1. (JPE, May 1994) Let $A \in \mathbb{R}^{n \times n}$ be given, symmetric and positive definite. Define $A_0 = A$, and consider the sequence of matrices defined by

$$A_k = G_k G_k^t$$
 and $A_{k+1} = G_k^t G_k$

where $A_k = G_k G_k^t$ is the Cholesky factorization for A_k . Prove that the A_k all have the same eigenvalues.

2. Find a nonzero matrix $A \in \mathbb{R}^{2\times 2}$ that admits at least two LU decomposition, i.e. $A = L_1 U_1 = L_2 U_2$, where L_1 and L_2 are two *distinct* unit lower triangular matrices and U_1 and U_2 are two *distinct* upper triangular matrices.

3. Show that the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ admits no LU decomposition, even if we only require that L be lower triangular (not necessarily unit lower triangular).

4. The spectral radius of a matrix $A \in \mathbb{C}^{n \times n}$ is defined by

$$\rho(A) = \max\{|\lambda| : \lambda \text{ eigenvalue of } A\}.$$

- (a) Show that $\rho(A) \leq ||A||_2$.
- (b) Give an example of a 2 × 2 matrix A such that $\rho(A) < 1$ but $||A||_2 > 100$.
- (c) Show that if

$$\lim_{n \to \infty} \|A^n\|_2 = 0,$$

then $\rho(A) < 1$.

[Bonus] In the notation of the previous problem, show that if $\rho(A) < 1$, then

$$\lim_{n \to \infty} \|A^n\|_2 = 0.$$

Hint: use Jordan decomposition.