
MA 645-2F (Real Analysis), Dr. Chernov Midterm test
Full credit for 5 problems. Thu, Oct 4, 2012

1. (a) Let M1 denote the Lebesgue σ-algebra in R and M2 the Lebesgue σ-algebra in
R2. Suppose A ⊂ R is a non-measurable set, i.e., A /∈ M1. Is the set

B = {(x, y) : x ∈ A, y = 1}

measurable in R2, i.e., is it true that B ∈ M2?

(b) Describe all the sets A ⊂ R such that the set

B = {(x, y) : x ∈ A, y = 1}

is measurable in R2, i.e., B ∈ M2.

Solution: The set B is a subset of the line L = {y = 1}. Every line has Lebesgue
measure zero in R2. This can be stated without proof, as you learned in Calculus-III
that every line (as well as every curve) has no area (its area is zero), and the Lebesgue
measure generalizes the concept of area.

Alternatively, you can prove that m(L) = 0, where m denotes the Lebesgue measure
in R2, as follows. Every line L is a countable union of line segments, L = ∪∞n=1In, where In

is a segment of the line L (i.e., the length of In is finite). Then m(In) = 0, as was shown in
one of the homework exercises. Now by the σ-subadditivity m(L) ≤

∑
m(In) =

∑
0 = 0.

The Lebesgue measure m in R2 is complete, so every subset of a set of measure zero
is measurable. Thus B ∈ M2.

Part (b): it is now clear that any subset A ⊂ R has the claimed property.



2. (a) Let (X,M, µ) be a measure space. Suppose An, n ≥ 1, are full measure sets.
Prove that A = ∩∞n=1An is a full measure set.

(b) Let (X, M, µ) be a measure space. Denote by M0 the collection of all null sets and
all full measure sets in X. Prove that M0 is a σ-algebra.

Solution:
Note that by definition A is a full measure set iff Ac is a null set, i.e., µ(Ac) = 0. It is

not correct to say that A is a full measure set iff µ(A) = µ(X). This would be only true
if µ(X) < ∞. If µ(X) = ∞, then not every set A ⊂ X with µ(A) = ∞ is a full measure
set. Example: X = R, µ is the Lebesgue measure, and A is a set of positive real numbers.

(a) We have µ(Ac
n) = 0 for every n ≥ 0. Also recall that Ac =

(
∩∞n=1An

)c
= ∪∞n=1A

c
n.

Now by the σ-subadditivity

µ
(
∪∞n=1A

c
n

)
≤

∞∑
n=1

µ(Ac
n) =

n∑
n=1

0 = 0,

hence µ(Ac) = 0. Therefore A is a full measure set.

(b) [This was graded as a bonus question.] A σ-algebra must contain X, ∅ and be
closed under countable unions and complements. Obviously, ∅ is a null set and X is a
full measure set. A complement of a null set is a full measure set and vice versa. Now
consider a countable union B = ∪Bn of sets Bn that are either null sets or full measure
sets. If at least one Bn is a full measure set, then note that their union B will contain
Bn (i.e., B ⊃ Bn), hence B will also be a full measure set. Lastly, if all Bn’s are null
sets, then as we have shown in part (a), their union will be a null set.



3. Let (X, M) be a measurable space and fn : X → [−∞,∞] are measurable functions
for n ≥ 1. Prove that the set

E = {x ∈ X : lim
n→∞

fn(x) exists and is finite}

is measurable, i.e., E ∈ M.

Solution:
Let

g(x) = lim sup
n→∞

fn(x)

and
h(x) = lim inf

n→∞
fn(x).

We know that both functions g(x) and h(x) are measurable. Also recall that limn→∞ fn(x)
exists if and only if g(x) = h(x).

Now the set
E ′ = {x ∈ X : g(x) = h(x)}

is measurable, as it was proved in a homework exercise. Lastly,

E = E ′ \ {x ∈ X : g(x) = ±∞}.

The last set is obviously measurable, so E is measurable, too.



4. Let m denote the Lebesgue measure on R. Suppose f : R → [0,∞) is a continuous

function such that f ∈ L1
m(R). Is it true that limx→∞

f(x)
x10 = 0? (Prove or give a coun-

terexample.)

Solution:
A typical mistake is to argue as follows: assume (by way of contradiction) that

limx→∞
f(x)
x10 6= 0... This of quickly leads to a contradiction. But this DOES NOT prove

that limx→∞
f(x)
x10 = 0. Why not? Because the limit may not even exist!

A counterexample is any function f(x) ≥ 0 that is very close to zero (or is zero) most
of the time but occasionally surges high up and quickly drops down to zero (its graph
has very narrow and very high “bumps”). A rough sketch would be enough to get good
partial credit.

A formal example can be presented as follows:

f(x) =
∞∑

n=1

n11χ[n,n+n−13]

The factor n11 ensures that the “bumps” are high enough for the limx→∞
f(x)
x10 to fail to

exist (in fact, the corresponding lim sup would be infinite). The widths of the bumps,
n−13, are selected so that the area under the nth bump is n−2. Since the series

∑∞
n=1 n−2

converges, we have f ∈ L1
m(R).

In the above example f(x) is a discontinuous function, but it is good enough for you
to get full credit... To make f(x) continuous, you can just replace rectangular bumps
with triangular bumps or trapezoidal bumps, etc.



5. Let f : R → [0,∞] be a measurable and bounded function. Is it always true that∫
R

f dm = inf

∫
R

s dm

where the infimum is taken over all simple measurable functions s : R → [0,∞] such that
f ≤ s? Prove or give a counterexample. Justify your conclusions.
(Here again m denotes the Lebesgue measure on R.)

Solution:
This would be true if the measure of the whole space was finite. But here it is infinite:

m(R) = ∞, so the claim is not always true.
A counterexample is any bounded function f(x) ∈ L1

m(R) such that f(x) > 0 for
all x ∈ R. For example, f(x) = e−x2

or f(x) = 1
1+x2 , which you might remember from

Calculus or Probability Theory. If you do not remember any, you can construct f as
follows:

f =
∞∑

n=−∞

2−|n| χ[n,n+1)

For this function we have ∫
R

f dm =
∞∑

n=−∞

2−|n| = 3 < ∞

Now since f(x) > 0 for all x ∈ R, then any simple function s ≥ f must also be positive
everywhere, so that in the representation

s =
n∑

i=1

αiχAi

all the values αi are positive: αi > 0 for all i = 1, . . . , n. At the same time at least one
subset Ai0 must have infinite measure, i.e., m(Ai0) = ∞. Therefore∫

s dm =
n∑

i=1

αim(Ai) ≥ αi0m(Ai0) = ∞

for every simple function s ≥ f . Thus we have inf
∫

R s dm = ∞, while
∫

R f dm < ∞.



6. Let m denote the Lebesgue measure on R and E = [−1, 1]. Find the limit

lim
n→∞

∫
E

cos xn dm.

Provide a rigorous proof with careful justification at all steps.

Solution:
For all x ∈ (−1, 1) we have

lim
n→∞

xn = 0.

Since cos is a continuous function, we have

lim
n→∞

cos xn = cos 0 = 1.

At the point x = 1 we have limn→∞ xn = 1 and at the point x = −1 the limit of xn

does not exist. But the two-point set {1,−1} has measure zero, so it does not affect the
values of our integrals and can be ignored (the “almost everywhere” principle). Thus we
can work on the open interval E ′ = (−1, 1).

Note that | cos xn| ≤ g(x) = 1 and∫
E′
|g(x)| dm = 1× |E ′| = 2

therefore g ∈ L1
m(E ′). By the Lebesgue Dominated Convergence Theorem

lim
n→∞

∫
E′

cos xn dm =

∫
E′

lim
n→∞

cos xn dm =

∫
E′

1 dm = 2.


