1. Show that the norm $||A|| = \max_{i,j} |a_{ij}|$ on the space of $n \times n$ real matrices is not induced by any vector norm.

2. Prove the Neuman lemma: if ||A|| < 1, then I - A is invertible. Here $|| \cdot ||$ is a matrix norm induced by a vector norm.

3. Let V be an inner product space, and $\|\cdot\|$ denote the norm induced by the inner product. Prove the **parallelogram law**

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2.$$

Based on this, show that the norms $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ in \mathbb{C}^n are not induced by any inner products.

4. Let $\{u_1, \ldots, u_n\}$ be an ONB in \mathbb{C}^n . Assuming that n is even, compute

 $||u_1 - u_2 + u_3 - \cdots - u_n||$

5. Let V be an inner product space and $W \subset V$ a finite dimensional subspace with an ONB $\{u_1, \ldots, u_n\}$. For every $x \in V$ define

$$P(x) = \sum_{i=1}^{n} \langle x, u_i \rangle u_i.$$

(i) Prove that $x - P(x) \in W^{\perp}$, hence P is the orthogonal projection onto W.

(ii) Prove that $||x - P(x)|| \le ||x - z||$ for every $z \in W$, and that if ||x - P(x)|| = ||x - z|| for some $z \in W$, then z = P(x).

6. (JPE, May 1999). Let $P \in \mathbb{C}^{n \times n}$ be a projector. Show that $||P||_2 \ge 1$ with equality if and only if P is an orthogonal projector.

7. Let $A \in \mathbb{C}^{m \times n}$. Show that

$$||UA||_2 = ||AV||_2 = ||A||_2$$

for any unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.

Continued on back

8. Let $A \in \mathbb{C}^{m \times n}$ and $||A||_F^2 = \sum_{i,j} |a_{ij}|^2$ (Frobenius norm). Show that

$$||UA||_F = ||AV||_F = ||A||_F$$

for any unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.

9. Show that if Q is a real orthogonal 2×2 matrix and det Q = 1, then

$$Q = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

for some $\theta \in [0, 2\pi)$ (i.e. Q represents a rotation of \mathbb{R}^2).

10. Show that if Q be a real orthogonal 2×2 matrix and det Q = -1, then

$$Q = \begin{bmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{bmatrix}$$

for some $\theta \in [0, 2\pi)$. Then prove that $\lambda = \pm 1$ are eigenvalues of the above matrix Q. (This means that Q reflects \mathbb{R}^2 across a line.)

11. Show that if a matrix A is both triangular and unitary, then it is diagonal.