1. (15 pts) Five data points are observed:

$$(2,1), (-3,-1), (3,2), (5,3), (-2,0)$$

- (a) Compute the sample means \bar{x} and \bar{y} . Answers: $\bar{x} = 1$ and $\bar{y} = 1$.
- (b) Compute the sample variances s_x^2 and s_y^2 . Answers: $s_x^2 = 11.5$ and $s_y^2 = 2.5$. (c) Compute the sample covariance c_{xy} and the sample correlation coefficient r. Answers: $c_{xy} = 5.25$ and $r \approx 0.979$.

(d) Estimate the parameters α and β of the regression line $y = \alpha + \beta(x - \bar{x})$. Answers: $\alpha = 1$ and $\beta = \frac{525}{1150} \approx 0.4565$.

(e) Draw a scatter plot, mark the data points and the regression line.

2. (15 pts) A computer program supposedly generates a standard random variable $\mathcal{N}(0,1)$. The following are five numbers produced by this program:

$$0.3, 2.1, -1.71, -0.92, 1.13$$

Use the Kolmogorov-Smirnov test to test the hypothesis that the program works right.

(a) Sketch the empirical distribution function.

(b) Compute the test statistic *D*. Answer: D = 0.2708.

(c) Assume significance level 20%. Find the critical value d. Answer: d=0.45.

(d) Which hypothesis do you accept? Answer: H_0 .

(e) Sketch a 95% confidence band around the empirical distribution function.

3. (15 pts) Given random sample

4, 7, 11, 2, -2, 3, -5, 6, 2, 0, 8, -7, 5, 1, -1

(a) Find a point estimate for the median, m (write the formula you use). Answer: $\hat{m} = y_8 = 2$. (b) Find point estimates for the quartiles, $\pi_{0.25}$ and $\pi_{0.75}$ (write the formulas you use). Answers: $\hat{\pi}_{0.25} = y_4 = -1$ and $\hat{\pi}_{0.75} = y_{12} = 6$.

(c) Find an approximate 96% confidence interval for the median, m.

Give the exact confidence level. Answers: $(y_4, y_{12}) = (-1, 6)$; level=0.9648.

(d) Find $\mathbb{P}(1 < \pi_{0.7} \leq 7)$ (write the formulas you use). Answer: $\mathbb{P}(6 \leq b(15, 0.7) \leq 12) = 0.8695$.

4. (15 pts) In a college, students are classified according to the period of the day when they took calculus (morning, afternoon, evening) and the success or failure in the course:

	Morning	Afternoon	Evening
Pass	80	60	10
Fail	28	20	2

Test the hypothesis that the success rate is independent of the time period of the class.

(a) Estimate the probabilities p_{ij} . Answers: 0.54, 0.4, 0.06.

- (b) Find the theoretical frequencies $n\hat{p}_{ij}$. Answers: 81, 60, 9, 27, 20, 3.
- (c) Compute the test statistic Q (as the sum of six terms). Answer: Q = 0.4938.

(d) How many degrees of freedom are here? Answer: 2.

(e) Assume significance level 10%. What is the critical value? Answer: $\chi^2_{0,1}(2) = 4.605$.

(f) Which hypothesis do you accept? Answer: H_0 .

5. (10 pts) Let X_1, X_2, X_3 be three independent random variables that have some distributions with mean values μ_1, μ_2, μ_3 respectively. Test the hypothesis

$$H_0: \mu_1 = \mu_2 = \mu_3$$

at 1% significance level. The observed data are given in the table below:

- (a) Compute \bar{x}_i for i = 1, 2, 3 and $\bar{x}_{...}$ Answers: 7,5,10, and 7.
- (b) Compute SS(E) and SS(T). Answers: SS(E) = 24 and SS(T) = 60.
- (c) Compute the F statistic. Answer: F = 12.5.
- (d) What is the critical value? Answer: $F_{0.01}(2, 10) = 7.56$.
- (e) Which hypothesis do you accept? Answer: H_1 .

6. (10 pts) Two samples from random variables X and Y were recorded:

X: 14, 11, 3, 12, 2, 11, 5, 17, 12, 4

$$Y: 6, 18, -2, 7, 0, 19, -5, 9, 6, 20$$

Use the Wilcoxon test (for two samples) to test the hypothesis $H_0: m_X = m_Y$ against $H_1: m_X \neq m_Y$.

- (a) Compute W. Answer: W = 101.
- (b) Find μ and σ^2 . Answers: $\mu = 105$ and $\sigma^2 = 175$.
- (c) Compute the Z-score and the p-value. Answer: Z = -0.3024 and p-value= 0.7624.
- (d) Which hypothesis would you accept? Answer: H_0 .

7. (10 pts) Two samples from random variables X and Y were observed:

X: 14, 11, 3, 12, 2, 11, 5, 17, 12, 4

$$Y: 6, 18, -2, 7, 0, 19, -5, 9, 6, 20$$

Use the run test to test the hypothesis H_0 : $F_X = F_Y$ against H_1 : $F_X \neq F_Y$.

- (a) Compute R. Answer: R = 5.
- (b) Find μ and σ^2 . Answers: $\mu = 11$ and $\sigma^2 = \frac{90}{19} \approx 4.737$. (c) Compute the Z-score and the p-value. Answer: Z = -2.757 and p-value= 0.0029. (d) Which hypothesis would you accept? Answer: H_1 .

8. (10 pts) Estimate the main effect, the three two-factor interactions, and the three-factor interaction in a 2^3 factorial design experiment. The data, in the canonical order (see Section 20.6), are:

 $x_1 = 4$, $x_2 = 2$, $x_3 = 3$, $x_4 = 1$, $x_5 = 5$, $x_6 = 3$, $x_7 = 6$, $x_8 = 4$.

(a) Compute [A], [B], [C], [AB], [AC], [BC], and [ABC]. Answers: -1, 0, 1, 0, 0, 0.5, 0.

(b) Construct an approximate q - q plot.

(c) Comment on it.

[Bonus, up to 20 pts] Suppose in a sequence of 100 independent trials 20 successes (and 80 failures) are observed. Let p denote the unknown probability of success.

- (a) Give the maximum likelihood estimate \hat{p} for p. Answer: 0.2.
- (b) Find the bias and give a formula for the variance of your estimate. Answers: the bias is zero, and $\operatorname{Var}\hat{p} = \frac{p(1-p)}{100}$.
- (c) Construct a 98% confidence interval for p. Answer: 0.2 ± 0.093 .
- (d) Test hypothesis H_0 : p = 0.3 against H_1 : p < 0.3 at 2% significance level. Answer: Z = -2.182, critical value is $-z_{0.02} = -2.054$, we accept H_1 .
- (e) How many trials need to be performed so that the margin of error in a 98% confidence interval for p be less than 0.02? Answer: 3382.