
Computer projects for Numerical Linear Algebra, MA 660.

Computer projects are designed to be done in MATLAB, a matrix-oriented computer
software installed in the computer lab, room 112 in Classroom Building (CB). MATLAB
projects can be done with minimum coding and maximum convenience. However, you
can use any other computer language or software, if you prefer.

The MATLAB package includes an on-line help. In addition, many MATLAB man-
uals are available on-line from various web sites. In particular, check out the official
MathWorks (the producer of MATLAB) web page:

www.mathworks.com/access/helpdesk/help/techdoc/math anal/math anal.shtml

The projects must be submitted in a “presentable” form. Include a print-out of the
MATLAB (or other) code, a print-out of the computer output (including clear readable
graphics), and a one-page report (hand-written or typed on a computer).

Project 1. Do Experiment 2 on pages 65–66 of the textbook. The purpose is to
compare the two Gram-Schmidt orthogonalization methods (the classical one and the
modified one). First, you generate random matrices, then obtain random orthogonal
matrices by using the qr procedure, then build a diagonal matrix whose entries are con-
secutive negative powers of two. Then you get a matrix A, which is badly ill-conditioned
(by the way, find its condition number by cond(A)). Then you apply the classical and
modified Gram-Schmidt methods to the matrix A by calling the procedures clgs and
mgs (note: they are not included in MATLAB, but their codes clgs.m and mgs.m are
available from the instructor’s web page: you need to download and save them into your
MATLAB working directory). Then you plot the resulting diagonal matrices RC and
RM on a logarithmic scale – you get a graph similar to Figure 9.1 on page 66. Write a
report, explain the results.



Project 2. Exercise 9.3 on page 68 of the textbook. The purpose is to see how a
limited number of singular values and singular vectors of a large matrix can be used to
approximately reconstruct the entire matrix.

Project 3. Explore the stability of the least squares algorithms (Lecture 19 in the
textbook). First, generate a badly ill-conditioned matrix A of size m × n with some
50 ≤ m ≤ 100 and 10 ≤ n ≤ 20. Suggestions: generate two random orthogonal matrices,
U of size m×m and V of size n×n (see Project 1), and a diagonal matrix D of size m×n
whose n diagonal entries are consecutive negative powers of four or five (see Project 1).
Then compute A = UDV . Next, generate a random n-vector y and compute b = Ay.
Now solve the overdetermined linear system Ax = b by several methods as in Lecture 19
(see below). After each solution compute and print the value of norm(x-y)/norm(y)
as a measure of accuracy of the solution (the smaller the better). Make conclusions.

The methods you need to test are listed here:

1. Normal equations (the most popular but the least accurate)

2. Classical Gram-Schmidt

3. Modified Gram-Schmidt

4. QR factorization by Householder reflections

5. MATLAB x=A\b function (QR factorization with column pivoting)

6. Reduced SVD decomposition.

The last two are, generally, the most numerically accurate.

Note: for a better visualization of the results, you may use a fixed vector y (for
example, set all its entries to 1/3 = 0.3333333333333 . . .), then print the vector x found
by each algorithm (use double-precision format, i.e. format long) and see which vectors
look more like y.


