•

1. Let $\{w_1, \ldots, w_n\}$ be an ONB in \mathbb{R}^n . Assuming that n is even, compute

 $||w_1 - w_2 + w_3 - \dots + w_{n-1} - w_n||.$

2. Let V be an inner product space, and $\|\cdot\|$ be the norm induced by the inner product. Recall that the parallelogram law states

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2.$$

Based on this, show that the norms $\|\cdot\|_1$ and $\|\cdot\|_\infty$ in \mathbb{R}^2 are **not** induced by any inner product.

3. Prove the **Neuman lemma**: if ||A|| < 1, then I - A is invertible. Here $|| \cdot ||$ is a norm on the space of $n \times n$ matrices induced by any norm on \mathbb{R}^n or \mathbb{C}^n .