
MA 645-4A (Real Analysis), Dr. Chernov Homework assignment

1 (Due ). Show that the open disk x2 + y2 < 1 is a countable union of
planar elementary sets. Show that the closed disk x2 + y2 ≤ 1 is a countable
intersection of planar elementary sets.

2 (Due ). Prove that every countable set A ⊂ X is measurable and µ(A) = 0.

3 (Due ). Let A ⊂ X consist of points (x, y) such that either x or y is a
rational number. Is A measurable? What is its Lebesgue measure?

4 (Due ). Prove that every open set A ⊂ X is measurable (hint: represent
it by a countable union of rectangles). Prove that every closed set A ⊂ X is
measurable.

5 (Due ). Let L denote the set of all Lebesgue measurable sets (in R). Prove
that card(L) > C, in fact card(L) = card(2R). (Hint: use the Cantor set and
the Cantor theorem).

6 (Due ). Let U denote the set of all open subsets U ⊂ R. Prove that
card(U) = C. Do the same for open sets in R2. Hint: use a countable basis
for the respective topology.

7 (Due ). Let X = {1, 2, 3}. Construct all σ-algebras of X.

8 (Due ). LetX = [0, 1] and G consist of all one-point sets, i.e. G =
{
{x}, x ∈

X
}
. Describe the σ-algebra M(G).

9 (Due ). Show that the Borel σ-algebra in R is generated by the collection
of all intervals (r1, r2) with rational endpoints r1, r2 ∈ Q.

10 (Due ). Show that every Borel set in R is Lebesgue measurable, but not
vice versa.

11 (Bonus). Does there exist an infinite σ-algebra which has only countably
many members?

12 (Due ). Show that the assumption µ(A1) < ∞ in Theorem 2.10 is in-
dispensable. Hint: consider the counting measure on N and take sets An =
{n, n+ 1, . . .}.
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13 (Due ). Let X ⊂ R2 be a rectangle. Verify that the collection of all
subrectangles R ⊂ X is a semi-algebra.

14 (Due ). Show that if µ is a translation invariant measure defined on the
Borel σ-algebra over R2 such that µ(R) <∞ for at least one rectangle R 6= ∅,
then there exists a constant c ≥ 0 such that µ(E) = cm(E) for every Borel
set E.

15 (Due ). Prove that A ∈ M if and only if χA is measurable.

16 (Due ). Let (X,M) be a measurable space and f : X → [−∞,∞]. Prove
that f is measurable iff f−1

(
[−∞, x]

)
is a measurable set for every x ∈ R.

17 (Due ). Let (X,M) be a measurable space and f : X → [−∞,∞]. Prove
that f is measurable iff f−1

(
[−∞, x]

)
is a measurable set for every rational

x ∈ Q.

18 (Due ). Let (X,M) be a measurable space and f : X → [−∞,∞] and
g : X → [−∞,∞] two measurable functions. Prove that the sets

{x : f(x) < g(x)} and {x : f(x) = g(x)}

are measurable.

19 (Due ). Show that the function f : R → R defined by

f(x) =

{
x if x ∈ Q
0 if x /∈ Q

is a Borel function.

20 (Due ). Show that the function f : R → R defined by

f(x) =

{
sin(1/x) if x 6= 0

0 if x = 0

is a Borel function.

21 (Due ). Let f : R → R be a monotonically increasing function, i.e. f(x1) ≤
f(x2) for x1 ≤ x2. Show that f is a Borel function.

22 (Due ). Verify that for simple functions the two definitions of the Lebesgue
integral given in class agree.
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23 (Due ). Let x0 ∈ X and µ = δx0 the δ-measure. Assume that {x0} ∈ M.
Show that for every measurable function f : X → [0,∞] we have∫

X

f dµ = f(x0).

24 (Due ). Let X = N and µ the counting measure on the σ-algebra M = 2N.
Show that for every function f : X → [0,∞] we have∫

X

f dµ =
∞∑

n=1

f(n).

25 (Due ). Let E ⊂ X be such that µ(E) > 0 and µ(Ec) > 0. Put fn = χE if
n is odd and fn = 1− χE if n is even. What is the relevance of this example
to Fatou’s lemma?

26 (Due ). Construct an example of a sequence of nonnegative measurable
functions fn : X → [0,∞) such that f(x) = limn→∞ fn(x) exists pointwise,
but ∫

X

f dµ < lim inf
n→∞

∫
X

fn dµ.

27 (Due ). Let f, g ∈ L1(µ) be real-valued functions and f ≤ g. Show that∫
X

f dµ ≤
∫

X

g dµ.

28 (Due ). Let fn : X → [0,∞] be a sequence of measurable functions such
that f1 ≥ f2 ≥ · · · ≥ 0 and limn→∞ fn(x) = f(x) for every x ∈ X. Suppose
f1 ∈ L1(µ). Show that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

29 (Due ). Let f be a function as above (in the class notes). Fix a y ∈ Y
and define

f̃(x) =

{
f(x) if x ∈ X \N
y if x ∈ N .

Show that f̃ : X → Y is measurable.
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30 (Due ). Let f be a function as above and µ a complete measure. Let
g : X → Y be an arbitrary (not necessarily measurable) function. Define

f̃(x) =

{
f(x) if x ∈ X \N
g(x) if x ∈ N .

Show that f̃ : X → Y is measurable.

31 (Due ). In the Borel-Cantelli Lemma, let A be the set of points which
belong to infinitely many of the sets Ek. Show that

A = ∩∞n=1 ∪∞k=n Ek.

Use this fact to prove the corollary without any reference to integration.

32 (Due ). Suppose µ(X) < ∞. Let fn ∈ L1
µ(X) be complex measurable

functions uniformly converging to a function f ∈ L1
µ(X). Prove that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ. (1)

Show that the assumption µ(X) <∞ cannot be omitted, i.e., give an example
of a sequence of functions fn ∈ L1

µ(X) uniformly converging to a function
f ∈ L1

µ(X) such that (1) fails.

33 (Due ). Suppose µ(X) <∞ and fn are measurable functions defined a.e.
on X. Prove that if fn → f a.e. on X, then fn → f in measure. What
happens if µ(X) = ∞?

34 (Due ). Prove that if fn → f in measure, then there is a subsequence
{fnk

} of {fn} such that fnk
→ f a.e. on X.

35 (Bonus). Suppose f ∈ L1(µ). Prove that ∀ε > 0 ∃δ > 0 such that∫
E
|f | dµ < ε whenever µ(E) < δ.

36 (Due ). (a) Let f : X → (0,∞] and µ(E) > 0. Show that
∫

E
f dµ > 0.

(b) Let f, g ∈ L1
µ(X) be real-valued functions and f < g. Assume µ(X) > 0.

Show that ∫
E

f dµ <

∫
E

g dµ.
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37 (Due ). Find examples of Lebesgue measurable sets E1, E2 ⊂ R such that

µ(E1) < inf{µ(A) : E1 ⊂ A, A closed}

µ(E2) > sup{µ(V ) : V ⊂ E2, V open}.

38 (Due ). Let f : R → [0,∞] be a Borel function, f ∈ L1(µ), and consider
the measure ρ(E) =

∫
E
f dµ, where µ is the Lebesgue measure. Prove that

ρ is regular.

39 (Due ). Show that the counting measure in Rk is inner regular, but not
outer regular.

40 (Due ). Let s : [a, b] → R be a simple Lebesgue measurable function. Show
that for every ε > 0 there is a step function ϕ : [a, b] → R and a Lebesgue
measurable set E ⊂ [a, b] such that s(x) = ϕ(x) on E and m

(
[a, b] \E

)
< ε.

Hint: use the regularity of m.

41 (Due ). Let f : [a, b] → R be a Lebesgue measurable function. Show that
for every ε > 0 there is a step function g : [a, b] → R such that

m
{
x ∈ [a, b] : |f(x)− g(x)| ≥ ε

}
< ε.

Hint: use approximation by simple functions and then the previous exercise.

42 (Due ). Let f ∈ L1
m(R). Prove that there is a sequence {gn} of step

functions such that

lim
n→∞

∫
R
|f − gn| dm = 0.

Hint: use the previous exercise.

43 (Due ). Prove that if f : X → R is upper (lower) semicontinuous and
X is compact, then f is bounded above (below) and attains its maximum
(minimum).

44 (Due ). Find a function f(x) on [0, 1] such that the improper Riemann

integral
∫ 1

0
f(x) dx exists (is finite), but f is not Lebesgue integrable.

45 (Due ). Prove that the supremum of any collection of convex functions
on (a, b) is convex on (a, b) (assume that the supremum is finite). Prove that
a pointwise limit of a sequence of convex functions is convex.
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46 (Due ). Let ϕ be convex on (a, b) and ψ convex and nondecreasing on the
range of ϕ. Prove that ψ ◦ ϕ is convex on (a, b). For ϕ > 0, show that the
convexity of logϕ implies the convexity of ϕ, but not vice versa.

47 (Bonus). Assume that ϕ is a continuous real function on (a, b) such that

ϕ
(x+ y

2

)
≤ 1

2
ϕ(x) +

1

2
ϕ(y)

for all x, y ∈ (a, b). Prove that ϕ is convex. (The conclusion does not follow
if continuity is omitted from the hypotheses.)

48 (Due ). Suppose µ(X) = 1 and suppose f and g are two positive measur-
able functions on X such that fg ≥ 1. Prove that∫

X

f dµ ·
∫

Ω

g dµ ≥ 1.

49 (Due ). Suppose µ(X) = 1 and h : X → [0,∞] is measurable. Denote
A =

∫
X
h dµ. Prove that

√
1 + A2 ≤

∫
X

√
1 + h2 dµ ≤ 1 + A.

50 (Bonus). If µ is Lebesgue measure on [0, 1] and if h is a continuous func-
tion on [0, 1] such that h = f ′, then the inequalities in the previous exercise
have a simple geometric interpretation. From this, conjecture (for general
X) under what conditions on h equality can hold in either of the above
inequalities, and prove your conjecture.

51 (Due ). Let f, g : X → [0,∞]. Show that ess-sup |f + g| ≤ ess-sup |f | +
ess-sup |g|.

52 (Due ). When does one get equality in ‖fg‖1 ≤ ‖f‖∞ ‖g‖1?

53 (Due ). Suppose f : X → C is measurable and ‖f‖∞ > 0. Define

ϕ(p) =

∫
X

|f |p dµ = ‖f‖p
p (0 < p <∞)

and consider the set E = {p : ϕ(p) <∞}. Each of the following questions is
graded as a separate exercise. Question (c) and (e) are bonus problems.
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(a) Let r < p < s and r, s ∈ E. Prove that p ∈ E.

(b) Prove that logϕ is convex in the interior of E and that ϕ is continuous
on E.

(c) By (a), E is connected. Is E necessarily open? Closed? Can E consist
of a single point? Can E be any connected subset of (0,∞)?

(d) If r < p < s, prove that ‖f‖p ≤ max
(
‖f‖r, ‖f‖s

)
. Show that this

implies the inclusion Lr
µ ∩ Ls

µ ⊂ Lp
µ.

(e) Assume that ‖f‖r <∞ for some r <∞ and prove that ‖f‖p → ‖f‖∞
as p→∞.

54 (Due ). Let µ(X) = 1. Each of the following questions is graded as a
separate exercise.

(a) Prove that ‖f‖r ≤ ‖f‖s if 0 < r < s ≤ ∞.

(b) Under what condition does it happen that 0 < r < s ≤ ∞ and ‖f‖r =
‖f‖s <∞?

(c) Prove that Lr
µ ⊃ Ls

µ if 0 < r < s. If X = [0, 1] and µ is the Lebesgue
measure, show that Lr

µ 6= Ls
µ.

55 (Bonus). For some measures, the relation r < s implies Lr(µ) ⊂ Ls(µ);
for others, the inclusion is reversed; and there are some for which Lr(µ)
does not contain Ls(µ) if r 6= s. Give examples of these situations, and find
conditions on µ under which these situations will occur.

56 (Due ). (a) Show that
∫ π

2

0

√
x sin x dx < π

2
√

2
;

(b) Show that
[∫ 1

0
x

1
2 (1− x)−

1
3 dx

]3 ≤ 8
5
.

57 (Bonus). Suppose 1 < p <∞ and f ∈ Lp((0,∞)) relative to the Lebesgue
measure. Define

F (x) =
1

x

∫ x

0

f(t) dt (0 < x <∞).

Prove Hardy’s inequality

‖F‖p ≤
p

p− 1
‖f‖p
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which shows that the mapping f → F carries Lp into Lp. [Hint: assume first
that f ≥ 0 and f ∈ Cc((0,∞)), i.e. the support of f is a finite closed interval
[a, b] ⊂ (0,∞). Then use integration by parts:∫ A

ε

F p(x) dx = −p
∫ A

ε

F p−1xF ′(x) dx

where ε < a and A > b. Note that xF ′ = f −F , and apply Hölder inequality
to

∫
F p−1f dx.]

58 (Due 1/24). Let (X,M, µ) be a measure space. For f ∈ L1
µ define

µf (E) =

∫
E

f dµ.

Show:
(a) µf is a complex measure;
(b) |µf | = µ|f |, assuming that f is real-valued;
(c) |µf | = µ|f |, now for a general complex-valued f ∈ L1(µ).

59 (Bonus, Due 2/5). Prove that the space M(X,M) with the norm ‖µ‖ is
a Banach space, i.e. it is a complete metric space (every Cauchy sequence
converges to a limit). Hint: given a Cauchy sequence of complex measures
{µn} you need to construct the limit measure µ and prove that ‖µn−µ‖ → 0
as n→∞.

60 (Due 1/31). Let µ be a positive measure on (X,M) and f, g ∈ L1
µ. Prove

that

(a) µf is concentrated on A if and only if µ{x ∈ Ac : f(x) 6= 0} = 0;

(b) µf ⊥ µg if and only if µ{x ∈ X : f(x)g(x) 6= 0} = 0;

(c) if f ≥ 0, then

µ� µf ⇐⇒ f(x) > 0 for µ− a.e. x ∈ X.

61 (Due 1/31). Let λ be a positive measure on (X,M). Prove that λ is
concentrated on A if and only if λ(Ac) = 0. Give a counterexample to this
statement in the case of a complex measure λ.
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62 (Due 2/5). Let X = [0, 1] and µ the Lebesgue measure on X. Let λ be
the counting measure on X. Show that:

(a) λ is not σ-finite.

(b) λ has no Lebesgue decomposition λa + λs with respect to µ.

(c) A Lebesgue-measurable function h : X → C is in L1
λ if and only if

A : = {x ∈ X : h(x) 6= 0} is countable, and
∑

x∈A |h(x)| <∞. In this
case

∫
E
h dλ =

∑
x∈E∩A h(x) for all E.

(d) µ� λ but there is no h ∈ L1
λ such that dµ = h dλ.

63 (Bonus, Due 2/21). Let X = [0, 1] and m the Lebesgue measure. Show
that L∞m(X)∗ ⊃ L1

m(X), but L∞m(X)∗ 6= L1
m(X) (in the sense g → Φg).

(Hint: Use the following consequence of the Hahn-Banach theorem: If X is a
Banach space (i.e. a complete metric space, in which every Cauchy sequence
converges to a limit) and A ⊂ X is a closed subspace of X, with A 6= X,
then there exists f ∈ X∗ with f 6= 0, and f(x) = 0 for all x ∈ A.)

64 (Due 2/14). Let µ be a complex Borel measure on R and assume that its
symmetric derivative (Dµ)(x) exists at some x0 ∈ R. Does it follow that its
distribution function F (x) = µ((−∞, x)) is differentiable at x0?

65 (Due 2/14). Prove that for all f ∈ L1
m(Rk) and z > 0 we have

m(|f | > z) ≤ z−1‖f‖1

Conclude that L1
m(Rk) ⊂ L1

W (Rk).

66 (Due 2/21). Let f ∈ L1
m(Rk). Show that |f(x)| ≤ (Mf)(x) at every

Lebesgue point x of f .

67 (Due 2/21). Let

f(x) =

{
0 if x < 0 or x > 1
1 if 0 < x < 1

Is it possible to define f(0) and f(1) such that 0 and 1 become Lebesgue
points of f?
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68 (Bonus, Due 2/28). Construct a function f : R → R such that f(0) = 0
and 0 is a Lebesgue point of f , but for every ε > 0

m
{
x ∈ R : |x| < ε and |f(x)| ≥ 1

}
> 0,

i.e. f is essentially discontinuous at 0.

69 (Due 2/28). Show that that Cantor function f : [0, 1] → [0, 1] has the
propertyf(C) = [0, 1], i.e., it maps the Cantor set C (which is a null set!)
onto the whole interval [0, 1].

70 (Due 2/28). Show that

(a) If f ∈ C1([a, b]), then V b
a ≤

∫ b

a
|f ′(x)| dx

(b) If f ∈ C([a, b]) is continuous on [a, b], differentiable on (a, b) and |f ′(x)|
is bounded on (a, b), then f is of bounded variation on [a, b] (Hint: use
the Mean Value Theorem)

71 (Due 2/28). Let

f(x) =

{
x cos π

x
if 0 < x ≤ 1

0 if x = 0

Show that V 1
0 = ∞.

72 (Due 2/28). Let

f(x) =

{
x2 cos π

x
if 0 < x ≤ 1

0 if x = 0

Show that V 1
0 <∞, i.e., f is of bounded variation on [0, 1].

73 (Due 2/28). Let f, g be absolutely continuous on [a, b]. Show that

(a) f ± g are absolutely continuous on [a, b]

(b) fg is absolutely continuous on [a, b]

(c) if f(x) 6= 0 for all x ∈ [a, b], then 1/f is absolutely continuous on [a, b]
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74 (Due 2/28). A function f : [a, b] → C is said to be Lipschitz continuous
if ∃L > 0 such that |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [a, b]. Prove that if
f is Lipschitz continuous, then f is absolutely continuous and |f ′| ≤ L a.e.
Conversely, if f is absolutely continuous and |f ′| ≤ L a.e., then f is Lipschitz
continuous (with that constant L).

75 (Due 2/28). Let

f(x) =

{
x2 cos π

x2 if 0 < x ≤ 1

0 if x = 0

(a) Show that f(x) is differentiable at every point x ∈ [0, 1] (including
x = 0)

(b) Verify that f ′(x) does not belong to L1([0, 1])

Conclude that f is not absolutely continuous.

76 (Due 2/28). Let

f(x) =

{
x2 cos π

x
if 0 < x ≤ 1

0 if x = 0

(a) Show that f(x) is differentiable at every point x ∈ [0, 1] (including
x = 0)

(b) Verify that f ′(x) does belong to L1([0, 1])

Conclude that f is absolutely continuous.

77 (Due 3/7, the bonus part is due on 3/14). Let f : [a, b] → R be absolutely
continuous. Prove that V x

a ≤
∫

[a,x]
|f ′|dm.

Bonus part: is the equality always true?

78 (Bonus, Due 3/14). Let f : [0, 1] → R be absolutely continuous on [δ, 1]
for each δ > 0, continuous at x = 0, and of bounded variation on [0, 1]. Prove
that f is absolutely continuous on [0, 1]. (Note: you can use the bonus part
of the previous exercise only if you properly finish it first.)

79 (Due 3/14). Let f ≥ 0 and f ∈ L1(R). Find

lim
n→∞

∫
[0,1]

f(nx) dm(x)
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80 (Due 3/14). Let f, g : [a, b] → C be two AC functions. Prove the integration-
by-parts formula∫

[a,b]

f ′g dm = f(b)g(b)− f(a)g(a)−
∫

[a,b]

fg′ dm

81 (Due 3/14). Let f ≥ 0 and f ∈ L1([0,∞)) and g(x) : = 2xf(x2) for all
x ∈ [0,∞). Show that g ∈ L1([0,∞)) and∫

[0,∞)

f dm =

∫
[0,∞)

g dm

82 (Bonus, Due 3/28). Let f : R → R be integrable, i.e., f ∈ L1
m(R). Define

a function g : R → R by

g(x) =

{
f
(
x− 1

x

)
if x 6= 0

0 if x = 0

Prove that g(−1/x) = g(x) and∫
R
f dm =

∫
R
g dm

83 (Due 3/28). Given measure spaces (X,M, µ) and (Y,N, λ) with σ-finite
positive measures, show that µ × λ is the unique measure on M × N such
that

(µ× λ)(A×B) = µ(A)λ(B)

for all measurable rectangles A×B in X × Y .

84 (Due 4/11). Let an ≥ 0 for n = 1, 2, . . ., and for t ≥ 0 let

N(t) = #{n : an > t}

Prove that
∞∑

n=1

an =

∫ ∞

0

N(t) dt

85 (Bonus, Due 4/11). Generalize the previous exercise as follows. Let
φ : [0,∞) → [0,∞) be an increasing locally absolutely continuous function
(the latter means that φ is AC on every finite interval) such that φ(0) = 0.
Find a formula for

∑∞
n=1 φ(an) in terms of N(t).
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86 (Due 4/11). Let f ∈ L1([0, 1]) and f ≥ 0. Show that∫ 1

0

f(y)

|x− y|1/2
dy

is finite for a.e. x ∈ [0, 1] and, as a function of x, integrable with respect to
the Lebesgue measure on [0, 1].

87 (Due 4/11). Use Fubini’s theorem and the relation

1

x
=

∫ ∞

0

e−xt dt for x > 0

to prove that

lim
A→∞

∫ A

0

sin x

x
dx =

π

2

88 (Due 4/11). Let E be a Lebesgue measurable subset of R2. Suppose that
for a.e. x ∈ R the set Ex = {y ∈ R : (x, y) ∈ E} has Lebesgue measure zero.
Prove that for a.e. y ∈ R the set Ey = {x ∈ R : (x, y) ∈ E} has Lebesgue
measure zero. Compute m2(E).

89 (Due 4/18). Suppose f ∈ L1(R) and g ∈ Lp(R) for some 1 ≤ p ≤ ∞.
Show that f ∗ g exists at a.e. x ∈ R and f ∗ g ∈ Lp(R), and prove that

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Hints: the case p = ∞ is simple and can be treated separately. If p < ∞,
then use Hölder inequality and argue as in the proof of Theorem 18.3.

90 (Due 4/18). Let f ∈ L1(R) and

g(x) =

∫
R
f(y) e−(x−y)2 dm(y).

Show that g ∈ Lp(R), for all 1 ≤ p ≤ ∞, and estimate ‖g‖p in terms of ‖f‖1.
You can use the following standard fact:

∫∞
−∞ e−x2

dx =
√
π.

91 (Bonus, Due 4/18). Let E = [1,∞) and f ∈ L2
m(E). Also assume that

f ≥ 0 a.e. and define

g(x) =

∫
E

f(y) e−xy dm(y).

Show that g ∈ L1(E) and
‖g‖1 ≤ c ‖f‖2

for some c < 1. Estimate the minimal value of c the best you can.
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92 (Due 4/18). Let f : R → R be Lebesgue measurable.

(a) Prove that the set

A = {(x, y) ∈ R2 | y < f(x)}

is Lebesgue measurable (in the two-dimensional sense)

(b) Let f ≥ 0. Is it always true that
∫

R f dm equals the Lebesgue measure
of A?

(c) Prove that {(x, y) ∈ R2 | y = f(x)} is a null set.

93 (Bonus, Due 4/18). Let f : R2 → R be such that fx is Borel-measurable
for every x ∈ R and f y is continuous for every y ∈ R. Prove that f is
Borel-measurable. (See hint on p. 176 in Rudin’s book.)
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