1. Problem 2.1 from Textbook.

2. Let $\{w_1, \ldots, w_n\}$ be an ONB in \mathbb{R}^n . Assuming that n is even, compute

$$||w_1 - w_2 + w_3 - \dots - w_n||$$

3. Apply Gram-Schmidt orthonormalization to the the basis $\{1, x, x^2\}$ in the space $P_2(\mathbb{R})$ with the inner product

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx$$

4. (i) Let $W \subset V$ be a subspace of an inner product space V. Prove that $W \subset (W^{\perp})^{\perp}$. (ii) If, in addition, V is finite dimensional, prove that $W = (W^{\perp})^{\perp}$.

5. Let V be an inner product space and $W \subset V$ a finite dimensional subspace with ONB $\{u_1, \ldots, u_n\}$. For every $x \in V$ define $P(x) = \sum_{i=1}^n \langle x, u_i \rangle u_i$.

(i) Prove that $x - P(x) \in W^{\perp}$

(ii) Prove that P is the orthogonal projection on W

(iii) Prove that $||x - P(x)|| \le ||x - z||$ for every $z \in W$, and that if ||x - P(x)|| = ||x - z|| for some $z \in W$, then z = P(x).

6. (i) Show that if a, b are real numbers satisfying $a^2 + b^2 = 1$, then $a = \cos \theta$ and $b = \sin \theta$ for some $\theta \in [0, 2\pi)$.

(ii) Show that if Q is a real orthogonal 2×2 matrix and det Q = 1, then $Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for some $\theta \in [0, 2\pi)$ (i.e. Q represents a rotation of \mathbb{R}^2).

7. [Extra credit] Let $A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ for some $\theta \in [0, 2\pi)$. Show that A is orthogonal and det A = -1. Prove that $\lambda = \pm 1$ are eigenvalues of the above matrix A and find its eigenvectors. Describe the action of A in \mathbb{R}^2 geometrically. Show that if A is a 2×2 orthogonal matrix and det A = -1, then A has the above form.