1. Show that the norm $||A|| = \max_{i,j} |a_{ij}|$ on the space of $n \times n$ real matrices is not induced by any norm in \mathbb{R}^n . Hint: use 8.10(ii).

2. Prove the Neuman lemma: if ||A|| < 1, then I - A is invertible. Here $|| \cdot ||$ is a norm on the space of $n \times n$ matrices induced by a norm on \mathbb{R}^n or \mathbb{C}^n .

3. Let V be an inner product space, and $||\cdot||$ be the norm induced by the inner product. Prove the parallelogram law

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$$

Based on this, show that the norms $|| \cdot ||_1$ and $|| \cdot ||_{\infty}$ in \mathbb{R}^2 are not induced by any inner product.

4. Let $\{w_1, \ldots, w_n\}$ be an ONB in \mathbb{R}^n . Assuming that n is even, compute

$$||w_1 - w_2 + w_3 - \dots - w_n||$$

5. Apply Gram-Schmidt orthonormalization to the the basis $\{1, x, x^2\}$ in the space $P_2(\mathbb{R})$ with the inner product

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx$$

Extra credit: Find two norms on the space C[0, 1] that are not equivalent.