•

1. (JPE, May 1994) Let $A \in \mathbb{R}^{n \times n}$ be given, symmetric and positive definite. Define $A_0 = A$, and consider the sequence of matrices defined by

$$A_k = G_k G_k^t \quad \text{and} \quad A_{k+1} = G_k^t G_k$$

where $A_k = G_k G_k^t$ is the Cholesky factorization for A_k . Prove that the A_k all have the same eigenvalues.

2. Let $A \in \mathbb{C}^{m \times n}$. Define $A^* := \overline{A}^t \in \mathbb{C}^{n \times m}$. Show that

$$\langle x, Ay \rangle = \langle A^*x, y \rangle$$

for all $x \in \mathbb{C}^m$ and $y \in \mathbb{C}^n$. (Note that A is a rectangular rather than a square matrix!)

3. For $A \in \mathbb{C}^{m \times n}$ define

$$||A||_2 := \sup_{||x||_2=1} ||Ax||_2$$

where $||x||_2$ is the 2-norm in \mathbb{C}^n and $||Ax||_2$ is the 2-norm in \mathbb{C}^m . Prove that

$$||z||_2 = \sup_{||y||_2=1} |\langle y, z \rangle|$$

and

$$||A^*A||_2 = ||A||_2^2 = ||A^*||_2^2$$