MA 631-14 (Applied linear algebra), Dr. Chernov Final exam Justify your work. Mon, November 24

1. Let $B = \{(1,1,1), (2,1,1,), (1,2,0)\}$ be a basis in \mathbb{R}^3 . Find the transition matrices $P_{B,E}$ and $P_{E,B}$, where E stands for the standard basis in \mathbb{R}^3 . Find a matrix A such that $Av = (v)_B$ for all $v \in \mathbb{R}^3$.

2. Let W be the subspace of the differentiable functions on the real line with basis $B = {\sin^2 x, \sin x \cos x, \cos^2 x}$. Let T be the linear transformation defined by Tf = f'. (a) Show that W is T-invariant. Is $T: W \to W$ a bijection? (b) Is $T: W \to W$ diagonalizable over the real field?

(c) Is $T: W \to W$ diagonalizable over the complex field?

3. Prove that if two matrices, A and B, are similar, then their ranks are equal.

4. Let $W := \text{span}\{(3, 1, 1, 3), (1, 2, 2, 1), (0, 1, 1, 0)\}$ in \mathbb{R}^4 . (a) Find dim W and a basis of W.

(b) Find a basis of W^{\perp} in \mathbb{R}^4 with the standard inner product.

5. Let $v_1 = (-1, 0, 1), v_2 = (2, -2, 0), v_3 = (0, -1, -1)$ in \mathbb{R}^3 .

(a) Find an ONB $\{w_1, w_2, w_3\}$ of \mathbb{R}^3 by using the Gram-Schmidt procedure.

(b) Find c_1, c_2, c_3 such that $c_1w_1 + c_2w_2 + c_3w_3 = (0, 0, 2)$.

6. Find a Jordan canonical form for

$$A = \begin{pmatrix} 1 & 1 & 0 & -1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

7. (a) Let A be a 13×13 complex matrix with $C_A(x) = x^7(x-i)^6$, $M_A(x) = x^4(x-i)^3$, and dim $E_0 = 3$, dim $E_i = 2$. Find a Jordan canonical form of A. (b) Let A be a 6×6 complex matrix with $C_A(x) = (x^2+1)^3$, dim $E_i = 2$ and dim $E_{-i} = 1$. Find the minimal polynomial of A.

8. Let $\{w_1, \ldots, w_n\}$ be an ONB in \mathbb{R}^n . What is $||w_1 + \cdots + w_n||$? Assuming that n is even, what is $||w_1 - w_2 + w_3 - \cdots - w_n||$?