1. The spectral radius of $A \in \mathbb{C}^{n \times n}$ is defined by

$$\rho(A) = \max\{|\lambda| \colon \lambda \text{ is an eigenvalue of } A\}$$

Show that $\rho(A) \leq ||A||$ for every matrix norm $||\cdot||$ that is induced by a vector norm.

2. Let $x, y \in \mathbb{C}^n$ be non-zero vectors and $A = yx^*$. Show that rank A = 1. Show that $||A||_2 = ||x||_2 ||y||_2$. Show that $||A||_F = ||x||_F ||y||_F$, where $||\cdot||_F$ stands for the Frobenius norm.

3. Let $A \in \mathbb{C}^{m \times n}$. Show that

$$||UA||_F = ||AV||_F = ||A||_F$$

for any unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$. Here again $\|\cdot\|_F$ stands for the Frobenius norm.

4. Let $A = (a_{ij})$ be a complex $n \times n$ matrix. Assume that $\langle Ax, x \rangle = 0$ for all $x \in \mathbb{C}^n$. Prove that

(a) $a_{ii} = 0$ for $1 \le i \le n$ by substituting $x = e_i$ (b) $a_{ij} = 0$ for $i \ne j$ by substituting $x = pe_i + qe_j$ then using (a) and putting $p, q = \pm 1, \pm \mathbf{i}$ (here $\mathbf{i} = \sqrt{-1}$) in various combinations. Conclude that A = 0.