1. Let $A \in \mathbb{C}^{m \times n}$. Show that

$$||UA||_2 = ||AV||_2 = ||A||_2$$

for any unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.

- 2. (i) Let $W \subset V$ be a subspace of an inner product space V. Prove that $W \subset (W^{\perp})^{\perp}$. (ii) If, in addition, V is finite dimensional, prove that $W = (W^{\perp})^{\perp}$.
- 3. Let V be an inner product space and $W \subset V$ a finite dimensional subspace with ONB $\{u_1,\ldots,u_n\}$. For every $x\in V$ define $P(x)=\sum_{i=1}^n\langle x,u_i\rangle u_i$. (i) Prove that $x-P(x)\in W^\perp$, hence P is the orthogonal projection onto W.
- (ii) Prove that $||x P(x)|| \le ||x z||$ for every $z \in W$, and that if ||x P(x)|| = ||x z||for some $z \in W$, then z = P(x).
- 4 (Bonus) Show that if Q is a real orthogonal 2×2 matrix and $\det Q = 1$, then $Q = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for some $\theta \in [0, 2\pi)$ (i.e. Q represents a rotation of \mathbb{R}^2).
- 5 (Bonus) Show that if Q be a real orthogonal 2×2 matrix and $\det Q = -1$, then $Q = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ for some $\theta \in [0, 2\pi)$. Then prove that $\lambda = \pm 1$ are eigenvalues of the above matrix Q. Show that Q is a reflection of \mathbb{R}^2 across a line.