
1 Vector spaces

1.1 Definition (Vector space)
Let V be a set with a binary operation +, F a field, and (c, v) 7→ cv be a mapping

from F × V into V . Then V is called a vector space over F (or a linear space over F ) if

(i) u + v = v + u for all u, v ∈ V
(ii) u + (v + w) = (u + v) + w for all u, v, w ∈ V
(iii) ∃0 ∈ V : v + 0 = v for all v ∈ V
(iv) ∀u ∈ V ∃ − u ∈ V : u + (−u) = 0
(v) (ab)v = a(bv) for all a, b ∈ F and v ∈ V
(vi) (a + b)v = av + bv for all a, b ∈ F and v ∈ V
(vii) a(u + v) = au + av for all a ∈ F and u, v ∈ V
(viii) 1v = v for all v ∈ V

Note that (i)-(iv) mean that (V, +) is an abelian group. The mapping (c, v) 7→ cv is
called scalar multiplication, the elements of F scalars, the elements of V vectors. The
vector 0 ∈ V is called zero vector (do not confuse it with 0 in F ).

In this course we practically study two cases: F = IR and F = C|| . We call them real
vector spaces and complex vector spaces, respectively.

1.2 Examples of vector spaces
a) F field, F n = {(x1, . . . , xn) : xi ∈ F} n-tuple space. The operations are defined

by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

c(x1, . . . , xn) = (cx1, . . . , cxn)

Note that IR2 and IR3 can be interpreted as ordinary plane and space, respectively, in
rectangular coordinate systems.

b) F field, S set, V = {f : S → F} (arbitrary functions from S to F ). The operations
are defined by

(f + g)(s) = f(s) + g(s) for f, g ∈ V, s ∈ S

(cf)(s) = cf(s) for c ∈ F, f ∈ V, s ∈ S

c) C[0, 1] - the space of continuous functions on [0, 1]; Cr[0, 1] - the space of functions
on [0, 1] that have (at least) r continuous derivatives. The operations are defined as in
(b). Here the closed interval [0, 1] may be replaced by any open or closed interval in IR
or the entire real line.

d) Pn(IR) - the space of all real polynomials of degree ≤ n with real coefficients. Also,
P (IR) the space of all real polynomials (of any degree) with real coefficients.
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e) F field, Fm×n the space of m× n matrices with components in F . For A ∈ Fm×n

denote by Aij the component of the matrix A in the ith row and the jth column, i ∈ [1, m],
j ∈ [1, n]. Then the operations are defined by

(A + B)ij = Aij + Bij

(cA)ij = cAij

1.3 Basic properties of vector spaces
The following properties follow easily from the definition:

c0 = 0

0v = 0

(−1)v = −v

cv = 0 ⇒ c = 0 or v = 0

1.4 Definition (Linear combination)
Let v1, . . . , vn ∈ V and c1, . . . , cn ∈ F . Then the vector c1v1 + · · · + cnvn is called a

linear combination of v1, . . . , vn.

1.5 Definition (Subspace)
A subset of a vector space V which is itself a vector space with respect to the opera-

tions in V is called a subspace of V .

1.6 Theorem (Subspace criterion)
A non-empty subset W of a vector space V is a subspace of V if and only if

au + bv ∈ W for all a, b ∈ F, u, v ∈ W

1.7 Examples of subspaces
a) Cr[0, 1] is a subspace of C[0, 1] for all r ≥ 1.
b) Pn(IR) is a subspace of P (IR).
c) the space of symmetric n × n matrices (i.e. such that Aij = Aji) is a subspace of

F n×n, the space of all n× n matrices.
d) the space of antisymmetric n × n matrices (i.e. such that A)ij = −Aji) is a

subspace of F n×n, the space of all n × n matrices. Note that for any antisymmetric
matrix Aii = 0, i.e. the main diagonal is zero.

e) W = {0} is a trivial subspace in any vector space (it only contains the zero vector).
f) If C is a collection of subspaces of V , then their intersection

∩W∈CW

is a subspace of V . This is not true for unions.
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1.8 Definition (Span)
Let A be a subset of a vector space V . Denote by C the collection of all subspaces of

V that contain A. Then the span of A is the subspace of V defined by

span A = ∩W∈CW

1.9 Theorem
span A is the set of all linear combinations of elements of A.

1.10 Example
If W1, W2 ⊂ V are subspaces, then

span (W1 ∪W2) = W1 + W2

where
W1 + W2

def
= {u + v : u ∈ W1, v ∈ W2}

1.11 Linear independence, linear dependence
A finite set of vectors v1, . . . , vn is said to be linearly independent (loosely, one can

say that the vectors v1, . . . , vn are linearly independent), if c1v1 + · · ·+ cnvn = 0 implies
c1 = · · · = cn = 0. In other words, all nontrivial linear combinations are different from
zero. Otherwise, the set {v1, . . . , vn} is said to be linearly dependent.

An infinite set of vectors is said to be linearly independent if every finite subset of it
is linearly independent.

1.12 Examples
a) in the space IRn, the vectors

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

. . .

en = (0, 0, 0, . . . , 1)

are linearly independent.
b) In Pn(IR), the polynomials 1, x, x2, . . . , xn are linearly independent. In P (IR), the

infinite collection of polynomials {xi}, 0 ≤ i < ∞, is linearly independent.
c) If the set of vectors contains a zero vector, it is linearly dependent.
d) In IR2 (=the ordinary xy plane), two vectors are linearly dependent iff they are

collinear (parallel). Any three or more vectors in IR2 are linearly dependent.
e) In IR3 (=the ordinary space) three vectors are linearly dependent iff they are copla-

nar (belong in one plane). Any four or more vectors are linearly dependent.
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1.13 Theorem
(a) If a set S of vectors is linearly dependent, then some vector v ∈ S is a linear

combination of other vectors v1, . . . , vm ∈ S, i.e. v = c1v1 + · · · + cmvm and v 6= vi for
1 ≤ i ≤ m. In that case span S = span S \ {v}.

(b) Let V 6= {0}. If a finite subset S ⊂ V of vectors spans V , then there is a linearly
independent subset S ′ ⊂ S that also spans V .

1.14 Basis
A basis of V is a linearly independent set B ⊂ V which spans the entire V , i.e.

span B = V . The space V is said to be finite dimensional if it has a finite basis.

1.15 Examples
a) The vectors {e1, . . . , en} make a basis is IRn.
b) The polynomials 1, x, . . . , xn make a basis in Pn(IR). The infinite collection of

polynomials {xi}∞i=0 make a basis in P (IR).

1.16 Theorem
Let V be spanned by u1, . . . , um, and let v1, . . . , vn be linearly independent in V .

Then n ≤ m.

1.17 Corollary
If {u1, . . . , um} and {v1, . . . , vn} are two bases of V , then m = n.

1.18 Definition (Dimension)
The dimension of a finite-dimensional vector space V is the number of vectors in any

basis of V . It is denoted by dim V .
The trivial vector space {0}, the one consisting of a single zero vector, has no bases,

and we define dim{0} = 0.

1.19 Examples
a) dim F n = n
b) dim Pn(IR) = n + 1
c) dim Fm×n = mn
d) P (IR) is not a finite-dimensional space
e) Let A ∈ IRm×n, S = {X ∈ IRn×1 : AX = 0} (the solution space of AX = 0), and

R is the row echelon matrix equivalent to A. Then dim S = n− r, where r is the number
of non-zero rows of R.

1.20 Theorem
Let S be a linearly independent subset of V . Suppose that u ∈ V is not contained in

span S. Then the set S ∪ {u} is linearly independent.
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1.21 Theorem
Let V be finite dimensional, W ⊂ V a subspace, and S a linearly independent subset

of W . Then S can be extended to a finite basis of W .

1.22 Corollary
Let V be a finite dimensional vector space.
a) If W is a subspace of V , then dim W ≤dim V , in particular W is finite dimensional.
b) If W is a proper subspace of V , then dim W < dim V .
c) Every nonempty linearly independent subset of V is a part of a basis of V .

1.23 Theorem
Let W1 and W2 be finite dimensional subspaces of V . Then

dim W1 + dim W2 = dim (W1 ∩W2) + dim (W1 + W2)

In particular, W1 + W2 is finite dimensional.

1.24 Lemma
If {u1, . . . , un} is a basis for V , then for any v ∈ V there exist unique scalars c1, . . . , cn

such that
v = c1u1 + · · ·+ cnun

1.25 Definition (Coordinates)
Let B = {u1, . . . , un} be an ordered basis of V . If v = c1u1 + · · · + cnun, then

(c1, . . . , cn) are the coordinates of the vector v with respect to the basis B. Notation:

(v)B =


c1
...
cn


is the coordinate (row) vector of v relative B.

1.26 Examples
a) The canonical coordinates of a vector v = (x1, . . . , xn) ∈ F n in the standard

(canonical) basis {e1, . . . , en} are its components x1, . . . , xn, since v = x1e1 + · · ·+ xnen.
b) The coordinates of a polynomial p ∈ Pn(IR) given by

p = a0 + a1x + a2x
2 + · · ·+ anx

n

in the basis {1, x, . . . , xn} are its coefficients a0, a1, . . . , an.

1.27 Coordinate mapping
Let dim V = n and B = {u1, . . . , un} be an ordered basis of V . Then the mapping

MB : V → F n given by v 7→ (v)B
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is a bijection. For any u, v ∈ V and c ∈ F we have

MB(u + v) = MB(u) + MB(v)

MB(cv) = cMB(v)

Note: The mapping MB : V → F n not only is a bijection, but also preserves the vector
operations. Since there is nothing else defined in V , we have a complete identity of V
and F n. Any property of V can be proven by first substituting F n for V and then using
the mapping MB.

1.28 Theorem (Change of coordinates)
Let B = {u1, . . . , un} and B′ = {u′1, . . . , u′n} be two ordered bases of V . Denote by

PB′,B the n× n matrix with jth column given by

(PB′,B)j = (u′j)B

for j = 1, . . . , n. Then the matrix PB′,B is invertible with P−1
B′,B = PB,B′ and

(v)B = PB′,B(v)B′

for every v ∈ V .

1.29 Definition (Row space, row rank)
Let A ∈ Fm×n. Denote by vi = (Ai1, . . . , Ain) ∈ F n the ith row vector of A. Then the

subspace span{v1, . . . , vm} of F n is called the row space of A, and dim(span{v1, . . . , vm})
is called the row rank of A.

1.30 Theorem
Row equivalent matrices have the same row space.

Note: Theorem 1.30 has a converse: if two matrices have the same row space, then they
are row equivalent (a proof may be found in textbooks). We will not need this fact.

1.31 Theorem
If R is a row echelon matrix, then the non-zero row vectors of R make a basis of the

row space of R.

Note: Every matrix is row equivalent to a row echelon matrix. Thus, Theorems 1.30 and
1.31 show how to find a basis of span{v1, . . . , vm} for a given set of vectors v1, . . . , vm ∈
F n. In particular, this gives the dimension of that subspace.

6



1.32 Definition (Independent subspaces, direct sums)
Let W1, . . . ,Wk be subspaces of a vector space V . We say that they are independent

if, whenever w1 ∈ W1, . . . , wk ∈ Wk with w1 + · · ·+ wk = 0, then w1 = · · · = wk = 0.
In this case, the sum W1+· · ·+Wk is called a direct sum and denoted by W1⊕· · ·⊕Wk.
If k = 2 and W1⊕W2 = V , then the subspaces W1 and W2 are called complementary

subspaces of V .

Note: For every w ∈ W1 ⊕ · · · ⊕Wk there exists a unique collection of vectors wi ∈ Wi,
1 ≤ i ≤ k, such that w = w1 + · · ·+ wk.

1.33 Theorem
Let V be finite dimensional. Let W1, . . . ,Wk be subspaces of V . Then the following

are equivalent:
(i) W1, . . . ,Wk are independent.
(ii) Wi ∩ (W1 + · · ·+ Wi−1 + Wi+1 + · · ·+ Wk) = {0} for every i = 1, . . . , k.
(iii) If Bi is a basis of Wi, then B1 ∪ · · · ∪Bk is a basis of W1 + · · ·+ Wk.

Note: If k = 2, then W1 and W2 are independent if and only if W1 ∩W2 = {0}.

1.34 Examples
a) Three lines in the ordinary space are independent if they do not belong in one

plane. A plane and a line are independent if the line does not lie in the plane. Two
planes are always dependent.

b) Let V = C[0, 1]. Let W1 = {f ∈ V :
∫ 1
0 f(x) dx = 0} and W2 = {f ∈ V : f ≡

const}. Then V = W1 ⊕W2.
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2 Linear transformation

2.1 Definition (Linear transformation)
Let V and W be vector spaces over a field F . A linear transformation from V to W

is a mapping T : V → W such that
(i) T (u + v) = Tu + Tv for all u, v ∈ V ;
(ii) T (cu) = c Tu for all u ∈ V , c ∈ F .

Note: if V = W then T is often called a linear operator on V .

2.2 Elementary properties
T (0) = 0, T (−u) = −Tu, T (

∑
ciui) =

∑
ciTui,

Im T = {Tu : u ∈ V } is a subspace of W (also denoted by R(T )),
Ker T = {u ∈ V : Tu = 0} is a subspace of V (also denoted by N(T )),
T is injective (one-to-one) if and only if Ker T = {0}.

2.3 Examples
(a) A matrix A ∈ Fm×n defines a linear transformation T : F n → Fm by Tu = Au

(multiplication). We denote this transformation by TA.
Conversely, one has: if T : F n → Fm is a linear transformation, then there is a

matrix A ∈ Fm×n such that T = TA.
(b) T : C1(0, 1) → C(0, 1) defined by Tf = f ′, where f ′ is the derivative of the

function f .
(c) T : Pn(IR) → Pn−1(IR) defined by Tf = f ′, as above.
(d) T : C[0, 1] → IR defined by Tf =

∫ 1
0 f(x) dx.

2.4 Theorem
Let V and W be vector spaces, where V is finite dimensional with basis {u1, . . . , un}.

Let {v1, . . . , vn} be a subset of W . Then there exists a unique linear transformation
T : V → W such that Tui = vi for all 1 ≤ i ≤ n.

2.5 Definition (Rank, nullity)
Let T : V → W be a linear transformation. Then

rank(T ) : = dim Im(T ) if Im(T ) is finite dimensional

nullity(T ) : = dim Ker(T ) if Ker(T ) is finite dimensional

2.6 Theorem
Let T : V → W be a linear transformation, V finite dimensional. Then

rank(T ) + nullity(T ) = dim V
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2.7 Definition (Column rank)
Let A ∈ Fm×n, then the column rank of A is the dimension of the column space of A

as a subspace of Fm.

2.8 Theorem + Definition (Rank of a matrix)
Let A ∈ Fm×n. Then

row rank(A) = column rank(A) =: rank(A)

2.9 Notation
Let V and W be vector spaces over F . The set of all linear transformations from V

to W is denoted by L(V, W ).
L(V, W ) is a vector space (over F ), with ordinary addition and multiplication by

scalars defined for functions (from V to W ).

2.10 Theorem
If dim V = n and dim W = m, then dim L(V, W ) = mn, in particular, L(V, W ) is

finite dimensional.

2.11 Theorem
Let V, W, Z be vector spaces over F . For any T ∈ L(V, W ) and U ∈ L(W, Z) the

composition U ◦ T , also denoted by UT , is a linear transformation from V to Z, i.e.
UT ∈ L(V, Z).

2.12 Example
Let A ∈ Fm×n, B ∈ F k×m and TA, TB be defined as in example 2.3(a). Then the

composition TBTA is a linear transformation from F n to F k given by the product matrix
BA, i.e. TBTA = TBA.

2.13 Definition (Isomorphism)
A transformation T ∈ L(V, W ) is called an isomorphism if T is bijective. If an

isomorphism T ∈ L(V, W ) exists, the vector spaces V and W are called isomorphic.
Note: T ∈ L(V, W ) is an isomorphism if and only if there is a U ∈ L(W, V ) such that

UT = IV (the identity on V ) and TU = IW (the identity on W ). In other words, T is
invertible and U = T−1, the inverse of T . Note that T−1 is also an isomorphism.

2.14 Theorem
Let V and W be finite dimensional, and T ∈ L(V, W ).
(i) T is injective (one-to-one) if and only if whenever {u1, . . . , uk} is linearly indepen-

dent, then {Tu1, . . . , Tuk} is also linearly independent.
(ii) T is surjective (onto, i.e. Im(T ) = W ) if and only if rank(T ) = dim W
(iii) T is an isomorphism if and only if whenever {u1, . . . , un} is a basis in V , then

{Tu1, . . . , Tun} is a basis in W .
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(iv) If T is an isomorphism, then dim V = dim W .

2.15 Theorem
Let V and W be finite dimensional, dim V = dim W , and T ∈ L(V, W ). Then the

following are equivalent:
(i) T is an isomorphism
(ii) T is injective (one-to-one)
(iii) T is surjective (onto)

2.16 Definition (Automorphism, GL(V ))
An isomorphisms T ∈ L(V, V ) is called an automorphism of V . The set of all au-

tomorphisms of V is denoted by GL(V ), which stands for general linear group. In the
special case V = F n one sometimes writes GL(V ) = GL(n, F ).

Note: GL(V ) is not a subspace of L(V, V ) (it does not contain zero, for example),
but it is a group with respect to composition. This group is not abelian, i.e. TU 6= UT
for some T, U ∈ GL(V ), unless dim V = 1.

2.17 Example
Let T : Pn(IR) → Pn(IR) defined by Tf(x) = f(x+a), where a ∈ IR is a fixed number.

Then T is an isomorphism.

2.18 Theorem
If dim V = n, then V is isomorphic to F n.

2.19 Definition (Matrix representation)
Let dim V = n and dim W = m. Let B = {u1, . . . , un} be a basis in V and C =

{v1, . . . , vm} be a basis in W . Let T ∈ L(V, W ). The unique matrix A defined by

Tuj =
m∑

i=1

Aijvi

is called the matrix of T relative to B, C and denoted by [T ]B,C .

2.20 Theorem
In the notation of 2.18, for each vector u ∈ V

(Tu)C = [T ]B,C (u)B
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2.21 Theorem
the mapping T 7→ [T ]B,C defines an isomorphisms of L(V, W ) and Fm×n.

2.22 Theorem
Let B, C, D be bases in vector spaces V, W, Z, respectively. For any T ∈ L(V, W ) and

U ∈ L(W, Z) we have
[ST ]B,D = [S]C,D [T ]B,C

2.23 Corollary
T ∈ L(V, W ) is an isomorphism if and only if [T ]B,C is an invertible matrix.

2.24 Corollary
Let B = {u1, . . . , un} and B′ = {u′1, . . . , u′n} be two bases in V . Then

[I]B′,B = PB′,B

where PB′,B is the transition matrix defined in 1.28.

2.25 Theorem
Let V and W be finite dimensional, and T ∈ L(V, W ). Let B and B′ be bases in V ,

and C and C ′ be bases in W . Then

[T ]B′,C′ = Q [T ]B,C P

where
P = [I]B′,B and Q = [I]C,C′

Note: in the special case V = W , B = C and B′ = C ′ one has

[T ]B′,B′ = P−1 [T ]B,B P

where P = [I]B′,B.

2.26 Definition (Similar matrices)
Two matrices A, A′ ∈ F n×n are said to be similar if there is an invertible matrix

P ∈ F n×n such that
A′ = P−1A P

The similarity is denoted by A ∼ A′.

Note: similarity is an equivalence relation.

2.27 Theorem
Two matrices A and A′ are similar if and only if they are matrix representations of

one linear operator.
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2.28 Theorem
Let V and W be finite dimensional and T ∈ L(V, W ). Let B be a basis in V and C

a basis in W . Then
rank(T ) = rank [T ]B,C

2.29 Corollary
If A and A′ are similar, then rank(A) = rank(A′).

2.30 Definition (Linear functional, Dual space)
Let V be a vector space over F . Then V ∗ := L(V, F ) is called the dual space of V .

The elements f ∈ V ∗ are called linear functionals on V (they are linear transformations
from V to F ).

2.31 Corollary
V ∗ is a vector space. If V is finite dimensional, then dim V ∗ = dim V .

2.32 Examples
(a) see Example 2.3(d): T : C[0, 1] → IR defined by Tf =

∫ 1
0 f(x) dx

(b) The trace of a square matrix A ∈ F n×n is defined by tr A =
∑

i Aii. Then
tr: F n×n → F is a linear functional

(c) Every linear functional f on F n is on the form

f(x1, . . . , xn) =
n∑

i=1

aixi for some ai ∈ F

2.33 Theorem + Definition
Let V be finite dimensional and B = {u1, . . . , un} be a basis of V . Then there is a

unique basis B∗ = {f1, . . . , fn} of V ∗ such that

fi(uj) = δij

where δij = 1 if i = j and 0 if i 6= j (‘Kronecker delta symbol’).
The basis B∗ is called the dual basis of B. It has the property that

f =
n∑

i=1

f(ui)fi

for all f ∈ V ∗.

Note: In Example 2.32(c) the dual basis of the standard basis B = {e1, . . . , en} is given
by fi(x1, . . . , xn) = xi.
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3 Determinants

3.1 Definition (Permutation, Transposition, Sign)
A permutation of a set S is a bijective mapping σ : S → S. If S = {1, . . . , n} we call

σ a permutation of degree n (or permutations of n letters).
Notation: σ = (σ(1), . . . , σ(n)).
Sn is the set of all permutations of degree n.
A permutation which interchanges two numbers and leaves all the others fixed is

called a transposition. Notation: τ(j, k).
If σ ∈ Sn, then the sign of σ is defined as follows: sg(σ) = 1 if σ can be written as

a product of an even number of transpositions, and sg(σ) = −1 if σ can be written as a
product of an odd number of transpositions.

Note: The sign of permutation is well-defined, see MA634.

3.2 Definition (Determinant)
Let A ∈ F n×n. Then the determinant of A is

det(A) =
∑

σ∈Sn

sg(σ)a1σ(1)a2σ(2) · · · anσ(n).

Note: every term in this sum contains exactly one element from each row and exactly
one element from each column.

3.3 Examples
(1) If A ∈ F 2×2, then det(A) = a11a22 − a12a21

(2) Let A =diag(a11, . . . , ann) be a diagonal matrix (i.e., A is the n × n-matrix with
diagonal elements a11, . . . , ann and zeros off the diagonal). Then det(A) = a11 · · · ann.

3.4 Theorem
Let A, B, C ∈ F n×n.
a) If B is obtained from A by multiplying one row of A by k,then

det(B) = k det(A)

b) If A,B and C are identical, except for the i-th row, where

cij = aij + bij 1 ≤ j ≤ n

then
det(C) = det(A) + det(B)

(Note that in general det(A + B) 6= det(A) + det(B).)
c) If B is obtained from A by interchange of two rows, then

det(B) = − det(A)

13



d) If A has two equal rows, then det(A) = 0.
e) If B is obtained from A by adding a multiple of one row to another row, then

det(B) = det(A)

3.5 Algorithm
Let A ∈ F n×n. By using two elementary row operations – row interchange and adding

a multiple of one row to another row – we can transform A into a row echelon matrix R,
whose leading entries in non-zero rows are non-zero numbers (not necessarily ones). By
the above theorem, det(A) = (−1)p det(R), where p is the number of row interchanges
used.

In particular, let A ∈ F n×n be invertible. Then R above will be upper triangular,
i.e. Rii 6= 0 for all 1 ≤ i ≤ n, and Rij = 0 for all i > j. By performing some more
row operations one can trandform R into a diagonal matrix D = diag(d1, . . . , dn) with
non-zero diagonal entries di 6= 0.

3.6 Theorem
A ∈ F n×n is invertible if and only if det(A) 6= 0.

3.7 Lemma
Let A, B ∈ F n×n and A invertible. Then

det(AB) = det(A) det(B)

3.8 Theorem
Let A, B ∈ F n×n, then

det(AB) = det(A) det(B)

3.9 Corollary
(i) If A ∈ F n×n is invertible, then det A−1 = 1/ det(A).
(ii) If A and B are similar, then det(A) = det(B).

3.10 Theorem + Definition (Transpose)
The transpose At of A ∈ F n×n is defined by At

ij := Aji. Then

det(A) = det(At)

Note: This implies that all parts of Theorem 3.4 are valid with “row” replaced by “col-
umn”.

3.11 Theorem
If A11 ∈ F r×r, A21 ∈ F (n−r)×r, and A22 ∈ F (n−r)×(n−r), then

det

(
A11 0
A21 A22

)
= det(A11) det(A22)
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Note: By induction it follows that

det


A11 0 · · · 0
...

. . . . . .
...

...
. . . . . . 0

Am1 · · · · · · Amm

 = det(A11) · · · det(Amm)

In particular, for a lower triangular matrix one has

det


a11 0 · · · 0
...

. . . . . .
...

...
. . . . . . 0

an1 · · · · · · ann

 = a11 · · · ann

By Theorem 3.10 this also holds for upper triangular matrices.

3.12 Definition (Cofactors)
Let A ∈ F n×n and i, j ∈ {1, . . . , n}. Denote by A(i|j) ∈ F (n−1)×(n−1) the matrix

obtained by deleting the i-th row and j-th column from A. Then

cij := (−1)i+j det(A(i|j))

is called the i, j-cofactor of A.

3.13 Theorem (Cofactor expansion)
(a) For every i ∈ {1, . . . , n} one has the i-th row cofactor expansion

det(A) =
n∑

j=1

aijcij

(b) For every j ∈ {1, . . . , n} one has the j-th column cofactor expansion

det(A) =
n∑

i=1

aijcij

3.14 Theorem
If A is invertible, then

A−1 =
1

det(A)
adj(A)

where adj(A) ∈ F n×n is the adjoint matrix of A defined by

(adj(A))ij = cji

15



3.15 Theorem (Cramer’s rule)
If A ∈ F n×n is invertible and b ∈ F n, then the unique solution x ∈ F n of the equation

Ax = b is given by

xj =
det(Bj)

det(A)
j = 1, . . . , n

where Bj is the matrix obtained by replacing the j-th column of A by the vector b.

Note: Using adj(A) to compute A−1 or Cramer’s rule to solve the equation Ax = b is
numerically impractical, since the computation of determinants is “too expensive” com-
pared to other methods. However, 3.12 and 3.13 have theoretical value: they show the
continuous dependence of entries of A−1 on entries of A and, respectively, of x on the
entries of A and b.

3.16 Definition
A matrix A ∈ F n×n is said to be upper triangular if Aij = 0 for all i > j. If, in

addition, Aii = 1 for all 1 ≤ i ≤ n, the matrix A is said to be unit upper triangular.
Similarly, lower triangular matrices and unit lower triangular matrices are defined.

3.17 Theorem
The above four classes of matrices are closed under multiplication. For example, if

A, B ∈ F n×n are unit lower triangular matrices, then so is AB.

3.18 Theorem
The above four classes of matrices are closed under taking inverse. For example, if

A ∈ F n×n is unit lower triangular matrices, then so is A−1.
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4 The LU Decomposition Method

4.1 Algorithm (Gauss Elimination)

Let A = (aij) be an n× n matrix with a11 6= 0. Denote A(1) = A and a
(1)
ij = aij. We

define multipliers
mi1 = a

(1)
i1 /a

(1)
11 for i = 2, . . . , n

and replace the i-th row Ri of the matrix A with Ri −mi1R1 for all i = 2, . . . , n. This
creates zeros in the first column of A(1), which then takes the form

A(2) =


a

(1)
11 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

...
...

...

0 a
(2)
n2 · · · a(2)

nn


where

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j for 2 ≤ i, j ≤ n

Next, assume that a
(2)
22 6= 0. Then one can continue this process and define multipliers

mi2 = a
(2)
i2 /a

(2)
22 for i = 3, . . . , n

and replace the i-th row Ri of the matrix A(2) with Ri −mi2R2 for all i = 3, . . . , n. This
creates a matrix, A(3), with zeros in the second column below the main diagonal, and so
on. If all the numbers a

(i)
ii , 1 ≤ i ≤ n − 1, are not zero, then one ultimately obtains an

upper triangular matrix

A(n) = U =



a11 · · · a1n

0 a
(2)
22 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(3)
3n

...
...

. . .
...

0 0 · · · 0 a(n)
nn


The elements a

(i)
ii , 1 ≤ i ≤ n, are called pivots; the method fails if (and only if) one of

the pivots a
(i)
ii , 1 ≤ i ≤ n− 1, is zero.

4.2 Definition (Principal minors)
Let A ∈ F n×n. For 1 ≤ k ≤ n, the k-th principal minor of A is the matrix k × k

formed by intersecting the first k rows and the first k columns of A (i.e., the top left
k × k block of A). We denote the k-th principal minor of A by Ak.
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4.3 Criterion of failure in the Gauss elimination process
The method of Gauss elimination fails if and only if det Ak = 0 for some k = 1, . . . , n−

1. This follows because for each k = 1, . . . , n

det Ak = a
(1)
11 · · · a

(k)
kk

4.4 Gauss matrices
Assume that A ∈ F n×n has non-singular principal minors up to the order n − 1, so

that the Gauss elimination works. For each j = 1, . . . , n − 1 the Gauss matrix Gj is
defined by

Gj =



1 0 · · · 0
0 1
... 0

. . .
... 1

−mj+1,j
. . .

...
... 1 0

0 0 −mnj 0 1


Note that Gj = I −m(j)et

j where

m(j) =



0
...
0

mj+1,j
...

mnj


4.5 Lemma

For each j = 1, . . . , n− 1 we have GjA
(j) = A(j+1).

4.6 Corollary
We have

U = A(n) = Gn−1 · · ·G2G1A

4.7 Lemma
For each j = 1, . . . , n− 1 we have

Lj := G−1
j = I + m(j)et

j

18



so that

Lj =



1 0 · · · 0
0 1
... 0

. . .
... 1

mj+1,j
. . .

...
... 1 0

0 0 mnj 0 1


4.8 Lemma

We have

L := (I + m(1)et
1)(I + m(2)et

2) · · · (I + m(n−1)et
n−1) = I +

n−1∑
k=1

m(k)et
k

so that

L =



1 0 · · · 0
m21 1 0 · · · 0

...
. . . . . .

1 0
mn1 mn2 · · · mn,n−1 1

 ,

is a unit lower triangular matrix.

4.9 Corollary
Assume that A ∈ F n×n has non-singular principal minors up to the order n − 1, so

that the Gauss elimination works. Then

A = LU

i.e. A is the product of a unit lower triangular matrix and an upper triangular matrix.
In that case

det A = det U = a
(1)
11 · · · a(n)

nn

4.10 Theorem (LU Decomposition)
Assume that A ∈ F n×n has non-singular principal minors up to the order n − 1, so

that the Gauss elimination works. Then there exists a factorization for A of the form
A = LU , where U is upper triangular and L is unit lower triangular. If in addition, A is
non-singular, then such a factorization is unique.

Proof. It remains to prove uniqueness. By way of contradiction, let A = L̃Ũ = LU .
As A is non-singular, it follows that Ũ is also non-singular, and hence L−1L̃ = UŨ−1.
Now, L−1 is unit lower triangular, so that L−1L̃ is also unit lower triangular. On the
other hand, UŨ−1 is upper triangular. The only matrix with this property is the identity
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matrix I, and thus L̃ = L and Ũ = U .

4.11 Algorithm (Forward and backward substitution)
Assume that A ∈ F n×n is nonsingular and is decomposed as A = LU , where L is

lower triangular and U upper triangular. To solve a system Ax = b, one writes it as
LUx = b, calls Ux = y, then solves the lower triangular system Ly = b for y using
“forward substitution” (finding y1, . . . , yn subsequently), then solves the system Ux = y
for x via a “back substitution” (finding xn, . . . , x1 subsequently).

4.12 Cost of computation
The cost of computation is usually measured in “flops”, where a flop (floating point

operation) is a multiplication or division together with one addition or subtraction.
(There is also a different definition of “flop” in the literature, but we use this one.)
Let us estimate the cost of the LU decomposition. The cost of arithmetic in computation
of A(2) is n− 1 divisions to compute the multipliers and n(n− 1) flops (n− 1 rows with
n flops per row) to make the zeros in the first column, i.e. total of approximately n2

flops. The computation of A(3) then takes (n − 1)2 flops, and so on. Thus the total
computational cost for the LU factorization is

n2 + (n− 1)2 + · · ·+ 22 =
n(n + 1)(2n + 1)

6
≈ n3

3

flops.
If one solves a system Ax = b, then the LU decomposition is followed by solving two

triangular systems. The cost to solve one triangular system is about n2/2 flops. Hence,
the total cost is still ≈ n3/3.

Note that most of the computational expense is incurred in finding the factors L and U .
Thus, this method is particularly well suited to situations in which one is solving systems
Ax = b for more that one vector b: each additional b will require ≈ n2 flops.

4.13 Algorithm for finding A−1

Assume that A ∈ F n×n is non-singular and has non-singular principal minors up to
the order n− 1, so that the Gauss elimination works. One can find the matrix X = A−1

by solving the system AX = I for X ∈ F n×n, where I is the identity matrix. This
amounts to solving n systems of linear equations Axk = ek, for k = 1, . . . , n, where xk

stands for the k-th column of the matrix X. The computational cost of this procedure
is n3/3 + n× n2 = 4n3/3.

Note that, in principle, one can solve the system Ax = b by x = A−1b, finding A−1 as
above. However, this is very inefficient, it costs approximately four times more flops than
the the LU decomposition followed by forward and backward substitutions.
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4.14 Definition (Diagonally dominant matrix)
An n× n matrix A = (aij) for which we have

|aii| >
∑
j 6=i

|aij|

for all i is said to be strictly row diagonally dominant. If

|ajj| >
∑
i6=j

|aij|

for all j the matrix is said to be strictly column diagonally dominant.

4.15 Theorem
If a matrix A is strictly row (or column) diagonally dominant, then det Ak 6= 0 for all

1 ≤ k ≤ n. Hence, no zero pivots will be encountered during Gaussian elimination.

Note that if A is strictly column diagonally dominant, then all the multipliers (i.e., the
elements of Lj) have absolute value less than one.

The above theorem give some conditions under which the Gauss elimination method
works. It is easy to find matrices to which the method does not apply. For example,

if A =

(
0 1
1 0

)
, then the method fails instantly. (Furthermore, for this A there is no

decomposition A = LU with L lower triangular and U upper triangular.) In practice,
however, due to the effects of round-off error, one rarely encounters a pivot that is exactly
zero. Does this mean that the Gauss elimination is practically perfect? By no means. In
practice, one can easily encounter a pivot that is very small, and this is equally disastrous.
You can read [?, §2.7, p. 123] carefully to appreciate the phenomenon of swamping. One
tries to avoid this type of problem by using an appropriate pivoting strategy.

4.16 Algorithm of partial pivoting – general
The idea is to avoid small (in absolute value) pivots by interchanging rows, if nec-

essary. At any stage of Gauss elimination, one looks for the largest (in absolute value)
element in the pivot column (at or below the main diagonal). For a non-singular matrix it
cannot happen that all of these numbers are zero. Then the row containing that element
is interchanged with the current row. Now the largest element is on the main diagonal.
After that the usual elimination step is performed.

It is important to note that partial pivoting implies that all the multipliers (i.e., the
elements of Lj) have absolute value less than or equal to one.

4.17 Theorem
If a matrix A is strictly column diagonally dominant, then the Gaussian elimination

with no pivoting is equivalent to Gaussian elimination with partial pivoting (i.e., no row
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interchanges are necessary).

4.18 Definition (Permutation matrix)
Let 1 ≤ i, j ≤ n. The permutation matrix E(i, j) is obtained from the identity matrix

I by interchanging the i-th and j-th rows.

4.19 Lemma
Let A ∈ F n×n. Then the matrix E(i, j)A is obtained from A by interchanging the

rows i and j. Similarly, the matrix AE(i, j) is obtained from A by interchanging the
columns i and j. Also, E(i, j)−1 = E(i, j).

4.20 Algorithm of partial pivoting – formalism
Let us analyze the partial pivoting procedure. At every stage j ∈ [1, n − 1], we find

the row, rj, containing the largest element in the j-th (pivot) column at or below the
main diagonal. Then we interchange the rows j and rj, note that rj ≥ j. This will be
better described by the permutation matrix E(j, rj), which we denote for brevity by Ej.
Hence, we have

A(j+1) = GjEjA
(j)

(Note that if we do not interchange rows then simply rj = j and Ej = I, and we recover
our old Gauss elimination procedure.) Therefore,

U = A(n) = Gn−1En−1 · · ·G1E1A

By construction, U is an upper triangular matrix. Now, taking inverses gives

A = E1L1 · · ·En−1Ln−1U

The next question is, what can we say about the matrix E1L1 · · ·En−1Ln−1?

4.21 Theorem
Let A ∈ F n×n be non-singular. Then we can apply the partial pivoting algorithm.

Also, let
P = En−1 · · ·E1

Then the matrix
L̃ := P−1E1L1 · · ·En−1Ln−1

is unit lower triangular, and so we have

PA = L̃U

Proof. First, observe that for any m > j the matrix EmLjEm is obtained from the (old)
Gauss matrix Lj by interchanging the m-th and rm-th elements in the j-th column below
the main diagonal. So, the matrix

L̃j = En−1 · · ·Ej+1LjEj+1 · · ·En−1
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is obtained from the (old) Gauss matrix Lj by some permutation of its elements in
the j-th (pivot) column below the main diagonal. In particular, L̃j is also unit lower
triangular.

Now, in the expression
E1L1 · · ·En−1Ln−1

we fill in as many E’s as necessary (remembering that E2
i = I) to convert all Lj’s into

L̃j’s, and obtain
PA = L̃1 · · · L̃n−2Ln−1U

where
P = En−1 · · ·E1

is called a permutation matrix. The matrix

L̃ = L̃1 · · · L̃n−2Ln−1

is unit lower triangular, and we get

PA = L̃U

4.22 Algorithm of partial pivoting – implementation
In practice, one wants to solve a system of equations Ax = b with a nonsingular A.

Applying the algorithm of partial pivoting gives PA = L̃U . Therefore, L̃Ux = Pb =: c.
Then x can be found by the standard forward and backward substitution, one only needs
to obtain c from b. In computer implementation, one does not actually interchange
values in memory locations for the elements of A or b, but the row interchanges are
recorded in a special permutation vector S = (s1, . . . , sn). It holds initially the values
s1 = 1, · · · , sn = n. The interchange of rows 2 and 5, for example, is recorded by inter-
changing the integers 2 and 5 in this vector. Thus if one finds the permutation vector S
(which is returned when the LU factorization is completed) then the components of the
vector c = Pb can be retrieved from b via the vector S, which is used as a ‘pointer’. (see
[?, p. 64]). The method then proceeds in the usual manner.

4.23 Complete pivoting – a sketch
The method of complete pivoting involves both row and column interchanges to make

use of the largest pivot available. By a similar argument to that used above this is
equivalent to effecting the factorization

PAQ = LU,

where P and Q are permutation matrices. This method, which provides additional
insurance against round-off error buildup is useful if the method of partial pivoting proves
to be unstable. The main disadvantage of the method is that it is expensive in that an
extra n3/3 comparisons are required, compared to a cost on the order of n2 comparisons
for the partial pivoting algorithm.
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5 Diagonalization

Throughout this section, we use the following notation: V is a finite dimensional vector
space, dim V = n, and T ∈ L(V, V ). Also, B is a basis in V and [T ]B := [T ]B,B ∈ F n×n

is a matrix representing T .
Our goal in this and the following sections is to find a basis in which the matrix [T ]B

is “as simple as possible”. In this section we study conditions under which the matrix
[T ]B can be made diagonal.

5.1 Definition (Eigenvalue, eigenvector)
A scalar λ ∈ F is called an eigenvalue of T if there is a non-zero vector v ∈ V such

that
Tv = λv

In this case, v is called an eigenvector of T corresponding to the eigenvalue λ. (Sometimes
these are called characteristic value, characteristic vector.)

5.2 Theorem + Definition (Eigenspace)
For every λ ∈ F the set

Eλ = {v ∈ V : Tv = λv} = Ker(λI − T )

is a subspace of V . If λ is an eigenvalue, then Eλ 6= {0}, and it is called the eigenspace
corresponding to λ.

Note that Eλ always contains 0, even though 0 is never an eigenvector. At the same
time, the zero scalar 0 ∈ F may be an eigenvalue.

5.3 Remark
0 is an eigenvalue ⇔ Ker T 6= {0} ⇔ T is not invertible ⇔ [T ]B is singular ⇔

det[T ]B = 0 .

5.4 Definition (Eigenvalue of a matrix)
λ ∈ F is called an eigenvalue of a matrix A ∈ F n×n if there is a nonzero v ∈ F n such

that
Av = λv

Eigenvectors and eigenspaces of matrices are defined accordingly.

5.5 Simple properties
(a) λ is an eigenvalue of A ∈ F n×n ⇔ λ is an eigenvalue of TA ∈ L(F n, F n).
(b) λ is an eigenvalue of T ⇔ λ is an eigenvalue of [T ]B for any basis B.
(c) if A = diag(λ1, . . . , λn), then λ1, . . . , λn are eigenvalues of A with eigenvectors

e1, . . . , en.
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(d) dim Eλ = nullity(λI − T ) = n− rank(λI − T ).

5.6 Lemma
The function p(x) := det(xI − [T ]B) is a polynomial of degree n. This function is

independent of the basis B.

5.7 Definition (Characteristic polynomial)
The function

CT (x) := det(xI − [T ]B)

is called the characteristic polynomial of T .
For a matrix A ∈ F n×n, the function

CA(x) := det(xI − A)

is called the characteristic polynomial of A.

Note that CT (x) = C[T ]B(x) for any basis B.

5.8 Lemma
λ is an eigenvalue of T if and only if CT (λ) = 0.

5.9 Corollary
T has at most n eigenvalues. If V is complex (F = C|| ), then T has at least one

eigenvalue. In this case, according to the Fundamental Theorem of Algebra, CT (x) is
decomposed into linear factors.

5.10 Corollary
If A ∼ B are similar matrices, then CA(x) ≡ CB(x), hence A and B have the same

set of eigenvalues.

5.11 Examples

(a) A =

(
3 2

−1 0

)
. Then CA(x) = x2 − 3x + 2 = (x − 1)(x − 2), so that λ = 1, 2.

Also, E1 =span(1,−1) and E2 =span(2,−1), so that E1 ⊕ E2 = IR2.

(b) A =

(
1 1
0 1

)
. Then CA(x) = (x − 1)2, so that λ = 1 is the only eigenvalue,

E1 =span(1, 0).

(c) A =

(
0 1

−1 0

)
. Then CA(x) = x2 + 1, so that there are no eigenvalues in the

real case and two eigenvalues (i and −i) in the complex case.
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(d) A =

 3 3 2
1 2 2

−1 −1 0

. Then CA(x) = (x−1)(x−2)2, so that λ = 1, 2. E1 =span(−1, 1, 0)

and E2 =span(2, 0,−1). Here E1 ⊕ E2 6= IR3 (“not enough eigenvectors”).

(e) A =

 1 0 0
0 2 0
0 0 2

. Then CA(x) = (x− 1)(x− 2)2, so that λ = 1, 2. E1 =span{e1}

and E2 =span{e2, e3}. Now E1 ⊕ E2 = IR3.

5.12 Definition (Diagonalizability)
T is said to be diagonalizable if there is a basis B such that [T ]B is a diagonal matrix.
A matrix A ∈ F n×n is said to be diagonalizable if there is a similar matrix D ∼ A

which is diagonal.

5.13 Lemma
(i) If v1, . . . , vk are eigenvalues of T corresponding to distinct eigenvalues λ1, . . . , λk,

then the set {v1, . . . , vn} is linearly independent.
(ii) If λ1, . . . , λk are distinct eigenvalues of T , then Eλ1 + · · ·+Eλn = Eλ1 ⊕· · ·⊕Eλn .

Proof of (i) goes by induction on k.

5.14 Corollary
If T has n distinct eigenvalues, then T is diagonalizable. (The converse is not true.)

5.15 Theorem
T is diagonalizable if and only if there is a basis B consisting entirely of eigenvectors

of T . (In this case we say that T has a complete set of eigenvectors.)

Not all matrices are diagonalizable, even in the complex case, see Example 5.11(b).

5.16 Definition (Invariant subspace)
A subspace W is said to be invariant under T if TW ⊂ W , i.e. Tw ∈ W for all

w ∈ W .
The restriction of T to a T -invariant subspace W is denoted by T |W . It is a linear

transformation of W into itself.

5.17 Examples
(a) Any eigenspace Eλ is T -invariant. Note that any basis in Eλ consists of eigenvec-

tors.

(b) Let A =

 0 −1 0
1 0 0
0 0 1

. Then the subspaces W1 = span{e1, e2} and W2 =
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span{e3} are TA-invariant. The restriction TA|W1 is represented by the matrix

(
0 −1
1 0

)
,

and the restriction TA|W2 is the identity.

5.18 Lemma
Let V = W1 ⊕W2, where W1 and W2 are T -invariant subspaces. Let B1 and B2 be

bases in W1, W2, respectively. Denote [T |W1 ]B1 = A1 and [T |W2 ]B2 = A2. Then

[T ]B1∪B2 =

(
A1 0
0 A2

)

Matrices like this are said to be block-diagonal. Note: by induction, this generalizes to
V = W1 ⊕ · · · ⊕Wk.

5.19 Definition (Algebraic multiplicity, geometric multiplicity)
Let λ be an eigenvalue of T . The algebraic multiplicity of λ is its multiplicity as a root

of CT (x), i.e. the highest power of x− λ that divides CT (x). The geometric multiplicity
of λ is the dimension of the eigenspace Eλ.

The same definition goes for eigenvalues of matrices.

Both algebraic and geometric multiplicities are at least one.

5.20 Theorem
T is diagonalizable if and only if the sum of geometric multiplicities of its eigenvalues

equals n. In this case, if λ1, . . . , λs are all distinct eigenvalues, then

V = Eλ1 ⊕ · · · ⊕ Eλs

Furthermore, if B1, . . . , Bs are arbitrary bases in Eλ1 , . . . , Eλs and B = B1 ∪ · · · ∪ Bs,
then

[T ]B = diag (λ1, . . . , λ1, λ2, . . . , λ2, . . . , λs, . . . , λs)

where each eigenvalue λi appears mi = dim Eλi
times.

5.21 Corollary
Assume that

CT (x) = (x− λ1) · · · (x− λn)

where λi’s are not necessarily distinct.
(i) If all the eigenvalues have the same algebraic and geometric multiplicities, then T

is diagonalizable.
(ii) If all the eigenvalues are distinct, then T is diagonalizable.
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5.22 Corollary
Let T be diagonalizable, and D1, D2 are two diagonal matrices representing T (in dif-

ferent bases). Then D1 and D2 have the same the diagonal elements, up to a permutation.

5.23 Examples (continued from 5.11)

(a) The matrix is diagonalizable, its diagonal form is D =

(
1 0
0 2

)
.

(b) The matrix is not diagonalizable.
(c) The matrix is not diagonalizable in the real case, but is diagonalizable in the

complex case. Its diagonal form is D =

(
i 0
0 −i

)
.

(d) The matrix is not diagonalizable.
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6 Generalized eigenvectors, Jordan decomposition

Throughout this and the next sections, we use the following notation: V is a finite
dimensional complex vector space, dim V = n, and T ∈ L(V, V ).

In this and the next sections we focuse on nondiagonalizable transformations. Those,
as we have seen by examples, do not have ‘enough eigenvectors’.

6.1 Definition (Generalized eigenvector, Generalized eigenspace)
Let λ be an eigenvalue of T . A vector v 6= 0 is called a generalized eigenvector of T

corresponding to λ if
(T − λI)kv = 0

for some positive integer k.
The generalized eigenspace corresponding to λ is the set of all generalized eigenvectors

corresponding to λ plus the zero vector. We denote that space by Uλ.

6.2 Example

Let A =

(
λ 1
0 λ

)
for some λ ∈ C|| . Then λ is the (only) eigenvalue of A, and

Eλ = span {e1}. Since (A− λI)2 is the zero matrix, Uλ = C|| 2.

6.3 Notation
For each k ≥ 1, denote U

(k)
λ = Ker (T − λI)k. Clearly, U

(1)
λ = Eλ and U

(k)
λ ⊂ U

(k+1)
λ

(i.e., {U (k)
λ } is an increasing sequence of subspaces of V ). Note that if U

(k)
λ 6= U

(k+1)
λ ,

then dim U
(k)
λ < dim U

(k+1)
λ .

Observe that Uλ = ∪∞k=1U
(k)
λ . Since each U

(k)
λ is a subspace of V , their union Uλ is a

subspace, too.

6.4 Lemma
There is an m = mλ such that U

(k)
λ 6= U

(k+1)
λ for all 1 ≤ k ≤ m− 1, and

U
(m)
λ = U

(m+1)
λ = U

(m+2)
λ = · · ·

In other words, the sequence of subspaces U
(k)
λ strictly increases up to k = m and stabi-

lizes after k ≥ m. In particular, Uλ = U
(m)
λ .

Proof. By way of contradiction, assume that

U
(k)
λ = U

(k+1)
λ 6= U

(k+2)
λ

Pick a vector v ∈ U
(k+2)
λ \ U

(k+1)
λ and put u := (T − λI)v. Then (T − λI)k+2v = 0, so

(T − λI)k+1u = 0, hence u ∈ Uk+1
λ . But then u ∈ Uk

λ , and so (T − λI)ku = 0, hence
(T − λI)k+1v = 0, a contradiction. 2
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6.5 Corollary
mλ ≤ n, where n = dim V . In particular, Uλ = U

(n)
λ .

6.6 Definition (Polynomials in T )
By T k we denote T ◦· · ·◦T (k times), i.e. inductively T kv = T (T k−1v). A polynomial

in T is
akT

k + · · ·+ a1T + a0I

where a0, . . . , ak ∈ C|| . Example: (T − λI)k is a polynomial in T for any k ≥ 1.

Note: T k ◦ Tm = Tm ◦ T k. For arbitrary polynomials p, q we have p(T )q(T ) = q(T )p(T ).

6.7 Lemma.
The generalized eigenvectors of T span V .

Proof goes by induction on n = dimV . For n = 1 the lemma follows from 5.9. Assume
that the lemma holds for all vector spaces of dimension < n. Let λ be an eigenvalue of
T . We claim that V = V1⊕V2, where V1 := Ker (T −λI)n = Uλ and V2 := Im (T −λI)n.

Proof of the claim:
(i) Show that V1∩V2 = 0. Let v∈V1∩V2. Then (T − λI)nv = 0 and (T − λI)nu = v
for some u∈V . Hence (T − λI)2nu = (T − λI)nv = 0, i.e. u∈Uλ. Now 6.5 implies that
0 = (T − λI)nu = v.
(ii) Show that V = V1 + V2. In view of 2.6 we have dim V1 + dim V2 = dim V . Since V1

and V2 are independent by (i), we have V1 + V2 = V .
The claim is proven.

Since, V1 = Uλ, it is already spanned by generalized eigenvectors. Next, V2 is T -
invariant, because for any v∈V2 we have v = (T − λI)nu for some u∈V , so Tv =
T (T − λI)nU = (T − λI)nTu∈V2. Since dim V2 < n (remember that dim V1 ≥ 1),
by the inductive assumption V2 is spanned by generalized eigenvectors of T |V2 , which are,
of course, generalized eigenvectors for T . This proves the lemma.2

6.8 Lemma
Generalized eigenvectors corresponding to distinct eigenvalues of T are linearly inde-

pendent.

Proof. Let v1, . . ., vm be generalized eigenvectors corresponding to distinct eigenvalues
λ1, . . ., λm. We need to show that if v1 + · · · + vm = 0, then v1 = · · · = vm = 0. It is
enough to show that v1 = 0.

Let k be the smallest positive integer such that (T − λ1I)kv1 = 0. We now apply the
transformation

R := (T − λ1I)k−1(T − λ2I)n · · · (T − λmI)n

to the vector v1 + · · ·+ vm (if k = 1, then the first factor in R is missing). Since all the
factors in R commute (as polynomials in T ), R kills all the vectors v2, . . . , vm, and we
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get Rv1 = 0. Next, we replace T − λiI by (T − λ1I) + (λ1 − λi)I for all i = 2, . . . ,m
in the product formula for R. We then expand this formula by Binominal Theorem. All
the terms but one will contain (T − λ1I)r with some r ≥ k, which kills v1, due to our
choice of k. The equation Rv1 = 0 is then equivalent to

(λ1 − λ2)
n · · · (λ1 − λm)n(T − λ1I)k−1v1 = 0

This contradicts our choice of k (remember that the eigenvalues are distinct, so that
λi 6= λ1). 2

6.9 Definition (Nilpotent transformations)
The transformation T : V → V is said to be nilpotent, if T k = 0 for some positive

integer k. The same definition goes for matrices.

6.10 Example
If A ∈ C|| n×n is an upper triangular matrix whose diagonal entries are zero, then it is

nilpotent.

6.11 Lemma
T is nilpotent if and only if 0 is its only eigenvalue.

Proof. Let T be nilpotent and λ be its eigenvalue with eigenvector v 6= 0. Then T kv = λkv
for all k, and then T kv = 0 implies λk = 0, so λ = 0.

Conversely, if 0 is the only eigenvalue, then by 6.7, V = U0 = Ker T n, so T n = 0. 2

6.12 Theorem (Structure Theorem)
Let λ1, . . ., λm be all distinct eigenvalues of T : V → V with corresponding generalized

eigenspaces U1, . . ., Um. Then
(i) V = U1⊕· · ·⊕Um

(ii) Each Uj is T -invariant
(iii) (T − λjI)|Uj

is nilpotent for each j
(iv) Each T |Uj

has exactly one eigenvalue, λj

(v) dim Uj equals the algebraic multiplicity of λj

Proof. (i) Follows from 6.7 and 6.8.
(ii) Recall that Uj = Ker (T − λjI)n by 6.5. Hence, for any v∈Uj we have

(T − λjI)nTv
by 6.6
= T (T − λjI)nv = 0

so that Tv∈Uj.
(iii) Follows from 6.5.
(iv) From 6.11 and (iii), (T − λjI)|Uj

has exactly one eigenvalue, 0. Therefore, TUj
has

exactly one eigenvalue, λj. (A general fact: λ is an eigenvalue of T if and only if λ − µ
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is an eigenvalue of T − µI.)
(v) Pick a basis Bj in each Uj, then B := ∪m

j=1Bj is a basis of V by (i). Due to 5.18 and
(i), the matrix [T ]B is block-diagonal, whose diagonal blocks are [T |Uj

]Bj
, 1 ≤ j ≤ m.

Then

CT (x) = det(xI − [T ]B)

= C[T |U1
]B1

(x)· · ·C[T |Um ]Bm
(x)

= CT |U1
(x)· · ·CT |Um

(x)

due to 3.11. Since T |Uj
has the only eigenvalue λj, we have CT |Uj

(x) = (x − λj)
dim Uj ,

hence
CT (x) = (x− λ1)

dim U1 · · · (x− λm)dim Um

Theorem is proven. 2

6.13 Corollary
Since Eλ ⊂ Uλ, the geometric multiplicity of λ never exceeds its algebraic multiplicity.

6.14 Definition (Jordan block matrix)
An m×m matrix J is called a Jordan block matrix for the eigenvalue λ if

J =



λ 1 0 · · · 0 0

0 λ 1 0
. . . 0

0 0 λ 1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . 0 λ 1
0 · · · · · · 0 0 λ


6.15 Properties of Jordan block matrices
(i) CJ(x) = (x− λ)m, hence λ is the only eigenvalue of J , its algebraic multiplicity is m
(ii) (J − λI)m = 0, i.e. the matrix J − λI nilpotent
(iii) rank (J − λI) = m − 1, hence nullity (J − λI) = 1, so the geometric multiplicity of
λ is 1.
(iv) Je1 = λe1, hence (J − λI)e1 = 0, i.e. Eλ = span{e1}
(v) Jek = λek + ek−1, hence (J − λI)ek = ek−1 for 2 ≤ k ≤ m
(vi) (J − λI)kek = 0 for all 1 ≤ k ≤ m.
Note that the map J − λI takes

em 7→ em−1 7→ · · · 7→ e1 7→ 0

6.16 Definition (Jordan chain)
Let λ be an eigenvalue of T . A Jordan chain is a sequence of non-zero vectors

{v1, . . . , vm} such that (T − λI)v1 = 0 and (T − λI)vk = vk−1 for k = 2, . . . ,m. The
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length of the Jordan chain is m.

Note that a Jordan chain contains exactly one eigenvector (v1), and all the other vectors
in the chain are generalized eigenvectors.

6.17 Lemma
Let λ be an eigenvalue of T . Suppose we have s ≥ 1 Jordan chains corresponding to λ,

call them {v11, . . . , v1m1}, . . ., {vs1, . . . , vsms}. Assume that the vectors {v11, v21, . . . , vs1}
(the eigenvectors in these chains) are linearly independent. Then all the vectors {vij :
i = 1, . . . , s, j = 1, . . . ,mj} are linearly independent.

Proof. Let M = max{m1, . . . ,ms} be the maximum length of the chains. The proof goes
by induction on M . For M = 1 the claim is trivial. Assume the lemma is proved for
chains of lengths ≤ M−1. Without loss of generality, assume that m1 ≥ m2 ≥ · · · ≥ ms,
i.e. the lengths are decreasing, so M = m1.

By way of contradiction, let ∑
i,j

cijvij = 0

Applying (T − λI)m1−1 to the vector
∑

cijvij kills all the terms except the last vectors
vim1 in the chains of maximum length (of length m1). Those vectors will be transformed
to (T − λI)m1−1vim1 = vi1, so we get

p∑
i=1

cim1vi1 = 0

where p ≤ s is the number of chains of length m1. Since the vectors {vi1} are linearly
independent, we conclude that cim1 = 0 for all i. That reduces the problem to the case
of chains of lengths ≤ M − 1. 2

6.18 Corollary
Let B = {v1, . . . , vm} be a Jordan chain corresponding to an eigenvalue λ. Then B is

linearly independent, i.e. it is a basis in the subspace W := span{v1, . . . , vm}. Note that
W is T -invariant, and the matrix [T |W ]B is exactly a Jordan block matrix.

6.19 Definition (Jordan basis)
A basis B of V is called a Jordan basis for T if it is a union of some Jordan chains.

6.20 Remark
If B is a Jordan basis of V , then [T ]B is a block diagonal matrix, whose diagonal

blocks are Jordan block matrices.
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6.21 Definition (Jordan matrix)
A matrix Q is called a Jordan matrix corresponding to an eigenvalue λ if

Q =


J1 · · · 0
...

. . .
...

0 · · · Js


where J1, . . . , Js are Jordan block matrices corresponding to λ, and their lengths decrease:
|J1| ≥ · · · ≥ |Js|.

A matrix A is called a Jordan matrix if

A =


Q1 · · · 0
...

. . .
...

0 · · · Qr


where Q1, . . . , Qr are Jordan matrices corresponding to distinct eigenvalues λ1, . . . , λr.

6.22 Example
Let T : C|| 4 → C|| 4 have only one eigenvalue, λ. We can find all possible Jordan matrices

for T ; there are 5 distinct such matrices.

6.23 Theorem (Jordan decomposition)
Let V be a finite dimensional complex vector space.

(i) For any T : V → V there is a Jordan basis B of V , so that the matrix [T ]B is a Jordan
matrix. The latter is unique, up to a permutation of eigenvalues.
(ii) Every matrix A ∈ C|| n×n is similar to a Jordan matrix. The latter is unique, up to a
permutation of eigenvalues (i.e., Qj’s in 6.21).

Note: the uniqueness of the matrices Qj is achieved by the requirement |J1| ≥ · · · ≥ |Js|
in 6.21.

Note: the Jordan basis B is not unique, not even after fixing the order of eigenvalues.

Proof of Theorem 6.23.
(ii) follows from (i).
It is enough to prove (i) assuming that T has just one eigenvalue λ, and then use 6.12.
We can even assume that the eigenvalue of T is zero, by switching from T to T − λI.
Hence, we assume that T is nilpotent.

The proof of existence goes by induction on n = dim V . The case n = 1 is trivial.
Assume the theorem is proved for all spaces of dimension < n. Consider W := Im V . If
dim W = 0, then T = 0, so the matrix [T ]B is diagonal (actually, zero) in any basis. So,
assume that m := dim W ≥ 1.

34



Note that W is T -invariant, and m < n, because n −m = nullity T 6= 0. So, by the
inductive assumption there is a basis B in W that is the union of Jordan chains. Let k
be the number of those chains.

The last vector in each Jordan chain has a pre-image under T (because it belongs in
W = Im T ). So, we can extend each of those k Jordan chains by one more vector. Now
we get k Jordan chains for the transformation T : V → V . By 6.17 all the vectors in
those chains are linearly independent, so they span a subspace of dimension m + k.

Next, consider the space K := Ker T . Note that K0 := Ker T |W is a subspace of K.
The first vectors in our Jordan chains make a basis in K0, so k = dim K0 = nullity T |W .
This basis can be extended to a basis in K, and thus we can get r := dim K − dim K0

new vectors. Note that dim K−dim K0 = n−m−k. Hence, the total number of vectors
we found is n. The last r vectors are eigenvectors, so they make r Jordan chains of length
1.

Finally, note that all our vectors are independent, therefore they make a basis in V .
To prove the uniqueness, note that for any k ≥ 1 the number of Jordan chains in the

Jordan basis that have length ≥ k equals rank T k−1− rank T k, so it is independent of the
basis. This easily proves the uniqueness. 2

6.24 Strategy to find the Jordan matrix
Given a matrix A ∈ C|| n×n you can find a similar Jordan matrix J ∼ A as follows.

First, find all the eigenvalues. Then, for every eigenvalue λ and k ≥ 1 find the number
rk = rank (T − λI)k. You will get a sequence n > r1 > r2 > · · · > rp = rp+1 = · · · (in
view of 6.4). Then rk−1− rk is the number of Jordan blocks of length ≥ k corresponding
to λ.

Example: A =

 1 0 1
0 1 1
0 0 1

. Here λ = 1 is the only eigenvalue, and r1 = rank (A−I) = 1.

Then (A− I)2 is a zero matrix, so r2 = 0. Therefore, J =

 1 1 0
0 1 0
0 0 1

.

In addition, we can find a Jordan basis in this example, i.e. a basis in which the
transformation is represented by a Jordan matrix. The strategy: pick a vector v1 ∈
Im (A− I), then take one of its preimages v2 ∈ (A− I)−1v1, and an arbitrary eigenvector
v3 ∈Ker (A−I) independent of v1. Then {v1, v2} and {v3} are two Jordan chains making
a basis.
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7 Minimal Polynomial and Cayley-Hamilton Theo-

rem

We continue using the notation V, n, T of Section 6. The statements 7.1–7.4 below hold
for any field F , but in the rest of the section 7 we work in the complex field.

7.1 Lemma
For any T : V → V there exists a nonzero polynomial f∈P (F ) such that f(T ) = 0.

If we require that the leading coefficient equal 1 and the degree of the polynomial be
minimal, then such a polynomial is unique.

Proof: Recall that L(V, V ) is a vector space of a finite dimension, dim L(V, V ) = n2. The
transformations I, T, T 2, . . . belong in L(V, V ), so there is a k ≥ 1 such that I, T, . . . , T k

are linearly dependent, i.e. ∃ c0, . . ., ck∈F :

c0I + c1T + · · ·+ ckT
k = 0

and we can assume that ck 6=0. Dividing through by ck gives ck = 1. Lastly, if there are
two distinct polynomials of degree k and with ck = 1 satisfying the above equation, then
their difference is a polynomial g of degree < k such that g(T ) = 0. This proves the
uniqueness. 2

7.2 Definition (Minimal polynomial)
The unique polynomial found in Lemma 7.1 is called the minimal polynomial MT (x)

of T : V → V . If A is an n×n-matrix then the minimal polynomial of TA is denoted by
MA(x).

7.3 Examples

(a) A =

(
0 1
0 0

)
. Here A2 = 0, so that the minimal polynomial is MA(x) = x2. (It

is easy to check that cI + A 6= 0 for any c, so the degree one is not enough.) Compare
this to the characteristic polynomial CA(x) = x2.

(b) It is an easy exercise to prove CA(A) = 0 for any 2×2 matrix A (over any field F ).
Hence MA(x) either coincides with CA(x) or is of degree one. In the latter case A−cI = 0
for some c ∈ F , hence A = cI, in which case CA(x) = (x− c)2 and MA(x) = x− c.

(c) A =

 2 3 1
0 2 0
0 0 2

. Here A − 2I is an upper triangular matrix with zero main

diagonal, so it is nilpotent, see 6.10. It is easy to check that (A − 2I)2 = 0, hence the
minimal polynomial is MA(x) = (x−2)2 = x2−4x+4. Compare this to the characteristic
polynomial CA(x) = (x− 2)3. Note that CA(x) is a multiple of MA(x).
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7.4 Corollary
(i) Let B be a basis of V , then MT (x) = M[T ]B(x).
(ii) Similar n×n-matrices have the same minimal polynomial.

From now on, F = C|| again.

7.5 Theorem
Let λ1, . . ., λr be all distinct eigenvalues of T and Uj the corresponding generalized

eigenspaces. Let mj is the maximum size of Jordan blocks corresponding to the eigenvalue
λj. Consider the polynomial

p(x) = (x− λ1)
m1· · ·(x− λr)

mr

Then:
(i) deg p≤ dim V
(ii) if f(x) is a nonzero polynomial such that f(T ) = 0, then f is a multiple of p
(iii) p(x) = MT (x)

Note: mj is the length of the longest Jordan chain in Uj. Also, mj is the smallest positive
integer s.t. (T − λjI)mjv = 0 for all v∈Uj.

Proof:
(i) Follows from 6.23.
(ii) Let f(T ) = 0. We will show that f(x) is a multiple of (x − αj)

m
j for all j. Fix a j

and write f(x) = c(x − c1)
t1 · · · (x − cs)

ts(x − λj)
t where c1, . . .cs denote the roots of f

other than λj (if λj is not a root of f , we simply put t = 0). If t < mj, then there is
a vector v ∈ Uj such that u := (T − λjI)tv 6= 0. Recall that Uj is T -invariant, so it is
(T − cI)-invariant for any c. Hence, u ∈ Uj. Furthermore, each transformation T − ciI
leaves Uj invariant, and is a bijection of Uj because ci 6= λj. Therefore, the transforma-
tion c(T − c1I)t1 · · · (T − csI)ts is a bijection of Uj, so it takes u to a nonzero vector w.
Thus, w = f(T )v 6= 0, hence f(T ) 6= 0, a contradiction. This proves (ii).
(iii) By (ii), MT (x) is a multiple of p(x). It remains to prove that p(T ) = 0, then use
7.1. To prove that p(T ) = 0, recall that V = U1⊕ · · · ⊕Ur, and for every v ∈ Uj we have
(T − λjI)mjv = 0. 2

7.6. Example
Let J be an m×m Jordan block matrix for eigenvalue λ, see 6.14. Then Uλ = C|| m

and (T − λI)m = 0 (and m is the minimal such power). So, MJ(x) = (x − λ)m. Note
that CJ(x) = MJ(x). In general, though, CA(x) 6= MA(x).

7.7 Theorem (Cayley-Hamilton)
The characteristic polynomial CT (x) is a multiple of the minimal polynomial MT (x).

In particular, CT (T ) = 0, i.e. any linear operator satisfies its own characteristic equation.
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Proof: Let λ1, . . ., λr be all distinct eigenvalues of T , and p1, . . . , pr their algebraic mul-
tiplicities. Then CT (x) = (x − λ1)

p1· · ·(x − λr)
pr . Note that pj = dim Uj ≥ mj, where

mj is the maximum size of Jordan blocks corresponding to λj. So, by 7.5 the minimal
polynomial MT (x) = (x− λ1)

m1· · ·(x− λr)
mr divides CT (x). 2

7.8 Corollary
(i) CT (x) and MT (x) have the same linear factors.
(ii) T is diagonalizable if and only if MT (x) = (x − λ1) · · · (x − λr), i.e. MT (x) has no
multiple roots.

7.9 Examples

(a) A =

 1 0 0
−1 0 1
−1 −1 −2

. Here CA(x) = (x + 1)2(x− 1). Therefore, MT (x) may be

either (x+1)2(x−1) or (x+1)(x−1). To find it, it is enough to check if (A+I)(A−I) = 0,
i.e. if A2 = I. This is not true, so MT (x) = (x + 1)2(x − 1). The Jordan form of the

matrix is J =

 −1 1 0
0 −1 0
0 0 1

.

(b) Assume that CA(x) = (x − 2)4(x − 3)2 and MA(x) = (x − 2)2(x − 3). Find all
possible Jordan forms of A. Answer: there are two Jordan blocks of length one for λ = 3
and two or three Jordan blocks of lengths 2+2 or 2+1+1 for λ = 2.
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8 Norms and Inner products

This section is devoted to vector spaces with an additional structure - inner product.
The underlining field here is either F = IR or F = C|| .

8.1 Definition (Norm, distance)
A norm on a vector space V is a real valued function || · || satisfying

1. ||v|| ≥ 0 for all v ∈ V and ||v|| = 0 if and only if v = 0.
2. ||cv|| = |c| ||v|| for all c ∈ F and v ∈ V .
3. ||u + v|| ≤ ||u||+ ||v|| for all u, v ∈ V (triangle inequality).

A vector space V = (V, || · ||) together with a norm is called a normed space.
In normed spaces, we define the distance between two vectors u, v by d(u, v) = ||u−v||.

Note that property 3 has a useful implication: ||u|| − ||v|| ≤ ||u− v|| for all u, v ∈ V .

8.2 Examples
(i) Several standard norms in IRn and C|| n:

||x||1 :=
n∑

i=1

|xi| (1− norm)

||x||2 :=

(
n∑

i=1

|xi|2
)1/2

(2− norm)

note that this is Euclidean norm,

||x||p :=

(
n∑

i=1

|xi|p
)1/p

(p− norm)

for any real p ∈ [1,∞),

||x||∞ := max
1≤i≤n

|xi| (∞− norm)

(ii) Several standard norms in C[a, b] for any a < b:

||f ||1 :=
∫ b

a
|f(x)| dx

||f ||2 :=

(∫ b

a
|f(x)|2 dx

)1/2

||f ||∞ := max
a≤x≤b

|f(x)|
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8.3 Definition (Unit sphere, Unit ball)
Let || · || be a norm on V . The set

S1 = {v ∈ V : ||v|| = 1}

is called a unit sphere in V , and the set

B1 = {v ∈ V : ||v|| ≤ 1}

a unit ball (with respect to the norm || · ||). The vectors v ∈ S1 are called unit vectors.

For any vector v 6= 0 the vector u = v/||v|| belongs in the unit sphere S1, i.e. any nonzero
vector is a multiple of a unit vector.

The following four theorems, 8.4–8.7, are given for the sake of completeness, they will
not be used in the rest of the course. Their proofs involve some advanced material of
real analysis. The students who are not familiar with it, may disregard the proofs.

8.4 Theorem
Any norm on IRn or C|| n is a continuous function. Precisely: for any ε > 0 there is

a δ > 0 such that for any two vectors u = (x1, . . . , xn) and v = (y1, . . . , yn) satisfying

maxi |xi − yi| < δ we have
∣∣∣||u|| − ||v||

∣∣∣ < ε.

Proof. Let g = max{||e1||, . . . , ||en||}. By the triangle inequality, for any vector

v = (x1, . . . , xn) = x1e1 + · · ·+ xnen

we have
||v|| ≤ |x1| ||e1||+ · · ·+ |xn| ||en|| ≤ (|x1|+ · · ·+ |xn|) · g

Hence if max{|x1|, . . . , |xn|} < δ, then ||v|| < ngδ.
Now let two vectors v = (x1, . . . , xn) and u = (y1, . . . , yn) be close, so that maxi |xi−

yi| < δ. Then ∣∣∣||u|| − ||v||
∣∣∣ ≤ ||u− v|| < ngδ

It is then enough to set δ = ε/ng. This proves the continuity of the norm || · || as a
function of v. 2

8.5 Corollary
Let || · || be a norm on IRn or C|| n. Denote by

Se
1 = {(x1, . . . , xn) : |x1|2 + · · ·+ |xn|2 = 1}

the Euclidean unit sphere in IRn (or C|| n). Then the function || · || is bounded above and
below on Se

1:
0 < min

v∈Se
1

||v|| ≤ max
v∈Se

1

||v|| < ∞
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Proof. Indeed, it is known in real analysis that Se
1 is a compact set. Note that || · || is

a continuous function on Se
1. It is known in real analysis that a continuous function on

a compact set always takes its maximum and minimum values. In our case, the min-
imum value of || · || on Se

1 is strictly positive, because 0 /∈ Se
1. This proves the corollary. 2

8.6 Definition (Equivalent norms)
Two norms, || · ||a and || · ||b, on V are said to be equivalent if there are constants

0 < C1 < C2 such that C1 ≤ ||u||a/||u||b ≤ C2 < ∞ for all u 6= 0. This is an equivalence
relation.

8.7 Theorem
In any finite dimensional space V , any two norms are equivalent.

Proof. Assume first that V = IRn or V = C|| n. It is enough to prove that any norm is
equivalent to the 2-norm. Any vector v = (x1, . . . , xn) ∈ V is a multiple of a Euclidean
unit vector u ∈ Se

1, so it is enough to check the equivalence for vectors u ∈ Se
1, which

immediately follows from 8.5. So, the theorem is proved for V = IRn and V = C|| n. An
arbitrary n-dimensional vector space over F = IR or F = C|| is isomorphic to IRn or C|| n,
respectively. 2

8.8 Theorem + Definition (Matrix norm)
Let || · || be a norm on IRn or C|| n. Then

A := sup
||x||=1

||Ax|| = sup
x 6=0

||Ax||
||x||

defines a norm in the space of n×n matrices. It is called the matrix norm induced by ||·||.

Proof is a direct inspection.

Note that supremum can be replaced by maximum in Theorem 8.8. Indeed, one can ob-
viously write A = sup||x||2=1 ||Ax||/||x||, then argue that the function ||Ax|| is continuous
on the Euclidean unit sphere Se

1 (as a composition of two continuous functions, Ax and
|| · ||), then argue that ||Ax||/||x|| is a continuous function, as a ratio of two continuous
functions, of which ||x|| 6= 0, so that ||Ax||/||x|| takes its maximum value on Se

1.

Note that there are norms on IRn×n that are not induced by any norm on IRn, for example
||A|| := maxi,j |aij| (Exercise, use 8.10(ii) below).

8.9 Theorem
(i) ||A||1 = max1≤j≤n

∑n
i=1 |aij| (maximum column sum)

(ii) ||A||∞ = max1≤i≤n
∑n

j=1 |aij| (maximum row sum)
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Note: There is no explicit characterization of ||A||2 in terms of the aij.

8.10 Theorem
Let || · || be a norm on IRn or C|| n. Then
(i) ||Ax|| ≤ ||A|| ||x|| for all vectors x and matrices A.
(ii) ||AB|| ≤ ||A|| ||B|| for all matrices A, B.

8.11 Definition (Real Inner Product)
Let V be a real vector space. A real inner product on V is a real valued function on

V × V , denoted by 〈·, ·〉, satisfying
1. 〈u, v〉 = 〈v, u〉 for all u, v ∈ V
2. 〈cu, v〉 = c〈u, v〉 for all c ∈ IR and u, v ∈ V
3. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉 for all u, v, w ∈ V
4. 〈u, u〉 ≥ 0 for all u ∈ V , and 〈u, u〉 = 0 iff u = 0

Comments: 1 says that the inner product is symmetric, 2 and 3 say that it is linear in
the first argument (the linearity in the second argument follows then from 1), and 4 says
that the inner product is non-negative and non-degenerate (just like a norm). Note that
〈0, v〉 = 〈u, 0〉 = 0 for all u, v ∈ V .

A real vector space together with a real inner product is called a real inner product space,
or sometimes a Euclidean space.

8.12 Examples
(i) V = IRn: 〈u, v〉 =

∑n
i=1 uivi (standard inner product). Note: 〈u, v〉 = utv = vtu.

(ii) V = C([a, b]) (real functions): 〈f, g〉 =
∫ b
a f(x)g(x) dx

8.13 Definition (Complex Inner Product)
Let V be a complex vector space. A complex inner product on V is a complex valued

function on V × V , denoted by 〈·, ·〉, satisfying
1. 〈u, v〉 = 〈v, u〉 for all u, v ∈ V
2, 3, 4 as in 8.11.

A complex vector space together with a complex inner product is called a complex inner
product space, or sometimes a unitary space.

8.14 Simple properties
(i) 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉
(ii) 〈u, cv〉 = c̄〈u, v〉

The properties (i) and (ii) are called conjugate linearity in the second argument.
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8.15 Examples
(i) V = C|| n: 〈u, v〉 =

∑n
i=1 uiv̄i (standard inner product). Note: 〈u, v〉 = utv̄ = v̄tu.

(ii) V = C([a, b]) (complex functions): 〈f, g〉 =
∫ b
a f(x)g(x) dx

Note: the term “inner product space” from now on refers to either real or complex inner
product space.

8.16 Theorem (Cauchy-Schwarz-Buniakowsky inequality)
Let V be an inner product space. Then

|〈u, v〉| ≤ 〈u, u〉1/2〈v, v〉1/2

for all u, v ∈ V .
The equality holds if and only if {u, v} is linearly dependent.

Proof. We do it in the complex case. Assume that v 6= 0. Consider the function

f(z) = 〈u− zv, u− zv〉
= 〈u, u〉 − z〈v, u〉 − z̄〈u, v〉+ |z|2〈v, v〉

of a complex variable z. Let z = reiθ and 〈u, v〉 = seiϕ be the polar forms of the numbers
z and 〈u, v〉. Set θ = ϕ and assume that r varies from −∞ to ∞, then

0 ≤ f(z) = 〈u, u〉 − 2sr + r2〈v, v〉

Since this holds for all r ∈ IR (also for r < 0, because the coefficients are all nonnegative),
the discriminant has to be ≤ 0, i.e. s2 − 〈u, u〉〈v, v〉 ≤ 0. This completes the proof in
the complex case. It the real case it goes even easier, just assume z ∈ IR. The equality
case in the theorem corresponds to the zero discriminant, hence the above polynomial
assumes a zero value, and hence u = zv for some z ∈ C|| . (We left out the case v = 0, do
it yourself as an exercise.) 2

8.17 Theorem + Definition (Induced norm)
If V is an inner product vector space, then ||v|| := 〈v, v〉1/2 defines a norm on V . It

is called the induced norm.

To prove the triangle inequality, you will need 8.16.

8.18 Example
The inner products in Examples 8.12(i) and 8.15(i) induce the 2-norm on IRn and C|| n,

respectively.
The inner products in Examples 8.12(ii) and 8.15(ii) induce the 2-norm on the spaces

C[a, b] of real and complex functions, respectively.
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8.19 Theorem
Let V be a real vector space with norm || · ||. The norm || · || is induced by an inner

product if and only if the function

〈u, v〉 :=
1

4

(
||u + v||2 − ||u− v||2

)
(polarization identity)

satisfies the definition of an inner product. In this case || · || is induced by the above inner
product.

Note: A similar but more complicated polarization identity holds in complex inner prod-
uct spaces.
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9 Orthogonal vectors

In this section, V is always an inner product space (real or complex).

9.1 Definition (Orthogonal vectors)
Two vectors u, v ∈ V are said to be orthogonal if 〈u, v〉 = 0.

9.2 Example
(i) The canonical basis vectors e1, . . . , en in IRn or C|| n with the standard inner product

are mutually (i.e., pairwise) orthogonal.
(ii) Any vectors u = (u1, . . . , uk, 0, . . . , 0) and v = (0, . . . , 0, vk+1, . . . , vn) are orthog-

onal in IRn or C|| n with the standard inner product.
(iii) The zero vector 0 is orthogonal to any vector.

9.3 Theorem (Pythagoras)
If 〈u, v〉 = 0, then ||u + v||2 = ||u||2 + ||v||2.

Inductively, it follows that if u1, . . . , uk are mutually orthogonal, then

||u1 + · · ·+ uk||2 = ||u1||2 + · · ·+ ||uk||2

9.4 Theorem
If nonzero vectors u1, . . . , uk are mutually orthogonal, then they are linearly indepen-

dent.

9.5 Definition (Orthogonal/Orthonormal basis)
A basis {ui} in V is said to be orthogonal, if all the basis vectors ui are mutually

orthogonal. If, in addition, all the basis vectors are unit (i.e., ||ui|| = 1 for all i), then
the basis is said to be orthonormal, or an ONB.

9.6 Theorem (Fourier expansion)
If B = {u1, . . . , un} is an ONB in a finite dimensional space V , then

v =
n∑

i=1

〈v, ui〉ui

for every v ∈ V , i.e. ci = 〈v, ui〉 are the coordinates of the vector v in the basis B. One
can also write this as [v]tB = (〈v, u1〉, . . . , 〈v, un〉).

Note: the numbers 〈v, ui〉 are called the Fourier coefficients of v in the ONB {u1, . . . , un}.

For example, in IRn or C|| n with the standard inner product, the coordinates of any vector
v = (v1, . . . , vn) satisfy the equations vi = 〈v, ei〉.
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9.7 Definition (Orthogonal projection)
Let u, v ∈ V , and v 6= 0. The orthogonal projection of u onto v is

Prvu =
〈u, v〉
||v||2

v

Note that the vector w := u − Prvu is orthogonal to v. Therefore, u is the sum of two
vectors, Prvu parallel to v, and w orthogonal to v (see the diagram below).

Figure 1: Orthogonal projection of u to v
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��*

-?
θ

u

v||u|| cos θ · (v/||v||)

9.8 Definition (Angle)
In the real case, for any nonzero vectors u, v ∈ V let

cos θ =
〈u, v〉
||u|| ||v||

By 8.16, we have cos θ ∈ [−1, 1]. Hence, there is a unique angle θ ∈ [0, π] with this value
of cosine. It is called the angle between u and v.

Note that cos θ = 0 if and only if u and v are orthogonal. Also, cos θ = ±1 if and only if
u, v are proportional, v = cu, then the sign of c coincides with the sign of cos θ.

9.9 Theorem
Let B = {u1, . . . , un} be an ONB in a finite dimensional space V . Then

v =
n∑

i=1

Prui
v =

n∑
i=1

ui cos θi

where θi is the angle between ui and v.
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9.10 Theorem (Gram-Schmidt)
Let nonzero vectors w1, . . . , wm be mutually orthogonal. For v ∈ V , set

wm+1 = v −
n∑

i=1

Prwi
v

Then the vectors w1, . . . , wm+1 are mutually orthogonal, and

span{w1, . . . , wm, v} = span{w1, . . . , wm, wm+1}

In particular, wm+1 = 0 if and only if y ∈ span{w1, . . . , wm}.

9.11 Algorithm (Gram-Schmidt orthogonalization)
Let {v1, . . . , vn} be a basis in V . Define

w1 = v1

and then inductively, for m ≥ 1,

wm+1 = vm+1 −
m∑

i=1

Prwi
vm+1

= vm+1 −
m∑

i=1

〈vm+1, wi〉
||wi||2

wi

This gives an orthogonal basis {w1, . . . , wn}, which ‘agrees’ with the basis {v1, . . . , vn} in
the following sense:

span{v1, . . . , vm} = span{w1, . . . , wm}

for all 1 ≤ m ≤ n.
The basis {w1, . . . , wn} can be normalized by ui = wi/||wi|| to give an ONB {u1, . . . , un}.

Alternatively, an ONB {u1, . . . , un} can be obtained directly by

w1 = u1 u1 = w1/||w1||

and inductively for m ≥ 1

wm+1 = vm+1 −
m∑

i=1

〈vm+1, ui〉ui um+1 = wm+1/||wm+1||

9.12 Example
Let V = Pn(IR) with the inner product given by 〈f, g〉 =

∫ 1
0 f(x)g(x) dx. Applying

Gram-Schmidt orthogonalization to the basis {1, x, . . . , xn} gives the first n+1 of the so
called Legendre polynomials.
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9.13 Corollary
Let W ⊂ V be a finite dimensional subspace of an inner product space V , and

dim W = k. Then there is an ONB {u1, . . . , uk} in W . If, in addition, V is finite di-
mensional, then the basis {u1, . . . , uk} of W can be extended to an ONB {u1, . . . , un} of V .

9.14 Definition (Orthogonal complement)
Let S ⊂ V be a subset (not necessarily a subspace). Then

S⊥ := {v ∈ V : 〈v, w〉 = 0 for all w ∈ S}

is called the orthogonal complement to S.

9.15 Theorem
S⊥ is a subspace of V . If W = span S, then W⊥ = S⊥.

9.16 Example
If S = {(1, 0, 0)} in IR3, then S⊥ = span{(0, 1, 0), (0, 0, 1)}.
Let V = C[a, b] (real functions) with the inner product from 8.12(ii). Let S = {f ≡

const} (the subspace of constant functions). Then S⊥ = {g :
∫ b
a g(x) dx = 0}. Note that

V = S ⊕ S⊥, see 1.34(b).

9.17 Theorem
If W is a finite dimensional subspace of V , then

V = W ⊕W⊥

Proof. By 9.13, there is an ONB {u1, . . . , uk} of W . For any v ∈ V the vector

v −
k∑

i=1

〈v, ui〉ui

belongs in W⊥. Hence, V = W + W⊥. The linear independence of W and W⊥ follows
from 9.4. 2

Note: the finite dimension of W is essential. Let V = C[a, b] with the inner product from
8.12(ii) and W ⊂ V be the set of real polynomials restricted to the interval [a, b]. Then
W⊥ = ∅, and at the same time V 6= W .

9.18 Theorem (Parceval’s identity)
Let B = {u1, . . . , un} be an ONB in V . Then

〈v, w〉 =
n∑

i=1

〈v, ui〉〈w, ui〉 = [v]tB[w]B = [w]tB[v]B
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for all v, w ∈ V . In particular,

||v||2 =
n∑

i=1

|〈v, ui〉|2 = [v]tB[v]B

Proof. Follows from 9.6. 2

9.19 Theorem (Bessel’s inequality)
Let {u1, . . . , un} be an orthonormal subset of V . Then

||v||2 ≥
n∑

i=1

|〈v, ui〉|2

for all v ∈ V .

Proof. For any v ∈ V the vector

w := v −
n∑

i=1

〈v, ui〉ui

belongs in {u1, . . . , un}⊥. Hence,

||v||2 = ||w||2 +
n∑

i=1

|〈v, ui〉|2

9.20 Definition (Isometry)
Let V, W be two inner product spaces (both real or both complex). An isomorphism

T : V → W is called an isometry if it preserves the inner product, i.e.

〈Tv, Tw〉 = 〈v, w〉

for all v, w ∈ V . In this case V and W are said to be isometric.

Note: it can be shown by polarization identity that T : V → W preserves inner product
if and only if T preserves the induced norms, i.e. ||Tv|| = ||v|| for all v ∈ V .

9.21 Theorem Let dim V < ∞. A linear transformation T : V → W is an isometry if
and only if whenever {u1, . . . , un} is an ONB in V , then {Tu1, . . . , Tun} is an ONB in W .

9.22 Corollary Finite dimensional inner product spaces V and W (over the same field)
are isometric if and only if dim V = dim W .

9.23 Example
Let V = IR2 with the standard inner product. Then the maps defined by matrices

A1 =

(
0 1
1 0

)
and A2 =

(
1 0
0 −1

)
are isometries of IR2.
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10 Orthogonal/Unitary Matrices

10.1 Definition
If V is a real inner product space, then isometries V → V are called orthogonal op-

erators. If V is a complex inner product space, then isometries V → V are called an
unitary operators.

Note: If U1, U2 : V → V are unitary operators, then so are U1U2 and U−1
1 , U−1

2 . Thus,
unitary operators form a group, denoted by U(V ) ⊂ GL(V ). Similarly, orthogonal oper-
ators on a real inner product space V make a group O(V ) ⊂ GL(V ).

10.2 Definition.
A real n × n matrix Q is said to be orthogonal if QQt = I, i.e. Q is invertible and

Q−1 = Qt. A complex n×n matrix U is said to be unitary if UUH = I, where UH = (Ū)t

is the Hermitian transpose of U .

Note: If Q is orthogonal, then also QtQ = I, and so Qt is an orthogonal matrix as well.
If U is unitary, then also UHU = I, and so UH is a unitary matrix, too. In the latter
case, we also have ŪU t = I and U tŪ = I.

10.3 Theorem
(i) The linear transformation in IRn defined by a matrix Q ∈ IRn×n preserves the

standard (Euclidean) inner product if and only if Q is orthogonal.
(ii) The linear transformation in C|| n defined by a matrix U ∈ C|| n×n preserves the

standard (Hermitian) inner product if and only if U is unitary.

Proof. In the complex case: 〈Ux, Uy〉 = (Ux)tUy = xtU tŪ ȳ = xtȳ = 〈x, y〉. The real
case is similar. 2

10.4 Theorem
(i) An operator T : V → V of a finite dimensional complex space V is unitary iff the

matrix [T ]B is unitary in any ONB B.
(ii) An operator T : V → V of a finite dimensional real space V is orthogonal iff the

matrix [T ]B is orthogonal in any ONB B.

10.5 Corollary
Unitary n× n matrices make a group, denoted by U(n). Orthogonal n× n matrices

make a group, denoted by O(n).

10.6 Theorem
(i) A matrix U ∈ C|| n×n is unitary iff its columns (resp., rows) make an ONB of C|| n.
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(ii) A matrix Q ∈ IRn×n is orthogonal iff its columns (resp., rows) make an ONB of IRn.

10.7 Theorem
If Q is orthogonal, then det Q = ±1. If U is unitary, then |det U | = 1, i.e. det U = eiθ

for some θ ∈ [0, 2π] .

Proof. In the complex case: 1 = det I = det UHU = det Ū t·det U = | det U |2. The real
case is similar. 2

Note: Orthogonal matrices have determinant 1 or −1. Orthogonal n × n matrices with
determinant 1 make a subgroup of O(n), denoted by SO(n).

10.8 Example

The orthogonal matrix Q =

(
cos θ − sin θ
sin θ cos θ

)
represents the counterclockwise rota-

tion of IR2 through the angle θ.

10.9 Theorem
If λ is an eigenvalue of an orthogonal or unitary matrix, then |λ| = 1. In the real case

this means λ = ±1.

Proof. If Ux = λx for some x 6= 0, then 〈x, x〉 = 〈Ux, Ux〉 = 〈λx, λx〉 = |λ|2〈x, x〉, so
that |λ|2 = 1. 2

10.10 Theorem
Let T : V → V be an isometry of a finite dimensional space V . If a subspace W ⊂ V

is invariant under T , then so is its orthogonal complement W⊥.

10.11 Theorem
Any unitary operator T of a finite dimensional complex space is diagonalizable. Fur-

thermore, there is an ONB consisting of eigenvectors of T . Any unitary matrix is diago-
nalizable.

Proof goes by induction on the dimension of the space, use 10.10. 2

10.12 Theorem
Let T : V → V be an orthogonal operator on a finite dimensional real space V . Then

V = V1 ⊕ · · · ⊕ Vm, where Vi are mutually orthogonal subspaces, each Vi is a T -invariant
one- or two-dimensional subspace of V .

Proof. If T has an eigenvalue, we can use 10.10 and reduce the dimension of V by
one. Assume now that T has no eigenvalues. The characteristic polynomial CT (x) has
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real coefficients and no (real) roots, so its roots are pairs of conjugate complex numbers
(because CT (z) = 0 ⇔ CT (z̄) = 0). So, CT (x) is a product of quadratic polynomials
with no real roots: CT (x) = P1(x) · · ·Pk(x), where deg Pi(x) = 2. By Cayley-Hamilton,

CT (T ) = P1(T ) · · ·Pk(T ) = 0

Hence, at least one operator Pi(T ), 1 ≤ i ≤ k, is not invertible (otherwise CT (T ) would
be invertible). Let Pi(x) = x2 + ax + b. Then the operator T 2 + aT + bI has a nontrivial
kernel, i.e. T 2v + aTv + bv = 0 for some vectror v 6= 0. Let w = Tv (note that w 6= 0,
since the operator T is an isometry). We get Tw + aw + bv = 0, so that

Tv = w and Tw = −aw − bv

Hence, the subspace span{v, w} is invariant under T . It is two-dimensional, since v and
w are linearly independent (otherwise Tv = w = λv, and λ would be an eigenvalue of
T ). Now we can use 10.10 and reduce the dimension of V by two. 2
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