1. (i) Let $W \subset V$ be a subspace of an inner product space V. Prove that $W \subset (W^{\perp})^{\perp}$. (ii) If, in addition, V is finite dimensional, prove that $W = (W^{\perp})^{\perp}$.

2. Let V be an inner product space and $W \subset V$ a finite dimensional subspace with ONB $\{u_1, \ldots, u_n\}$. For every $x \in V$ define $P(x) = \sum_{i=1}^n \langle x, u_i \rangle u_i$.

- (i) Prove that $x P(x) \in W^{\perp}$
- (ii) Prove that P is the orthogonal projection on W

(iii) Prove that $||x - P(x)|| \le ||x - z||$ for every $z \in W$, and that if ||x - P(x)|| = ||x - z|| for some $z \in W$, then z = P(x).

3. For an $m \times n$ complex matrix A define $||A||_2 := \sup_{||x||_2=1} ||Ax||_2$, where $||x||_2$ is the 2-norm in \mathbb{C}^n and $||Ax||_2$ is the 2-norm in \mathbb{C}^m . Prove that for every vector $z \in \mathbb{C}^n$ we have $||z||_2 = \sup_{||y||_2=1} |\langle y, z \rangle|$, and then show that $||A^*A||_2 = ||A||_2^2 = ||A^*||_2^2$.

4. The spectral radius of a real $n \times n$ matrix A is defined by

 $\rho(A) := \max\{|\lambda| : \lambda \text{ eigenvalue of } A\}$

Show that

(a) $\rho(A) \leq ||A||$ for every matrix norm $||\cdot||$ that is induced by a norm on \mathbb{R}^n (b) if A is symmetric then $||A||_2 = \rho(A)$ (Hint: use the spectral theorem) (c) $||A||_2^2 = \rho(A^t A)$

5. Show that if Q is a real orthogonal 2×2 matrix and det Q = 1, then $Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for some $\theta \in [0, 2\pi)$ (i.e. Q represents a rotation of \mathbb{R}^2).

6. Show that if Q be a real orthogonal 2×2 matrix and det Q = -1, then $Q = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ for some $\theta \in [0, 2\pi)$. Then prove that $\lambda = \pm 1$ are eigenvalues of the above matrix Q and find its eigenvectors. Describe the action of Q on \mathbb{R}^2 geometrically.

[Extra credit] Let AQ be a 3×3 real orthogonal matrix with det Q = 1. Prove that $\lambda = 1$ is an eigenvalue of Q. [Hint: use 10.12 and the previous problem]