.

- 1. Let $A \in \mathbb{C}^{n \times n}$ satisfy $A^* = -A$. Show that the matrix I A is invertible. Then show that the matrix $(I A)^{-1}(I + A)$ is unitary.
- 2. Let $A = (a_{ij})$ be a complex $n \times n$ matrix. Assume that $\langle Ax, x \rangle = 0$ for all $x \in \mathbb{C}^n$. Prove that
- (a) $a_{ii} = 0$ for $1 \le i \le n$ by substituting $x = e_i$
- (b) $a_{ij} = 0$ for $i \neq j$ by substituting $x = pe_i + qe_j$ then using (a) and putting $p, q = \pm 1, \pm \mathbf{i}$ (here $\mathbf{i} = \sqrt{-1}$) in various combinations. Conclude that A = 0.
- 3. Find a real $n \times n$ matrix $A \neq 0$ such that $\langle Ax, x \rangle = 0$ for all $x \in \mathbb{R}^n$.
- 4. Find a real $n \times n$ matrix A such that $\langle Ax, x \rangle > 0$ for all $x \neq 0$, but A is not symmetric.