MA 631-22 (Applied linear algebra), Dr. Chernov Justify your work.

Final exam Tue, November 24

1. Find a Jordan canonical form for

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -1 & 0 & 0 & 1 \\ 2 & -1 & 2 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}$$

2. Find a Jordan canonical form and a Jordan basis for $A = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}$

3. (a) Let A be a 12×12 complex matrix with $C_A(x) = x^7 (x-i)^5$, $M_A(x) = x^3 (x-i)^2$, and dim $E_0 = 4$, dim $E_i = 3$. Find a Jordan canonical form of A.

(b) Let A be a 10×10 complex matrix with $C_A(x) = (x^2 + 1)^5$, dim $E_i = 1$ and dim $E_{-i} = 4$. Find the minimal polynomial of A.

- 3. Let $W := \text{span}\{(2, -1, 2, -1), (1, 3, 1, 3), (0, 2, 0, 2)\}$ in \mathbb{R}^4 .
- (a) Find $\dim W$ and a basis of W.
- (b) Find a basis of W^{\perp} in \mathbb{R}^4 with the standard inner product.

4. Let $v_1 = (1, 1, 0)$, $v_2 = (2, 2, 2)$, $v_3 = (0, 2, 1)$ in \mathbb{R}^3 . (a) Find an ONB $\{u_1, u_2, u_3\}$ of \mathbb{R}^3 by using the Gram-Schmidt procedure. (b) Find c_1, c_2, c_3 such that $c_1u_1 + c_2u_2 + c_3u_3 = (0, 2, 2)$.

5. Let $A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ for some $\theta \in [0, 2\pi)$. Show that A is orthogonal and det A = -1. Prove that $\lambda = \pm 1$ are the eigenvalues of the above matrix A, find the corresponding eigenvectors. For an extra credit, show that if A is a real 2×2 orthogonal matrix with det A = -1, then A has the above form.

6. Let V be a finite dimensional inner product space, and W a subspace of V. Then $V = W \oplus W^{\perp}$, that is, each $v \in V$ is uniquely expressed in the form $v = v_1 + v_2$ with $v_1 \in W$ and $v_2 \in W^{\perp}$. Define a linear operator T by $Tv = v_2 - v_1$.

(i) Prove that T is an isometry.

(ii) Assume that dim W = 1. Prove that det T = -1.

(iii) Let $V = \mathbb{R}^3$ and $W = \text{span}\{(1,1,0)\}$. Find the matrix representation of T in the canonical basis $\{e_1, e_2, e_3\}$.

7. Let $\{w_1, \ldots, w_n\}$ be an ONB in \mathbb{R}^n . What is $||w_1 + \cdots + w_n||$? Assuming that n is even, what is $||w_1 - w_2 + w_3 - \cdots - w_n||$?

continued on the back

8. [Extra credit] Let u be a unit vector in \mathbb{R}^n . Prove that $A = I - 2uu^t$ is an orthogonal matrix. Then show that Au = -u and Av = v for any vector v orthogonal to u. Is there any connection with Problem 6?