MA 646-2F (Real Analysis), Dr. Chernov 8 problems. Show your work.

- Final Exam April 2013
- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Define $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ by $\Phi(x, y) = (x + f(x + y), y f(x + y))$. Prove that $\mathbf{m}(\Phi(E)) = \mathbf{m}(E)$ for each measurable set $E \subset \mathbb{R}^2$.
- 2. Let μ and ν be finite positive measures on a measurable space (X, \mathfrak{M}) such that $\mu \ll \nu$ and $\nu \ll \mu$. Show that $\nu \ll \mu + \nu$ and the Radon-Nikodym derivative of ν with respect to $\mu + \nu$ satisfies

$$0 < \frac{d\nu}{d(\mu+\nu)} < 1$$

a.e. with respect to μ . Is the same true a.e. with respect to $(\mu + \nu)$?

3. Let $E \subset \mathbb{R}$ be a measurable set with positive Lebesgue measure. We say that $x \in \mathbb{R}$ is a *point of positive measure* with respect to E if $\mathbf{m}(E \cap I) > 0$ for each open interval I containing x. Let

 $E^+ = \{ x \in \mathbb{R} \colon x \text{ is of positive measure with respect to } E \}$

- (i) Prove that $\mathbf{m}(E \setminus E^+) = 0$.
- (ii) Is it always true that $\mathbf{m}(E^+ \setminus E) = 0$?
- 4. Let $f : \mathbb{R} \to \mathbb{C}$ be continuous with compact support, and let $g \in L^1(\mathbb{R})$. Prove that the convolution function

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y) g(y) d\mathbf{m}$$

is defined and is continuous at every point $x \in \mathbb{R}$.

5. Prove or disprove: the function

$$f(x) = \begin{cases} \frac{1}{\ln x} & x > 0\\ 0 & x = 0 \end{cases}$$

is absolutely continuous on $[0, \frac{1}{2}]$.

6. Let $f_1: [0, M] \to \mathbb{R}$ be a bounded measurable function, i.e., $|f(x)| \leq C$ for all $x \in [0, M]$. Define

$$f_{n+1}(x) = \int_{[0,x]} f_n \, d\mathbf{m}$$

for n = 2, 3, ... Prove that the series $S(x) = \sum_{n=2}^{\infty} f_n(x)$ is uniformly convergent on [0, M] and the sum is a continuous function on [0, M]. Can you give an upper bound for S(x)?

- 7. Let f be a real valued and increasing function on the real line \mathbb{R} , such that $\lim_{x\to-\infty} f(x) = 0$ and $\lim_{x\to\infty} f(x) = 1$. Prove that f is absolutely continuous on every closed finite interval $[a, b] \subset \mathbb{R}$ if and only if $\int_{\mathbb{R}} f' d\mathbf{m} = 1$.
- 8. Let $E = [0, 1] \times [0, 1]$ and

$$f(x,y) = \frac{xy}{(x^2 + y^2)^2}$$

for $0 < x, y \le 1$ and f(x, y) = 0 otherwise. Show that $f \notin L^1(E)$.