
MA 645-4A (Real Analysis), Dr. Chernov Midterm test
Full credit for 5 problems. Thu, Oct 26, 2006

1. Suppose f ∈ L1
µ(R), where µ is the Lebesgue measure on R. Is it true that

limx→∞ f(x) = 0? (Prove or give a counterexample.)

Answer: this is false. A counterexample:

f(x) =

{
1 if x ∈ [n, n + 1/n2] for some n ∈ N
0 otherwise

A more trivial example:

f(x) =

{
1 if x ∈ Q
0 otherwise



2. Does there exist a nonmeasurable (with respect to the Lebesgue σ-algebra) set
A ⊂ R such that the set

B = {x ∈ A : x is irrational}

is Lebesgue measurable?

Answer: no. Indeed, if B is measurable, then A is measurable, too, because

A = B ∪ (A ∩Q).

Note: A ∩Q is a finite or countable set (hence automatically measurable).



3. Let f : [0, 1] → [0,∞). Suppose

lim
n→∞

∫
[0,1]

fn dµ

exists and is finite. Prove that µ
(
{x : f(x) > 1}

)
= 0, where µ is the Lebesgue measure.

Proof: let A =
(
{x : f(x) > 1}

)
> 0. Then {fn} is a monotonically increasing

sequence of functions on A that converges to infinity. Thus by the Lebesgue monotone
convergence theorem

lim
n→∞

∫
A

fn dµ =

∫
A

∞ dµ = ∞ · µ(A).

On the other hand,

lim
n→∞

∫
A

fn dµ ≤ lim
n→∞

∫
[0,1]

fn dµ < ∞.

Thus µ(A) = 0.



4. Let

A =
{

x ∈ [0, 1] :
∣∣∣x− p

q

∣∣∣ <
1

q3
for infinitely many p, q ∈ N

}
.

Show that µ(A) = 0, where µ is the Lebesgue measure on R. (Hint: use the analogue of
the Borel-Cantelli lemma.)

Proof: denote

Ap,q =
{

x ∈ [0, 1] :
∣∣∣x− p

q

∣∣∣ <
1

q3

}
.

Note that µ(Ap,q) = 2/q3, and 0 ≤ p ≤ q. Thus

∑
p,q

µ(Ap,q) ≤
∞∑

q=1

2(q + 1)

q3
≤

∞∑
q=1

4

q2
< ∞,

so the claim follows from the analogue of the Borel-Cantelli lemma.



5. Let f : R → [0,∞) and fn : R → [0,∞) for n = 1, 2, . . .. Assume that f ∈ L1 and
fn ∈ L1 for every n. Assume that fn → f pointwise on R and∫

R
fn dµ →

∫
R

f dµ

as n →∞. Use Fatou’s lemma to show that∫
E

fn dµ →
∫

E

f dµ

for every Lebesgue measurable set E ⊂ R.

Proof. By Fatou’s lemma

lim inf
n→∞

∫
E

fn dµ ≥
∫

E

lim inf
n→∞

fn dµ =

∫
E

f dµ

Since ∫
Ec

fn dµ =

∫
R

fn dµ−
∫

E

fn dµ,

we conclude that

lim sup
n→∞

∫
Ec

fn dµ ≤
∫

R
f dµ−

∫
E

f dµ =

∫
Ec

f dµ.

On the other hand, by Fatou’s lemma applied to Ec

lim inf
n→∞

∫
Ec

fn dµ ≥
∫

Ec

lim inf
n→∞

fn dµ =

∫
Ec

f dµ.

This implies

lim
n→∞

∫
Ec

fn dµ =

∫
Ec

f dµ

for any measurable E ⊂ R.



6. Construct a sequence of functions fn : [0, 1] → [0, 1] such that

lim
n→∞

∫
[0,1]

fn dµ = 0

(here µ is the Lebesgue measure), and yet the sequence {fn(x)}∞n=1 converges for no
x ∈ [0, 1].

For n ∈ N, denote

Sn =
n∑

i=1

1

i
.

Note that Sn →∞ as n →∞.
Let h : [0,∞) → [0, 1) be the ‘fractional part’ function:

h(x) = {x} = x− [x].

Define functions fn : [0,∞) → R by

fn(x) =

{
1 if x ∈ [h(Sn−1), h(Sn)]
0 otherwise

with understanding that if h(Sn−1) > h(Sn), then

fn(x) =

{
1 if x ∈ [h(Sn−1), 1] ∪ [0, h(Sn)]
0 otherwise

Then ∫
[0,1]

fn dµ =
1

n
→ 0.

At the same time, since Sn → ∞ as n → ∞, for every x ∈ [0, 1) there exists infinitely
many n’s such that fn(x) = 1 (as well as infinitely many m’s such that fm(x) = 0).

The point x = 1 is not covered by the above analysis, so we can simply set fn(1) = 0
for odd n’s and fn(1) = 1 for even n’s (this will not affect the values of the integrals).


