1. Prove that for every vector $z \in \mathbb{C}^n$ we have

$$||z||_2 = \sup_{||y||_2=1} |\langle y, z \rangle|.$$

Then show that for every $A \in \mathbb{C}^{m \times n}$

$$||A^*A||_2 = ||A||_2^2 = ||A^*||_2^2 = ||AA^*||_2.$$

2. The spectral radius of $A \in \mathbb{C}^{n \times n}$ is defined by

$$\rho(A) = \max\{|\lambda| : \lambda \text{ eigenvalue of } A\}.$$

Show that

- (a) $\rho(A) \leq ||A||$ for every matrix norm $||\cdot||$ that is induced by a vector norm.
- (b) if A is Hermitian, then $||A||_2 = \rho(A)$ (Hint: use the spectral theorem)
- (c) $||A||_2^2 = \rho(A^*A) = \rho(AA^*).$
- 3. Let $A \in \mathbb{C}^{m \times n}$. Prove that

$$||Ax||_2 = ||A||_2 ||x||_2 \iff A^*Ax = \lambda_{\max} x.$$

where λ_{max} is the largest eigenvalue of both A^*A and AA^* .

4. Let $x, y \in \mathbb{C}^n$ and $A = yx^*$. Show that rank A = 1. Show that $||A||_2 = ||x||_2 ||y||_2$. Show that $||A||_F = ||x||_F ||y||_F$, where $||\cdot||_F$ stands for the Frobenius norm.

Bonus (JPE, May 1999). Let $P \in \mathbb{C}^{n \times n}$ be a projector. Show that $||P||_2 \geq 1$ with equality if and only if P is an orthogonal projector.