Total value of all 7 problems is 100 points.

1. (10 pts) Four data points are given:

$$(0,0), (4,-1), (2,-1), (-2,6),$$

Estimate the parameters α_1 and β of the regression line $y = \alpha_1 + \beta x$. Draw the scatter plot, marking the data points and the regression line.

Answer: y = 2.1 - 1.1x.

2. (15 pts) Given a random sample

$$12.2, \ 2.5, \ -5.0, \ 2.7, \ 3.3, \ -7.5, \ 5.6, \ 2.6, \ 3.1. \ 2.4, \ 13.2$$

(a) Find point estimates for the median m and both quartiles q_1 and q_3 .

Answer:
$$\hat{m} = 2.7$$
, $\hat{q}_1 = 2.4$, $\hat{q}_3 = 5.6$.

(b) Find an approximate 93% confidence interval for the median. What is the exact confidence level of your interval?

Answer: CI is [2.4, 5.6] at 93.46%.

(c) Determine the probability

$$P(2.5 < \pi_{0.55} < 13.2)$$

Answer: $P(2.5 < \pi_{0.55} < 13.2) = P(4 \le b(11, 0.55) \le 10) = 0.9376.$

3. (15 pts) In the following table, 500 individuals are classified by gender and by whether they answer Yes, No, or Not Sure in a certain poll. Test the null hypothesis that the overall distributions of the answers are the same for both sexes. Let $\alpha = 0.01$.

Gender	Yes	No	Not Sure
Male	128	78	14
Female	122	147	11

[Bonus] What can you say about the p-value of the test?

Answer: Q=14.68. The critical region is $Q>\chi^2_{0.01}=9.210$, thus we reject H_0 . The p-value is less than 1%.

4. (15 pts) Two samples from random variables X and Y are recorded:

$$X:$$
 18, -4, 34, -7, 2, 40, -16, 9, -3
 $Y:$ 36, -7, 64, 58, 18, 26

Use the Wilcoxon test to test the hypothesis H_0 : $m_X = m_Y$ against H_1 : $m_X < m_Y$. Determine the p-value. What does the p-value mean? How would you conclude the test depending on the significance level α ?

Answer: $W=62,\,\mu=48,\,\sigma^2=72,\,Z=1.65,\, \text{p-value}=0.0495.$

5. (15 pts) Let X_1, X_2, X_3 be three independent random variables that have some distributions with mean values μ_1, μ_2, μ_3 respectively. Test the hypothesis

$$H_0: \mu_1 = \mu_2 = \mu_3$$

at $\alpha = 10\%$. The observed data are given in the table below:

11 8 11

Construct an ANOVA table (without p-value) and state your conclusion.

Answer: SS(E) = 18, SS(T) = 72, F = 20. Critical region is $F > F_{0.1}(2, 10)$, which is not in the table VII, but its value is clearly less than 19. So we reject H_0 .

6. (15 pts) In a regression problem, n=20 data points are observed and the following accumulated values are found:

$$\sum x_i = 80, \ \sum y_i = 10, \ \sum x_i^2 = 480, \ \sum x_i y_i = 48, \ \sum y_i^2 = 12.8$$

(a) Find $\hat{\alpha}$, $\hat{\beta}$, and $\hat{\sigma^2}$.

Answer: $\hat{\alpha} = 0.5$, $\hat{\beta} = 0.05$, $\hat{\sigma^2} = 0.37$.

(b) Find 90% confidence intervals for α and β .

Answer: [0.25, 0.75] and [-0.038, 0.138].

(Bonus) Find a 90% confidence interval for σ^2 .

Answer: [0.256, 0.788].

7. (15 pts) A computer program supposedly generates a standard normal random variable N(0,1). The following numbers were produced by this program:

$$0.2, 1.2, -1.4, -0.6, 2.4, -1.0, -0.6, 0.8$$

Use the Kolmogorov-Smirnov test to test the hypothesis that the program works right. Let $\alpha = 5\%$. Sketch an empirical distribution function. Indicate how you would construct a 95% confidence band around the empirical distribution function.

[Bonus] Give a formula for computing the p-value of the test and find the p-value approximately.

Answer: D = 0.2257. The critical region is D > 0.46. We accept H_0 .