) Let Q be a billiard table define above.
Assume that the type B trajectories make a set of zero measure. Then the
billiard map T is hyperbolic.

The stadium mentioned in the end of Section IV.3 is, probably, the
most celebrated Bunimovich billiard table. One can construct other nice
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examples, such as a “flower table” - the union of several circles, of which
one is large and placed in the center, and the others are small and placed
all around the central one overlapping with it.

Taking a circle, cutting it along a chord, and removing the smaller part
gives another simple example of a Bunimovich billiard table. This one does
not technically satisfy his requirements, but this can be easily remedied.
Indeed, let us reflect the table along the chord that makes a part of its
boundary. Now the union of the original table and its mirror image across
the chord will make a perfect Bunimovich table. It is easy to check that
the hyperbolicity and ergodicity of the new, larger table implies those of
the original, smaller one.

Absolutely focusing arcs. Since Bunimovich’s discovery of the defocus-
ing mechanism many mathematicians were trying to construct other classes
of chaotic billiards with focusing components of the boundary. It was not
easy to do, because the circle was too rigid a figure whose properties played
essential role in Bunimovich’s calculations.

Only in mid-eighties Wojtkowski [W2] and then Markarian [Ma1] con-
structed new classes of hyperbolic billiards with focusing boundaries other
than circular arcs. Later V. Donnay [Do1] and Bunimovich [Bu6] summa-
rized those constructions and presented a unified theory of what they called
absolutely focusing arcs.

Our discussion of this theory combines analytic machinery of quadratic
forms (Theorem III.4.1) with geometric arguments referring to the evolu-
tion of wave fronts (Section IV.4).

Let Γ ⊂ IR2 be a Cr smooth curve with endpoints A1 and A2. Suppose
its curvature has constant sign and never vanishes. Denote by α(Γ) the
angle by which the tangent line to Γ turns as one travels from A1 to A2

along Γ. We will assume that Γ is a focusing component of the boundary
of a billiard table Q, i.e. Γ is convex from inside of Q.

Definition. A curve Γ is an absolutely focusing arc if
(AF1) α(Γ) ≤ π, and
(AF2) any infinitesimal parallel wave front falling upon Γ from Q will focus
before the next collision, and if that collision occurs with Γ again, then it
will focus before the following collision, and so on, until it hits a component
of ∂Q other than Γ.

As we said, this type of curves were introduced and studied carefully by
Donnay and Bunimovich, see [Do1], [Bu6]. The importance of the require-
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ment (AF2) was demonstrated above – the wave front grows after passing
through a focusing point, which is a key to eventual expansion.

Quadratic forms. We now develop a general machinery that applies
to practically any billiard and allows us to verify hyperbolicity. Many
recent studies of chaotic billiards start with theorems on hyperbolicity (non-
vanishing of Lyapunov exponents). All such theorems are proved either by
construction of invariant cones or by using increasing quadratic forms. As
we have seen in Chapter III, both methods are essentially equivalent. We
use the second method (quadratic form) in a rather general context of
planar billiards.

Let x = (q, v) ∈ M be a point with coordinates (r, ϕ) and (dr, dϕ) a
tangent vector. We introduce a new coordinate system in the tangent space
TxM, which is directly related to α and h used in Fig. IV.2 in Section IV.1.
The new coordinates (U, V ) are defined with the help of the orthogonal
projection of (dr, dϕ) on the subspace perpendicular to v:

U = cos ϕdr V = Kdr + dϕ

Now, if DxT (U, V ) = (U1, V1) ∈ TTxM is the image of our vector (U, V ),
with U1 = cos ϕ1 dr1 and V1 = K1dr1 + dϕ1, then a simple computation
gives that

U = −(τK1 + cos ϕ1)dr1 + τdϕ1 V = K1dr1 − dϕ1

where all the symbols have their usual meaning.
We now define a measurable nondegenerate quadratic form

Bx(U, V ) = aU2 + 2bUV + cV 2

where a, b, c are measurable functions of x (we will make them piecewise
continuous below) and ac − b2 6= 0. The coefficients a, b, c should satisfy
the requirement (iii) of Theorem III.4.1, i.e. the quadratic form must be
increasing, Px(U, V ) ≥ 0, where

Px(U, V ) = (T#B −B)x(U, V )
= a1U

2
1 + 2b1U1V1 + c1V

1
1 − (aU2 + 2bUV + cV 2)

Denote ϕ′ = dϕ1/dr1, then

Px(U, V ) = (dr1)2[(a1 − a) cos2 ϕ1 + 2(b1 − b)(K1 + ϕ′)(cos ϕ1)
+(c1 − c)(K1 + ϕ′)2 + a(2τ cosϕ1(K1 + ϕ′)− τ2(K1 − ϕ′)2)
+2b(−2K1 cosϕ1 + τ(K1 − ϕ′)2) + c4K1ϕ

′]
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Then the sign of P depends on the following polynomial of degree two in
ϕ′:

(c1 − c− aτ2 + 2bτ)(ϕ′)2+

+2[(b1 − b) cos ϕ1 + K1(c1 − c) + aτ cos ϕ + aτ2K1 − 2bτK1 + 2cK1]ϕ′+

+(a1 − a) cos2 ϕ1 + 2(b1 − b)K1 cosϕ1 + (c1 − c)K2
1−

−2aτK1 cosϕ1 − aτ2K2
1 + 4bK1 cos ϕ1 + 2bτK2

1 (IV.5.5)

We set b = b1 = 1 in order to have an easy control on the nondegeneration
of B and to simplify our computations. Then P > 0 for every ϕ′ iff

c1 − c− aτ2 + 2τ > 0, (IV.5.6)

and

(c − 2τ + aτ2)[4c1 − 2E + (a1 − a)E2/4]
+ c1E [2− 2aτ − (a1 − a)E/4] + a2τ2E2/4 < 0(IV.5.7)

if K1 6= 0, where E = −2K−1
1 cosϕ. If the component where q1 belongs

is focusing (K1 < 0), then E = L1 = 2R1 cos ϕ1 is the time the trajectory
arriving at (or departing from) q1 spends in the circle of curvature of ∂Q
at q1. In the case K1 = 0 the condition (IV.5.7) becomes

(a1 − a)(c − c1 − 2τ) + aa1τ
2 < 0 (IV.5.8)

Remark. We note that our formalism gives another proof of the fact that
was mentioned already: a semidispersing billiard is hyperbolic if the set of
points whose trajectories only hit neutral components of the boundary has
measure zero. Indeed, if we take a ≡ c ≡ 0, then (IV.5.7) is satisfied for
dispersing boundaries (K > 0). On neutral components we consider the
same quadratic form. Then Px ≥ 0 (it is actually positive on TxM , with
the exception of one direction). Also, P becomes strictly positive whenever
the trajectory hits a dispersing component.

We study now local conditions which a focusing arc Γ must satisfy in
order to be suitable for the construction of a hyperbolic billiard. The fol-
lowing heuristic observations are very important. We look at the behavior
of expressions (IV.5.6) and (IV.5.7) during series of successive reflections at
Γ, with ϕ ∼= ±π/2. We have that L ∼= τ ∼= 0, and a, c are continuous in
a neighborhood of the points (q1,±π/2). Then, if c À τ , the discriminant
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∆ of (IV.5.5) satisfies : ∆ ∼= 4cc1
∼= 4c2

1. As we must have ∆ < 0, we
deduce that limϕ→±π/2 c = 0. If c ¿ τ, we have ∆ ∼= 4τE ∼= 4τ2. In
conclusion, we must have c ∼= τ, this justifies the choice of c = τ (or L).

If a ≡ 0, c = L, and c1 = L1, then an immediate computation of
(IV.5.7) gives

L + L1 < 2τ (IV.5.9)

Wojtkowski [W2] proved that curves that verify this condition are abso-
lutely focusing. The proof is based on the fact that an incoming wave
front falling onto ∂Q at the same angle focuses at distance L/2 along the
trajectory departing from the point x = (q, v). See Exercise IV.5.2.a. If
the component of the boundary is C4 smooth, the condition (IV.5.9) is
equivalent to

d2R

ds2
< 0 (IV.5.10)

where s is the arc length of the focusing arc and R = −1/K is the radius
of its curvature. See Exercise IV.5.2.b.

If a ≡ 0, c = τ, and c1 = τ1, then we obtain the condition

L1(τ + τ1) < 2ττ1 (IV.5.11)

Curves that satisfy (IV.5.11) are also absolutely focusing (see Theorem
IV.5.5 below). The above condition is equivalent (see Exercise IV.5.3) to

d2R1/3

ds2
> 0 (IV.5.12)

It is interesting that the conditions (IV.5.10) and (IV.5.12) are seemingly
opposite, but both define absolutely focusing arcs.

We will say that a smooth curve can be a part of a hyperbolic billiard
if it is possible to define a quadratic form that is increasing for trajectories
experiencing repeated collisions with that curve (this definition can also be
expressed in terms of invariant cone fields). Now we sketch a proof of the
following surprising result. It defines short focusing arcs:

Theorem IV.5.3 ([Ma6]) Any sufficiently small C4 focusing arc can
be a regular component of the boundary of a hyperbolic billiard.

Proof. Let q1 + r(A)eiAq′1 be the parametrization of a Ck curve (k ≥ 4)
in polar coordinates, where A is the polar angle and r(0) = 0. Let us
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expand r(A) into a Taylor series r(A) = ṙA+ r̈
2A2 + · · · so that ṙ = ṙ(0) =

−2/K1 > 0.
If the coefficients a and c are differentiable with respect to s,B (here

B is the angle between the oriented tangent line and the inward direction)
then they may be also expanded as

c(s,B) = C1s + C2B + C3s
2 + C4sB + C5B

2

+C6s
3 + C7s

2B + C8sB
2 + C9B

3 + · · ·

a(s,B) = A0 + A1s + A2B + A3s
2 + · · ·

At the point q1 we have s = 0 and B = A. At the point q we have
s = s(−A) and c1 = (−C1 + 1)ṙA +

(
C1

r̈
2 + r̈

2 + ṙ2C3 − ṙC4 + C5

)
A2. If

we substitute these expressions and the expansion of τ and L in (IV.5.6)
and (IV.5.7), we obtain that (IV.5.6) is immediately verified and that the
left hand side of (IV.5.7) is ζA3 + σA4 + · · · with

ζ = 3ṙr̈ + 2ṙ3C3 − 2ṙ2C4

σ = r̈2 − 4
3 ṙ(ṙ + r̈) + 2r̈C5 + 4C2

5 + 2ṙ2(−r̈C3 − ṙ2C6 + ṙC7 − C8)

+ 2ṙ2A0C5 − ṙ2r̈A0 + ṙ4

4 (A2
0 − 2A1)

(IV.5.13)
Given any C4 small focusing arc (that is, given ṙ > 0 in our polar
coordinates), we can choose Ci, Ai conveniently, so that ζ = 0 and
σ < 0. Then (IV.5.7) will be satisfied. For example, we can take C6 in
such a way that −2ṙ4C6 dominates all the other terms (all details are in
[Ma6]). 2

General hyperbolic billiard tables. We have described classes of focus-
ing arcs that could be used in the construction of hyperbolic billiards. This
does not mean, of course, that any billiard table made of these arcs is hy-
perbolic. Here we describe how to assemble boundary pieces of various kind
in order to make a hyperbolic billiard table. Certain simple rules (“building
code”) must be followed. We need to verify conditions on interior angles
made by adjacent components, distanced between different components,
etc. The following theorem shows how to construct plane billiards with hy-
perbolic behaviour whose boundary components are of any type with the
only requirement that focusing components satisfy condition (IV.5.9) or
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(IV.5.11). We remark that case (iii) below includes all Bunimovich billiard
tables.

Theorem IV.5.4 Hyperbolic billiards can be constructed in the following
ways:
(i) C3 components of the boundary can be of any type, as long as the fo-
cusing ones satisfy (IV.5.9) (for C4 curves (IV.5.9) can be replaced by
(IV.5.10)). The circles of semicurvature at each point of every focus-
ing component must not contain points of other components or circles of
semicurvature of other focusing components. Adjacent focusing components
must make interior angles greater than π. Focusing and dispersing adja-
cent components must make interior angles not smaller than π. Focusing
and neutral adjacent components must make interior angles greater than
π/2.
(ii) C3 components of the boundary can be of any type as long as the focus-
ing components satisfy (IV.5.11) (for C4 curves (IV.5.11) can be replaced
by (IV.5.12)). The circles of curvature of focusing components must not
contain points of other boundary components. Conditions on adjacent arcs
are the same as in (i).
(iii) C3 components of the boundary are as in (i) or (ii), but equalities are
allowed in (IV.5.9), (IV.5.11). Almost every trajectory must bounce off at
least two distinct components of the boundary.

Proof. We prove (ii). The proof of (i) follows the same ideas. We will
define convenient quadratic forms with a = 0, b = 1 in all cases, and set
c = τ if the reflection occurs at a focusing component and c = 0 otherwise.

Several cases arise. If both q and q1 lie on dispersing or neutral compo-
nents of the boundary, the argument in the remark made in the previous
subsection works. If q and q1 lie on the same focusing component, condition
(IV.5.11) is satisfied and then the quadratic form is increasing. If q and q1

belong in different focusing components and q2 is not in the intersection of
a neutral component with the circle of curvature at q1, then τ, τ1 > L1. Let
τ ≥ τ1, then L1(τ + τ1) < τ1(τ + τ) = 2ττ1, and the condition (IV.5.11) is
satisfied. If q, q1 lie on focusing components and q2 belongs in an adjacent
neutral component, we observe that τ1 + τ2 > L1 since q3 is not in the
circle of curvature of q1. Moreover, if q2 lies on a flat component, then
Dx2T ·Dx1T acts as if the point x2 is skipped and the intercollision times
are added, see Exercise IV.4.5. Finally, if q1 is in a neutral component con-
tained in the circle of curvature at q2, the analysis is similar to the previous
one, taking into account that τ + τ1 > L2.
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The part (iii) is proved using the same quadratic forms, which in this
case will be increasing eventually (see Remark after Theorem III.4.1.). 2

The above theorem remains valid if in both parts (i) and (ii) we also
allow short focusing arcs defined in Theorem IV.5.3. We sketch the proof
in the case when the focusing curves are either short focusing arcs or satisfy
the condition (IV.5.9). By C we denote a short focusing arc. The details
are left to the (interested) reader. We define quadratic forms with a = 0:

(i) If q1, q2 ∈ C and q3 6∈ C we define c2 = L2. Then (IV.5.6) is
immediately satisfied since the first term, in linear approximation, is equal
to 2ṙA. Now (IV.5.7) is satisfied if (IV.5.13) holds with C5 = 0 = A0 =
A1, it is sufficient to take C0 big enough.

(ii) If q1 ∈ C and q2 6∈ C, we consider initially only the condition
c2 ≥ 0. In the first term of (IV.5.6) we have c2−L1 +2τ1 > 2τ1−L1 > 0
if 2τ1 > L1; this means that the component where q2 belongs must
be outside of the circle of semicurvature of any point of C. If K2 = 0,
the first term of (IV.5.8) turns zero. So, in order to maintain the form
B increasing along the trajectories, they must eventually hit non-neutral
components.
If K2 6= 0, the first term of (IV.5.7) is (L1 − 2τ1)(4c2 − 2E) + 2c2E.
If K2 > 0, then E < 0 and it is enough again to consider 2τ1 > L1.
If K2 < 0, we define c2 = L2 and then the previous expression becomes
2L2(L1 + L2 − 2τ1) which is negative if L1 + L2 < 2τ1. This means
that circles of semicurvature of focusing components must not intersect
themselves.

(iii) If q1, q3 6∈ C, q2 ∈ C, then let c1 ≥ 0, c2 = L2. The first term of
(IV.5.6) is = L2 − c1 + 2τ1 > 2τ1 − c1; so (IV.5.6) is satisfied if 2τ1 ≥ c1.
The first term in (IV.5.7) is (c1 − 2τ1)2L2 + 2L2

2 = 2L2(c1 + L2 − 2τ1).
If the component where q1 belongs is dispersing or neutral, we define
c1 = 0; if it is focusing, we define c1 = L1. Now (IV.5.7) holds if the arcs
satisfy the conditions that appear in part (ii).

(iv) If q1 6∈ C and q2, q3 ∈ C, the verification of (IV.5.6) does not
need new conditions and, since c2 ' L2, the first term of (IV.5.7) is
(c1−2τ1)(4c2−2L2)+2c2L2 ' 2c2(c1 +L2−2τ1), which is negative under
the same conditions as those found in (iii).

(v) If a segment of a trajectory runs between two components that are
not short focusing arcs, the quadratic form is defined with c = L if q is in
a focusing component and with c = 0 otherwise.

A similar argument works if the focusing boundaries satisfy (IV.5.11).
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See [Ma6].

Invariant cones and continued fractions. It was observed in Sec-
tion III.4 that a nongenederate quadratic form B automatically defines a
field of cones in TM consisting of vectors whose B-values are nonnegative.
If the quadratic form is increasing under the action of DT , these cones are
invariant under T . Given an increasing nondegenerate quadratic form B
we define

Cu(x) = {v ∈ TxM : Bxv ≥ 0} (IV.5.14)

This field of cones satisfies the invariance property DxT (Cu(x)) ⊂ Cu(Tx).
Cone fields can be defined, of course, without quadratic forms. In fact

it is sometimes easier to construct an invariant cone field by using direct
geometrical or “optical” properties of the system. This was exactly the
case with dispersing billiards in Section IV.4.

Such constructions have been successfully used to prove hyperbolicity
and ergodicity of billiards. In all the cases some version of Theorems III.4.3
and III.4.4 of Chapter III were used. Those methods are very well explained
in papers by Wojtkowski [W2], Donnay [Do1] and Bunimovich [Bu6]. They
include detailed studies of defocusing properties of wave fronts bouncing
off focusing boundaries of a billiard table.

The hyperbolicity of billiards with focusing boundaries satisfying condi-
tion (IV.5.9) was first proved using these geometric cone techniques. Some
other convex billiard tables (not satisfying any of the previously studied
conditions) have been proved to be hyperbolic using other cone techniques.
See examples at the end of this Section.

A natural question arises for hyperbolic billiards with focusing compo-
nents of the boundary. Is it possible to find expressions for the stable and
unstable tangent vectors, similar to continued fractions of Section IV.4?
The following theorem gives a positive answer.

Theorem IV.5.5 Consider billiard tables satisfying the conditions of The-
orem IV.5.4. For ν-almost every point the continued fractions (IV.4.4)
and (IV.4.6) converge and give the slopes of the lines Es

x, Eu
x according to

(IV.4.8).

Proof. We begin by recalling an interesting theorem on the convergence
of continued fractions whose elements may be both negative and positive
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([Bu6], Theorems 10 and 11). A continued fraction

a1(x) +
1

a2(x) + 1
a3(x)+ 1

a4(x)+ 1
a5(x)+···

(IV.5.15)

is convergent if the following two conditions are satisfied:
(a) all even elements are positive and their sum is infinite,
(b) for any two negative elements a2k′−1, a2k′′+1, k′ < k′′, for which

there are no other negative elements in between, we have

a2k′ ≥ |a2k′−1|−1(2 + δk′) + |a2k′′+1|−1

(
2− δk′′

1 + δk′′

)
(IV.5.16)

for some δl ≥ −1, l = 1, 2, · · · .
We prove Theorem IV.5.5 in the unstable case. We observe that con-

ditions (IV.5.9) and (IV.5.11) are similar in terms of the components of
ku(x) since they can be rewritten, respectively, as

a2k ≥ |a2k−1|−1 + 2|a2k+1|−1 (W )

|a2k+1| ≥ 2a−1
2k + 2a−1

2k+2, k = 1, 2, · · · (M)

So, if the convergence is proved assuming, for example, (IV.5.9), the con-
vergence assuming (IV.5.11) will automatically follow, because the latter
correspond to a shift by one position in the continued fraction. Condi-
tion (W) for two consecutive bounces in the same focusing component is
exactly (IV.5.16) for k′ = k′′, with δk′ = 0. If T−k′+1x and T−k′′x are
successive bounces in (non-adjacent) focusing components, then conditions
on non-adjacent components in Theorem IV.5.4 directly imply (IV.5.16)
with δk′ = δk′′ = 0. Now, the fact that the fractions (IV.4.4) and (IV.4.6)
give the stable and unstable tangent vectors follows from our construction
of stable and unstable fronts. 2

We note that hyperbolic billiards with focusing boundaries have positive
entropy, which can be computed by the same formulas as in the case of
dispersing billiards. In particular, (IV.4.16), (IV.4.19) and (IV.4.20) remain
valid, see [CM] and [C5] for a more detailed account on this issue.
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Lastly, we prove that curves that satisfy (M) are absolutely focusing
arcs. Recall that the convergence of ku(x) implies the convergence of

k−(x) =
1

τ(T−1x) + 1
2K(T−1x)

cosϕ(T−1x)
+···

(IV.5.17)

which is the curvature of the unstable manifold before the reflection at x (cf.
the mirror equation (IV.4.2)). As curves that satisfy (W) are absolutely
focusing arcs – this was remarked immediately after (IV.5.9) – the sign of
kW (x), i.e. the sign of the first term of kW (x), is negative, hence the sign
of k−W , i.e. the sign of the second term in kW , is positive. Then the sign
of k−M , i.e. the sign of the first term of k−M , is positive and, finally, kM (x)
(considered as a part of kM (Tx)) has the sign of its third term, i.e. it is
negative. As these relations are satisfied at each reflection at a focusing
component, the focusing point of the unstable wave front (kM (x) < 0) lies
before the next reflection (k−M (Tx) > 0). If this is true for divergent (before
the reflection) fronts, it must be true for parallel fronts as well. 2

Examples:
1. Curves that satisfy the condition d2R/ds2 < 0. In this group are

the epicycloid, the hypocycloid, the cycloid and, in particular, the cardioid
(a closed curve whose equation in polar coordinates is r(t) = 1 + cos t,
−π ≤ t ≤ π). The arc of ellipse x = a cos t, y = b sin t, b2 > a2, with
−π/4 < t < π/4 also satisfies this condition. See [W2].

2. Curves that satisfy the condition L2(τ1 + τ2) < 2τ1τ2. In the pre-
viously mentioned ellipse, such is the arc defined by sin2 t > b2/(b2 + a2).
Curiously, this arc is disjoint from the one in part 1. See [Ma1].

3. We observe that the conditions in parts (i) and (ii) of Theorem
IV.5.4 are C3 open. Hence, the non-neutral components of the boundaries
of such billiards can be perturbed in the C3-topology and hyperbolicity will
be preserved. If equalities are allowed – as in (iii) of the same Theorem –
then perturbations may destroy hyperbolic behaviour of the new billiard
table. This is the case when arcs of circles are part of the boundary. If
circular arcs are perturbed, the conditions (IV.5.9) and (IV.5.11) may fail,
and the hyperbolicity may not survive. Anyway, in [Ma6] it is proved that
arcs smaller than half a circumference can be C4 perturbed maintaining
hyperbolic behaviour. A similar result for C6 perturbations is obtained in
[Do1].
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4. Donnay [Do1] proved that absolutely focusing arcs can be part of
hyperbolic billiards if they are joined by sufficiently long segments making
a convex region. His proof is based on a subtle study of the properties of
focusing wave fronts in integrable billiards. It is proved that in the above
mentioned ellipse, its half corresponding to x ≥ 0 is a focusing arc if and
only if a/b <

√
2. See also [MOP].

5. It is important to distinguish hyperbolicity and ergodicity (or mixing
property) – they are not equivalent. See Exercise IV.5.5.

Exercises:

IV.5.1. Prove Theorem IV.5.1. There are three types of a vector u to
consider. First, let u and DT (u) belong to the same focusing component
Γi. Then use the mirror equation (IV.4.2) to verify that DT (u) is an
unstable vector. Second, let DT (u) belong to a component other than Γi.
Show that the wave front representing u arrives at that component as a
divergent front. Third, if u belongs to a component other than Γi show, by
the same argument, that the wave front arrives at Γi as a divergent front.
In all cases use the assumption Kj ⊂ Q for all focusing components Γj ’s
that are involved in your arguments.

IV.5.2.
(a) Prove that focusing components of the boundary that satisfy the

condition (IV.5.9) are absolutely focusing arcs. Hint: Consider parallel
wave fronts and fronts which fall on such a curve with a constant angle of
incidence. Compare the relative positions of their focusing points on the
outgoing trajectory.

(b) Prove that conditions (IV.5.9) and (IV.5.10) on a focusing C4 arc
Γ are equivalent. Hint: let q0, q1 be distinct points of Γ, choose cartesian
coordinates (x, y) on the plane in such a way that the x axis passes through
q0 and q1. Assume that q0 is the origin, q1 has positive x-coordinate, and
the arc q0q1 of Γ is below the x axis, i.e. has nonpositive y-coordinates. If
Γ(s) = (x(s), y(s)) is parametrized by the arc length, let φ(s) be the angle
which the tangent line to γ makes with the x-axis at point s. Note that
the radius of curvature of γ is R = ds/dφ. Let τ = |q0q1|. Then

L =
∫ b

a

dx

ds
ds = R(b) sin φ(b)−R(a) sin φ(a)−

∫ b

a

sin φ
dR

ds
ds
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and

2τ − L− L1 =
∫ b

a

y(s)
d2R

ds2
ds

IV.5.3. Prove that conditions (IV.5.11) and (IV.5.12) on a focusing C4

arc Γ are equivalent. Hint: see [Ma1].

IV.5.4. Complete the details in the proofs of Theorems IV.5.3 and IV.5.4.

IV.5.5. Consider an ellipse, cut it along the major axis. Move both halves
apart along the minor axis. Join the two halves by lines parallel to the
minor axis. Call the resulting figure Q. Insert a “wall” in Q, which is a
linear segment joining the original positions of the foci. Prove that this
billiard is hyperbolic but has at least three distinct ergodic components.
Hint: [W2]

IV.5.6. Compute the product of matrices Dx1T · DxT , where x1 = Tx
and x1 belongs in a neutral component of the boundary.

IV.6 Final Remarks and Outline of Perspec-
tives

This chapter is designed to introduce the reader to the modern theory of
chaotic billiard. It gives a technical and thorough introduction, after which
one should be able to read main research papers in the area. But still, our
chapter is no more than an introduction to the subject. It covers basics,
but all major results in the theory of chaotic billiards are beyond the scope
of the book.

The real difficulties appear in the study of ergodic properties of chaotic
billiards. In Section III.4 we outlined a plan for the proof of ergodicity
for general hyperbolic systems with singularities. It applies to dispersing
billiards and some other hyperbolic billiards, but the verification of all
conditions involves very serious work. There are several expository papers
on the issue cited in III.4, dealing with essentially the same method in
somewhat different ways.
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While the machinery for the proof of ergodicity is quite well understood
in two dimensions (when dim M = 2), the picture is much less bright
in higher dimensions. The geometry of multidimensional billiards is very
complicated. The structure of singularity manifolds and the behavior of
the billiard map T are yet to be described in full detail.

One of the most interesting models is the celebrated gas of hard balls,
for which Boltzmann conjectured ergodicity (in some obscure words) in late
1800’s. Sinai specified Boltzmann’s conjecture in 1963 [Si1] by claiming that
the system of N hard balls on the unit torus (in the space of any dimension
d ≥ 2) is ergodic. He obtained a proof for N = d = 2 (i.e., for 2 hard disks
on a 2D torus) in 1970 [Si2], by reducing the system to a Lorentz gas on
the plane. The case N = 3 turned out to be far more complicated, it was
solved in 1991 by Kramli, Simanyi and Szasz [KSS3]. The conjecture for
general N remains open.

Despite all difficulties, it can be safely expected that most hyperbolic
billiards described in our Sections IV.2, IV.4, IV.5 are, indeed, ergodic.
Hence, in this respect they should be similar to Anosov diffeomorphisms.

It turns out that chaotic billiards also have more advanced ergodic
properties. As Sinai noted in his seminal 1970 paper [Si2], ergodicity of
dispersing billiards almost automatically implies the mixing property and
K-mixing property, see Chapter II. Later, Gallavotti and Ornstein [GO]
proved the Bernoulli property, and then Chernov and Haskell [CH], Orn-
stein and Weiss [OW] proved that billiards with K-property are always
Bernoulli, i.e. isomorphic to a Bernoulli shift. This was the highest degree
of chaoticity in the measure-theoretic sense, putting billiards on the same
level with Anosov diffeomorphisms.

For more practical purposes (applications to physics), the measure-
theoretic Bernoulli property is of little help, though. As we explained in
Section II.5, the statistics of iterations of smooth functions plays the key
role. Most importantly, the rate of the decay of correlations and the central
limit theorem (CLT) are two major issues. For Anosov diffeomorphisms,
the CLT was proved in early seventies, and at the same time it was estab-
lished that the correlations decay exponentially, which is accepted as the
fastest possible rate of decay. This was done by Sinai, Ruelle and Bowen
[Si3, Ru1, Ru2, Bo2]; the key element in their works was the construction
of Markov partitions.

Since 1980, a major project was to extend the Sinai-Ruelle-Bowen tech-
niques to chaotic billiards. The work has already spanned 20 years and is
still in progress. First, Markov partitions were constructed [BS2, BSC1],
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then the CLT was proved [BS3, BSC2]. On the rate of the decay of correla-
tions, first a weaker result was established [BS3, BSC2] - a subexponential
upper bound. In the late nineties, it was shown that correlations decayed
exponentially by a different approach [Y1, C6]. It finally become clear that
for the purpose of physical applications, chaotic billiards behave just like
Anosov diffeomorphisms. This was summarized by Gallavotti and Cohen
in their “Axiom C” [GC].

It should be noted that all the above statistical properties are obtained
only for dispersing billiards and only in dimension two. For other chaotic
billiards, and especially in higher dimensions, the issue is wide open. More-
over, the rate of the decay of correlations for nonuniformly hyperbolic bil-
liards, such as the stadium and the gas of hard balls, cannot be exponential,
it is expected to be polynomial, see Section II.5.

Other fine properties of chaotic billiards remain to be investigated. For
example, the asymptotics of periodic orbits is partially estimated [St3, C2],
but nothing close to Theorem III.3.7 is obtained yet.

Lately, the studies of more “realistic” modifications of billiards became
popular. There, one replaces elastic reflections at the rigid boundary ∂Q
by a repulsive potential, or adds external forces acting on the moving par-
ticle inside Q. A steady stream of new interesting results in this direction
indicates that the theory of chaotic billiards is not restricted to billiards
alone – it plays an ever growing role in the modern mathematical physics.
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