1 (Due 9/5). Prove that every countable set $A \subset X$ is measurable and $\mu(A) = 0$.

2 (Bonus). Let $A \subset X$ consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due 9/5). Prove that every open set $A \subset X$ is measurable (hint: represent it by a countable union of rectangles). Prove that every closed set $A \subset X$ is measurable.

4 (Due 9/14). Let \mathfrak{L} denote the set of all Lebesgue measurable sets (in \mathbb{R}). Prove that card(\mathfrak{L}) > \mathfrak{C} .

5 (Due 9/14). Let \mathfrak{U} denote the set of all open subsets $U \subset \mathbb{R}$. Prove that $\operatorname{card}(\mathfrak{U}) = \mathfrak{C}$. Do the same for open sets in \mathbb{R}^2 .

6 (Due 9/14). Let $X = \{1, 2, 3\}$. Construct all σ -algebras of X.

7 (Due 9/14). Let X = [0, 1] and \mathfrak{G} consist of all one-point sets, i.e. $\mathfrak{G} = \{\{x\}, x \in X\}$. Describe the σ -algebra $\mathfrak{M}(\mathfrak{G})$.

8 (Due 9/14). Show that every Borel set in \mathbb{R} is Lebesgue measurable, but not vice versa.

9 (Bonus). Does there exist an infinite σ -algebra which has only countably many members?

10 (Due 9/14). Show that the assumption $\mu(A_1) < \infty$ in Theorem 2.10 is indispensable. Hint: consider the counting measure on \mathbb{N} and take sets $A_n = \{n, n+1, \ldots\}$.

11 (Due 9/14). Let $X \subset \mathbb{R}^2$ be a rectangle. Verify that the collection of all subrectangles $R \subset X$ is a semi-algebra.

12 (Due 9/21). Prove that $A \in \mathfrak{M}$ if and only if χ_A is measurable.

13 (Due 9/21). Let (X, \mathfrak{M}) be a measurable space and $f: X \to [-\infty, \infty]$. Prove that f is measurable iff $f^{-1}([-\infty, x])$ is a measurable set for every $x \in \mathbb{R}$. 14 (Due 9/21). Let (X, \mathfrak{M}) be a measurable space and $f: X \to [-\infty, \infty]$. Prove that f is measurable iff $f^{-1}([-\infty, x])$ is a measurable set for every rational $x \in \mathbb{Q}$.

15 (Bonus). Let (X, \mathfrak{M}) be a measurable space and $f: X \to [-\infty, \infty]$ and $g: X \to [-\infty, \infty]$ two measurable functions. Prove that the sets

$$\{x: f(x) < g(x)\}$$
 and $\{x: f(x) = g(x)\}$

are measurable.

16 (Due 9/26). Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

is a Borel function.

17 (Due 9/26). Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is a Borel function.

18 (Bonus). Let $f: \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function, i.e. $f(x_1) \leq f(x_2)$ for $x_1 \leq x_2$. Show that f is a Borel function.

19 (Due 10/3). Let $x_0 \in X$ and $\mu = \delta_{x_0}$ the δ -measure. Assume that $\{x_0\} \in \mathfrak{M}$. Show that for every measurable function $f: X \to [0, \infty]$ we have

$$\int_X f \, d\mu = f(x_0).$$

20 (Due 10/3). Let $X = \mathbb{N}$ and μ the counting measure on the σ -algebra $\mathfrak{M} = 2^{\mathbb{N}}$. Show that for every function $f: X \to [0, \infty]$ we have

$$\int_X f \, d\mu = \sum_{n=1}^\infty f(n).$$

21 (Due 10/3). Let $f: X \to [0, \infty]$ and $\int_X f d\mu = 0$. Show that $\mu\{x: f(x) \neq 0\} = 0$.

22 (Due 10/3). Let $E \subset X$ be such that $\mu(E) > 0$ and $\mu(E^c) > 0$. Put $f_n = \chi_E$ if n is odd and $f_n = 1 - \chi_E$ if n is even. What is the relevance of this example to Fatou's lemma?

23 (Due 10/3). Construct an example of a sequence of nonnegative measurable functions $f_n: X \to [0, \infty)$ such that $f(x) = \lim_{n \to \infty} f_n(x)$ exists pointwise, but

$$\int_X f \, d\mu < \liminf_{n \to \infty} \int_X f_n \, d\mu.$$

24 (Due 10/5). Let $f, g \in L^1(\mu)$ be real-valued functions and $f \leq g$. Show that

$$\int_X f \, d\mu \le \int_X g \, d\mu.$$

25 (Due 10/5). Let $f_n: X \to [0, \infty]$ be a sequence of measurable functions such that $f_1 \ge f_2 \ge \cdots \ge 0$ and $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in X$. Suppose $f_1 \in L^1(\mu)$. Show that

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$$

26 (Due 10/10). Let f be a function as above. Fix a $y \in Y$ and define

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \in X \setminus N \\ y & \text{if } x \in N \end{cases}$$

Show that $\tilde{f}: X \to Y$ is measurable.

27 (Due 10/10). Let f be a function as above and μ a complete measure. Show that

•

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \in X \setminus N \\ \text{any point of } Y & \text{if } x \in N \end{cases}$$

Show that $\tilde{f}: X \to Y$ is measurable.

28 (Due 10/10). Suppose $\mu(X) < \infty$. Let a sequence $\{f_n\}$ of bounded complex measurable functions uniformly converge to f on X. Prove that $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$. Show that the assumption $\mu(X) < \infty$ cannot be omitted.

29 (Due 10/10). Give an example of a sequence of complex measurable functions $f_n: X \to \mathbb{C}$ (i.e., defined on the entire X) such that

$$\sum_{n=1}^{\infty} \int_{X} |f_n| \, d\mu < \infty$$

but the series $f(x) = \sum_{n=1}^{\infty} f_n$ diverges for some $x \in X$.

30 (Due 10/12). Suppose $\mu(X) < \infty$ and f_n are measurable functions defined a.e. on X. Prove that if $f_n \to f$ a.e. on X, then $f_n \to f$ in measure. What happens if $\mu(X) = \infty$?

31 (Due 10/12). In Theorem 4.26, let A be the set of points which belong to infinitely many of the sets E_k . Show that

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

Use this fact to prove the theorem without any reference to integration. Hint: recall that every measure μ is countably subbaditive, i.e. for any $E_n \in \mathfrak{M}$ (not necessarily disjoint) $\mu(\cup E_n) \leq \sum \mu(E_n)$.

32 (Bonus). Prove that if $f_n \to f$ in measure, then there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $f_{n_k} \to f$ a.e. on X. Hint: use Theorem 4.26.

33 (Bonus). Suppose $f \in L^1(\mu)$. Prove that $\forall \varepsilon > 0 \exists \delta > 0$ such that $\int_E |f| d\mu < \varepsilon$ whenever $\mu(E) < \delta$.

34 (Due 10/19). Show that the counting measure on \mathbb{R}^k is not regular.

35 (Due 10/19). Find examples of Lebesgue measurable sets $E_1, E_2 \subset \mathbb{R}$ such that

$$\mu(E_1) < \inf\{\mu(A) \colon E \subset A, A \text{ closed}\}$$
$$\mu(E_2) > \sup\{\mu(V) \colon V \subset E, V \text{ open}\}.$$

36 (Due 10/19). Extend this theorem to \mathbb{R}^2 : show that if μ^* is a translation invariant Borel measure on \mathbb{R}^2 such that $\mu(R) < \infty$ for at least one open rectangle $R \neq \emptyset$, then there exists a constant c such that $\mu^*(E) = c\mu(E)$ for every Borel set E.

37 (Bonus). Let $f: \mathbb{R} \to [0, \infty]$ be a Borel function, $f \in L^1(\mu)$, and consider the measure $\rho(E) = \int_E f \, d\mu$, where μ is the Lebesgue measure. Prove that ρ is regular. Hint: use the result of Exercise 33. 38 (Due 11/2). Let $s: [a, b] \to \mathbb{R}$ be a simple Lebesgue measurable function. Show that for every $\varepsilon > 0$ there is a step function $\varphi: [a, b] \to \mathbb{R}$ and a Lebesgue measurable set $E \subset [a, b]$ such that $s(x) = \varphi(x)$ on E and $\mu([a, b] \setminus E) < \varepsilon$. Hint: use the regularity of μ .

39 (Due 11/2). Let $f: [a, b] \to \mathbb{R}$ be a Lebesgue measurable function. Show that for every $\varepsilon > 0$ there is a step function $g: [a, b] \to \mathbb{R}$ such that

$$\mu \{ x \in [a, b] \colon |f(x) - g(x)| \ge \varepsilon \} < \varepsilon.$$

Hint: first show that $|f| \leq M$ except for a set of small measure, then use the previous exercise.

40 (Bonus). Let $f \in L^1$ with respect to the Lebesgue measure μ on \mathbb{R} . Prove that there is a sequence $\{g_n\}$ of step functions such that

$$\lim_{n \to \infty} \int_{\mathbb{R}} |f - g_n| \, d\mu = 0.$$

Hint: use the previous exercise.

41 (Due 11/2). Prove that if $f: X \to \mathbb{R}$ is upper (lower) semicontinuous and X is compact, then f is bounded above (below) and attains its maximum (minimum).

42 (Due 11/9). Find a function f(x) on $[0, \infty)$ such that the improper Riemannian integral $\int_0^\infty f(x) dx = \lim_{A\to\infty} \int_0^A f(x) dx$ exists (is finite), but f is not Lebesgue integrable.

43 (Due 11/14). Prove that the supremum of any collection of convex functions on (a, b) is convex on (a, b) (assume that the supremum is finite). Prove that a pointwise limit of a sequence of convex functions is convex.

44 (Due 11/14). Let φ be convex on (a, b) and ψ convex and nondecreasing on the range of φ . Prove that $\psi \circ \varphi$ is convex on (a, b). For $\varphi > 0$, show that the convexity of $\log \varphi$ implies the convexity of φ , but not vice versa.

45 (Bonus). Assume that φ is a continuous real function on (a, b) such that

$$\varphi\left(\frac{x+y}{2}\right) \le \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(y)$$

for all $x, y \in (a, b)$. Prove that φ is convex. (The conclusion does not follow if continuity is omitted from the hypotheses.)

46 (Due 11/21). Prove that equality in the Minkowski inequality holds if and only if there exist $\alpha, \beta \geq 0$, not both equal to 0, such that $\alpha f = \beta g$ a.e.

47 (Due 11/21). Suppose $\mu(\Omega) = 1$ and suppose f and g are two positive measurable functions on Ω such that $fg \ge 1$. Prove that

$$\int_{\Omega} f \, d\mu \cdot \int_{\Omega} g \, d\mu \ge 1.$$

48 (Due 11/21). Suppose $\mu(\Omega) = 1$ and $h: \Omega \to [0, \infty]$ is measurable. Denote $A = \int_{\Omega} h \, d\mu$. Prove that

$$\sqrt{1+A^2} \le \int_{\Omega} \sqrt{1+h^2} \, d\mu \le 1+A.$$

49 (Bonus). If μ is Lebesgue measure on [0, 1] and if h is a continuous function on [0, 1] such that h = f', then the inequalities in the previous exercise have a simple geometric interpretation. From this, conjecture (for general Ω) under what conditions on h equality can hold in either of the above inequalities, and prove your conjecture.

- 50 (Due 11/28). When does one get equality in $||fg||_1 \le ||f||_{\infty} ||g||_1$?
- 51 (Due 11/28). Suppose $f: X \to \mathbb{C}$ is measurable and $||f||_{\infty} > 0$. Define

$$\varphi(p) = \int_X |f|^p \, d\mu = ||f||_p^p \qquad (0$$

and consider the set $E = \{p: \varphi(p) < \infty\}$. Each of the following questions is graded as a separate exercise. Question (c) and (e) are **bonus** problems.

- (a) Let $r and <math>r, s \in E$. Prove that $p \in E$.
- (b) Prove that $\log \varphi$ is convex in the interior of E and that φ is continuous on E.
- (c) By (a), E is connected. Is E necessarily open? Closed? Can E consist of a single point? Can E be any connected subset of $(0, \infty)$?
- (d) If $r , prove that <math>||f||_p \leq \max(||f||_r, ||f||_s)$. Show that this implies the inclusion $L^r_{\mu} \cap L^s_{\mu} \subset L^p_{\mu}$.

(e) Assume that $||f||_r < \infty$ for some $r < \infty$ and prove that $||f||_p \to ||f||_\infty$ as $p \to \infty$.

52 (Due 12/5). Let $\mu(X) = 1$. Each of the following questions is graded as a separate exercise.

- (a) Prove that $||f||_r \le ||f||_s$ if $0 < r < s \le \infty$.
- (b) Under what condition does it happen that $0 < r < s \le \infty$ and $||f||_r = ||f||_s < \infty$?
- (c) Prove that $L^r_{\mu} \supset L^s_{\mu}$ if 0 < r < s. If X = [0, 1] and μ is the Lebesgue measure, show that $L^r_{\mu} \neq L^s_{\mu}$.

53 (Bonus). For some measures, the relation r < s implies $L^r(\mu) \subset L^s(\mu)$; for others, the inclusion is reversed; and there are some for which $L^r(\mu)$ does not contain $L^s(\mu)$ if $r \neq s$. Give examples of these situations, and find conditions on μ under which these situations will occur.

54 (Due 12/5). (a) Show that
$$\int_0^{\frac{\pi}{2}} \sqrt{x \sin x} \, dx < \frac{\pi}{2\sqrt{2}};$$

(b) Show that $\left[\int_0^1 x^{\frac{1}{2}} (1-x)^{-\frac{1}{3}} \, dx\right]^3 \leq \frac{8}{5}.$

55 (Bonus). Suppose $1 and <math>f \in L^p((0,\infty))$ relative to the Lebesgue measure. Define

$$F(x) = \frac{1}{x} \int_0^x f(t) \, dt \qquad (0 < x < \infty).$$

Prove Hardy's inequality

$$||F||_p \le \frac{p}{p-1} ||f||_p$$

which shows that the mapping $f \to F$ carries L^p into L^p . [Hint: assume first that $f \ge 0$ and $f \in C_c((0,\infty))$, i.e. the support of f is a finite closed interval $[a,b] \subset (0,\infty)$. Then use integration by parts:

$$\int_{\varepsilon}^{A} F^{p}(x) \, dx = -p \int_{\varepsilon}^{A} F^{p-1} x F'(x) \, dx$$

where $\varepsilon < a$ and A > b. Note that xF' = f - F, and apply Hölder inequality to $\int F^{p-1} f \, dx$.]

56 (Due 1/16). Let (X, \mathcal{M}, μ) be a measure space. For $f \in L^1_{\mu}$ define

$$\mu_f(E) = \int_E f \, d\mu$$

Show:

- (a) μ_f is a complex measure;
- (b) $|\mu_f| = \mu_{|f|}$, assuming that f is real-valued;
- (c) $|\mu_f| = \mu_{|f|}$, now for a general $f \in L^1(\mu)$.

57 (Bonus). Prove that the space $\mathbb{M}(X, \mathfrak{M})$ with the norm $\|\mu\|$ is a Banach space, i.e. it is a complete metric space (every Cauchy sequence converges to a limit). Hint: given a Cauchy sequence of complex measures $\{\mu_n\}$ you need to construct the limit measure μ and prove that $\|\mu_n - \mu\| \to 0$ as $n \to \infty$.

58 (Due 1/25). Let μ be a positive measure on (X, \mathfrak{M}) and $f, g \in L^1_{\mu}$. Prove that

- (a) μ_f is concentrated on A if and only if $\mu\{x \in A^c \colon f(x) \neq 0\} = 0;$
- (b) $\mu_f \perp \mu_g$ if and only if $\mu\{x \in X \colon f(x)g(x) \neq 0\} = 0;$
- (c) if $f \ge 0$, then

$$\mu \ll \mu_f \iff f(x) > 0 \text{ for } \mu - \text{a.e. } x \in X.$$

59 (Due 1/25). Let λ be a positive measure on (X, \mathfrak{M}) . Prove that λ is concentrated on A if and only if $\lambda(A^c) = 0$. Give a counterexample to this statement in the case of a complex measure λ .

60 (Due 2/20). Let f be a real-valued and integrable function on [0, 1]. Prove that there exists $c \in [0, 1]$ such that

$$\int_{[0,c]} f \, dm = \int_{[c,1]} f \, dm.$$

61 (Due 2/20). Let $f, f_k \in L^1_m[0, 1]$, for k = 1, 2, ... Suppose $f_k(x) \to f(x)$ a.e. on [0, 1], and $\int_{[0,1]} |f_k| \, dm \to \int_{[0,1]} |f| \, dm$. Show that

$$\int_{[0,1]} |f_k - f| \, dm \to 0.$$

Hint: look at $|f| + |f_k| - |f - f_k|$.

62 (Due 2/20). Do the previous exercise with L^1 replaced by L^2 .

63 (Due 2/20). Let X = [0,1] and μ the Lebesgue measure. Show that $L^{\infty}(X)^* \supset L^1(X)$, but $L^{\infty}(X)^* \neq L^1(X)$ (in the sense $g \to \Phi_g$). (Hint: Use the following consequence of the Hahn-Banach theorem: If X is a Banach space and $A \subset X$ is a closed subspace of X, with $A \neq X$, then there exists $f \in X^*$ with $f \neq 0$, and f(x) = 0 for all $x \in A$.)

64 (Due 2/20). Suppose μ is a positive measure on X and $\mu(X) < \infty$. Let $f \in L^{\infty}_{\mu}$ and $||f||_{\infty} > 0$. Define

$$\alpha_n = \int_X |f|^n \, d\mu \qquad (n = 1, 2, 3, \dots).$$

Prove that

$$\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = \|f\|_{\infty}.$$

(Hint: Start with $||f||_{\infty} = 1$, use Hölder inequality and the result of Exercise 51 (e).)

65 (Due 3/20). Let μ be a complex Borel measure on \mathbb{R} and assume that its symmetric derivative $(D\mu)(x)$ exists at some $x_0 \in \mathbb{R}$. Does it follow that its distribution function $F(x) = \mu((-\infty, x))$ is differentiable at x_0 ?

66 (Due 3/20). Let $f \in L^1_{\mathbf{m}}(\mathbb{R}^k)$. Show that $|f(x)| \leq (Mf)(x)$ at every Lebesgue point x of f.

67 (Due 3/20). Let

$$f(x) = \begin{cases} 0 & \text{if } x < 0 & \text{or } x > 1 \\ 1 & \text{if } 0 < x < 1 \end{cases}$$

Is it possible to define f(0) and f(1) such that 0 and 1 become Lebesgue points of f?

68 (Bonus). Construct a function $f \colon \mathbb{R} \to \mathbb{R}$ such that f(0) = 0 and 0 is a Lebesgue point of f, but for every $\varepsilon > 0$

$$\mathbf{m} \{ x \in \mathbb{R} \colon |x| < \varepsilon \text{ and } |f(x)| \ge 1 \} > 0,$$

i.e. f is essentially discontinuous at 0.

69 (Due 3/20). Let $\alpha > 0, \beta > 0$ and

$$f(x) = \begin{cases} x^{\alpha} \cos \frac{\pi}{x^{\beta}} & \text{ for } 0 < x \le 1\\ 0 & \text{ for } x = 0 \end{cases}$$

Show that if $\alpha > 1$ and $\alpha > \beta$, then f is absolutely continuous on [0, 1]. What about $\alpha \leq \beta$?

70 (Due 3/20). Let f, g be absolutely continuous on [a, b]. Show that (a) fg is absolutely continuous on [a, b].

(b) if $f(x) \neq 0$ for all $x \in [a, b]$, then 1/f is absolutely continuous on [a, b].

(c) Does (a) remain true if [a, b] is replaced by \mathbb{R} ?

71 (Due 3/27). A function $f: [a, b] \to \mathbb{C}$ is said to be Lipschitz continuous if $\exists L > 0$ such that $|f(x) - f(y)| \leq L|x - y|$ for all $x, y \in [a, b]$. Prove that if f is Lipschitz continuous, then f is absolutely continuous and $|f'| \leq L$ a.e. Conversely, if f is absolutely continuous and $|f'| \leq L$ a.e., then f is Lipschitz continuous (with that constant L).

72 (Due 3/27). Let $f: [a, b] \to \mathbb{R}$ be absolutely continuous. Prove that $V_a^x \leq \int_{[a,x]} |f'| d\mathbf{m}$. For an extra credit: is the equality always true?

73 (Due 3/27). Let $f: [0,1] \to \mathbb{R}$ be absolutely continuous on $[\delta, 1]$ for each $\delta > 0$ and continuous and of bounded variation on [0,1]. Prove that f is absolutely continuous on [0,1]. [Hint: use the result of the previous exercise to verify that $f' \in L^1([0,1])$.]

74 (Bonus). Let $f: [a, b] \to \mathbb{C}$ be absolutely continuous. Prove that |f| is absolutely continuous and

$$\left|\frac{d}{dx}|f(x)|\right| \le |f'(x)|$$

for a.e. $x \in [a, b]$. [Hint: first, use triangle inequality in the form $||p| - |q|| \le |p - q|$, for complex numbers p, q, to show that |f| is AC. Then prove the above inequality for $x \in [a, b]$ that are Lebesgue points for both f' and |f|'; use Theorem 10.17.]

75 (Due 4/10). Given measure spaces (X, \mathfrak{M}, μ) and $(Y, \mathfrak{N}, \lambda)$ with σ -finite measures, show that $\mu \times \lambda$ is the unique measure on $\mathfrak{M} \times \mathfrak{N}$ such that

$$(\mu \times \lambda)(A \times B) = \mu(A)\lambda(B)$$

for all measurable rectangles $A \times B$ in $X \times Y$.

76 (Due 4/10). Let $a_n \ge 0$ for $n = 1, 2, \ldots$, and for $t \ge 0$ let

$$N(t) = \#\{n : a_n > t\}$$

Prove that

$$\sum_{n=1}^{\infty} a_n = \int_0^{\infty} N(t) \, dt$$

For an extra credit, find a formula for $\sum_{n=1}^{\infty} \phi(a_n)$ in terms of N(t) as defined above, if $\phi : [0, \infty) \to [0, \infty)$ is locally absolutely continuous (i.e., AC on every finite interval), non-decreasing, and $\phi(0) = 0$ (Hint: use the above fact with $\phi(x) = x$).

77 (Due 4/10). Let $f \in L^1([0,1])$ and $f \ge 0$. Show that

$$\int_0^1 \frac{f(y)}{|x-y|^{1/2}} \, dy$$

is finite for a.e. $x \in [0, 1]$ and integrable.

78 (Due 4/10). Use Fubini's theorem and the relation

$$\frac{1}{x} = \int_0^\infty e^{-xt} dt \quad \text{for } x > 0$$

to prove that

$$\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

79 (Due 4/17). Suppose $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$ for some $1 \leq p \leq \infty$. Show that f * g exists at a.e. $x \in \mathbb{R}$ and $f * g \in L^p(\mathbb{R})$, and prove that

$$||f * g||_p \le ||f||_1 ||g||_p.$$

Hints: the case $p = \infty$ is simple and can be treated separately. If $p < \infty$, then use Hölder inequality and argue as in the proof of the previous theorem (see the classnotes).

80 (Due 4/17). Let $f \in L^1(\mathbb{R})$ and

$$g(x) = \int_{\mathbb{R}} f(y) e^{-(x-y)^2} dy.$$

Show that $g \in L^p(\mathbb{R})$, for all $1 \leq p \leq \infty$, and estimate $||g||_p$ in terms of $||f||_1$. You can use the following standard fact: $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$. 81 (Bonus). Let $E = [1, \infty)$ and $f \in L^2_{\mathbf{m}}(E)$. Also assume that $f \ge 0$ a.e. and define

$$g(x) = \int_E f(y) e^{-xy} \, dy.$$

Show that $g \in L^1(E)$ and

 $\|g\|_1 \le c \, \|f\|_2$

for some c < 1. Estimate the minimal value of c the best you can.

82 (Due 4/24). Let $f: \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. Prove that

(a) $A = \{(x, y) \in \mathbb{R}^2 \mid y < f(x)\}$ is Lebesgue measurable (in the twodimensional sense)

(b) Let $f \ge 0$. Is it always true that $\int_{\mathbb{R}} f \, d\mathbf{m}$ equals the Lebesgue measure of A?

(c) $\{(x,y) \in \mathbb{R}^2 \mid y = f(x)\}$ is a null set.

83 (Due 4/24). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f_x is Borel-measurable for every $x \in \mathbb{R}$ and f^y is continuous for every $y \in \mathbb{R}$. Prove that f is Borel-measurable. (See hint on p. 176 in Rudin.)