MA 646-2F (Real Analysis), Dr. Chernov The test consists of 10 problems.

Part A. Does the following exist? (If not, refer to a theorem or briefly sketch a proof; if yes, briefly describe an example.)

- 1. A positive Borel measure μ on \mathbb{R} which is *not* a complex measure.
- 2. A complex Borel measure μ on \mathbb{R} which is *not* of the form $\mu(A) = \int_A f \, d\mathbf{m}$ for some $f \in L^1(\mathbb{R})$ and all Borel sets A.
- 3. Two non-zero mutually singular complex Borel measures, $\mu \perp \lambda$, on \mathbb{R} that are both absolutely continuous with respect to the Lebesgue measure, i.e. such that $\mu \ll \mathbf{m}$ and $\lambda \ll \mathbf{m}$.
- 4. Two non-zero complex Borel measures, μ and λ , on $\mathbb R$ such that

 $\mu \ll \mathbf{m}, \qquad \lambda \perp \mathbf{m}, \qquad \text{and} \qquad \mu \ll \lambda$

5. An open set $V \subset [0,1]$ such that $\mathbf{m}(\bar{V}) > \mathbf{m}(V)$. (\bar{V} denotes the closure of V.)

Part B. Provide solutions to the following problems. Justify your answer.

- 6. Let $f, g \in L^1_{\mathbf{m}}([a, b])$ and $\int_{[a,x]} f d\mathbf{m} = \int_{[a,x]} g d\mathbf{m}$ for every $x \in [a, b]$. Is it true that f(x) = g(x) for almost every $x \in [a, b]$? (Hint: consider the function h = f g.)
- 7. Is the function $f(x) = \sqrt{x}$ absolutely continuous on the interval [0, 1]? (Hint: use the FTC in L^1 .)
- 8. Does there exist an absolutely continuous function f on [0,1] and a sequence of Borel sets $E_n \subset [0,1]$ such that $\mathbf{m}(E_n) > 0$ and

$$\frac{\mathbf{m}(f(E_n))}{\mathbf{m}(E_n)} > n$$

for every $n \ge 1$?

- 9. Identify all Lebesgue points of the Dirichlet function $f = \chi_{\mathbb{Q} \cap [0,1]}$.
- 10. Given a function $f(x) = 2x^3 3x^2$, find its total variation on the interval [-1, 2], i.e., find V_{-1}^2 . Justify your answer.

