1. (JPE, September 1993). Solve the system

$$\left(\begin{array}{cc} 0.001 & 1.00 \\ 1.00 & 2.00 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1.00 \\ 3.00 \end{array}\right)$$

using the LU decomposition with and without partial pivoting and chopped arithmetic with base $\beta = 10$ and t = 3 (i.e., work with a three digit mantissa). Obtain computed solutions (x_c, y_c) in both cases. Find the exact solution, compare, make comments.

2. (JPE, September 1996). Consider the system

$$\left(\begin{array}{cc} \varepsilon & 1\\ 2 & 1 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right) = \left(\begin{array}{c} 1\\ 0 \end{array}\right)$$

Assume that $|\varepsilon| \ll 1$. Solve the system by using the LU decomposition with and without partial pivoting and adopting the following rounding off models (at all stages of the computation!):

$$a + b\varepsilon = a$$

(for $a \neq 0$) and

$$a + b/\varepsilon = b/\varepsilon$$

(for $b \neq 0$). Find the exact solution, compare, make comments.