MA 485-12, Probability (Dr Chernov) Student's name _____ Final Exam

Wed, June 4, 1997

Be sure to show all your work. Every problem is worth 4 points.

1. A discrete random variable X takes the following values, with the corresponding probabilities:

Compute the following:

(a) EX =

(b) $EX^2 =$

(c) $EX^3 =$

(d) $\operatorname{Var} X =$

(e)
$$\sigma(X) =$$

(f) Bonus: $\phi_X(t) =$

2. A continuous random variable X has the distribution function $F(x) = x^3/8$ for $0 \le x \le 2$. Comute the following:

(a)
$$F(1) = F(3) = F(-1) =$$

(b) the density function f(x) =

(c) EX =

(d) $EX^2 =$

(e) VarX =

(f) $\sigma(X) =$

(g) Bonus: $\phi_X(t) =$

3. A random variable X has generating function

$$\gamma_X(z) = \frac{1}{2-z}$$

Compute the following:

(a) EX =

(b) $E\{X(X-1)\} =$ [Remember, $E\{X(X-1)\} = \gamma''_X(1)$]

(c) $EX^2 =$

(d) $\operatorname{Var} X =$

(e) $\sigma(X) =$

(f) Bonus: Compute P(X = 0), P(X = 1), etc., and guess what type of probability distribution this is.

4. For two random variables, X and Y, it is known that EX = -4, $\sigma(X) = 5$, EY = 3, and $\sigma(Y) = 2$. Let Z = 5 - 2Y + 4X.

(a) Compute EZ =

(b) Assume that X and Y are independent and compute $\operatorname{Var}Z$ and $\sigma(Z)$.

(c) Bonus: assume that $\rho(X, Y) = -0.2$ and compute VarZ.

- 5. Let X be a standard normal random variable, and $Y = X^3$.
- (a) Recall EX and VarX
- (b) Find EY and VarY (recall that $EX^6 = 15$).

(c) Find $\operatorname{cov}(X,Y)$ and $\rho(X,Y)$. Are X and Y independent, weakly dependent, or strongly dependent?

(d) Based on Chebyshev's inequality, estimate $P(|Y| \ge 10)$.

(e) Bonus: Find the exact value of $P(|Y| \ge 10)$.

6. An operator is taking phone calls, at a rate of 0.8 calls per minute. Let X be the number of calls received during a day (= 24 hours).

(a) What is the type of the random variable X? (Include the parameter value.)

(b) By using normal approximation, estimate P(X > 1200).

(c) By using the 3σ -rule, predict the minimum and maximum number of calls over a 24 hours period.

(d) Bonus: Let $X = \text{Poisson}(\lambda)$ and $Y = \sqrt{X}$. Estimate $\sigma(Y)$ for large λ (i.e., when $\lambda \to \infty$).

7. The lifetime of a light bulb is an exponential random variable with half-life $\bar{t}_{1/2} = 8.32$ (hours). (Note that $8.32 \approx 12 \ln 2$.) You have a 25-pack of light bulbs. Let X be their total lifetime (the lifetime of all the 25 bulbs, combined).

(a) What is the mean value and variance of X?

(b) Use the central limit theorem to estimate P(X < 220). Do you have to use histogram correction here?

8. A student knows about 25% of answers in an oral test. The professor keeps asking questions until the student answers 5 of them correctly. What is the probability that more than 25 questions will be necessary?

9. Let X_1, \ldots, X_{400} be i.i.d. random variables, uniformly distributed on (0, 1). Let $\bar{X} = (X_1 + \cdots + X_{400})/400$. Estimate $P(\bar{X} > 0.48)$.

10. A random variable X has distribution function $F(x) = x^2$ for 0 < x < 1. Compute the distribution function G(x) and the density function g(x) of the random variable Y, where

(a)
$$Y = 2 - \frac{1}{X}$$
.

(b)
$$Y = X^2 + 2$$
.

(c) Bonus: $Y = \ln X$.