- .
- 1. Show that the norm $||A|| = \max_{i,j} |a_{ij}|$ on the space of $n \times n$ real matrices is not induced by any norm in \mathbb{R}^n . Hint: use the last inequality in 1.5.
- 2. Prove the **Neuman lemma**: if ||A|| < 1, then I A is invertible. Here $||\cdot||$ is a norm on the space of $n \times n$ matrices induced by any norm on \mathbb{R}^n or \mathbb{C}^n .
- 3. Let V be an inner product space, and $\|\cdot\|$ be the norm induced by the inner product. Prove the parallelogram law

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2.$$

Based on this, show that the norms $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ in \mathbb{R}^2 are not induced by any inner product.

4. Let $\{w_1, \ldots, w_n\}$ be an ONB in \mathbb{R}^n . Assuming that n is even, compute

$$||w_1 - w_2 + w_3 - \dots + w_{n-1} - w_n||$$
.